
AD-A24 ' 086

IMACS '91

13TH WORLD CONGRESS
ON

COMPUTATION AND APPLIED
MATHEMATICS

JULY 22- 26, 1991
TRINITY COLLEGE- DUBLIN

IRELAND DTIC ,
ELECTE 'D
SEP 3 0;1991. M

PROCEEDINGS
IN FOUR VOLUMES

LILELLUNE 2
Appea u k-omw 57 rh*N A



IMACS '91

-Proceedings of the 13th IMACS World Congress on- Computation and Applied-
Mathematics

July 22-26, 199 1,Trinity College, Dublin, -Ireland

i n- four volumes

Computational Fluid Dynamics aqnd-VAv'e5. Tpagation
Parallel- Computing 4
Concurrent and Sup'rconriputim

Computational- Physics/Comp i 6na~l Cfie:W1~stry and Evolutionary- Systems
01T

EDITED BY:- R Vichnevetsky
Rutgers University 91-I11591
New Brunswick, USA

J J H- Miller
Trinity College
Dublin, Ireland 91 9 2 60



Copyright © 1991 IMACS.- International Association for Mathematics and Computers in Simulation

All-rights reserved. No part of this publication may be reproduced, stored-in a retnec al sy stermor transmittcd in an) fonni orby aMy means, electronic, electrostatic,-magnetic tape, meochanical, photocopy ing, recording or otdicr', ise, NN ifhout priorpermission-inwriting frorn-1MACS.

loaessiori for-

DTIC-TAB
Unannounced 0

Ao~.0

ImAcs Symposium Rutge~rs Univ Dept of ,~Availability Ccos-
Computer Science New Brunswicks, NJ 08903 SpecAaln/'

100.00 per set 4 Vols.

Printed in Ireland by-Criterion Press, Dublin



A UNIFORM NUMERICAL METHOD FOR, A CLASS OF
QUASILINEAPR TURNING POINT PROBLEMS

Relja Vulanovic

Institute of Mathematics, University of Novi Sad
21000 Novi Sad, Yugoslavia

Abstract. An LV-stable quasilinear singularly perturbed buund- Hie (ic ,.(a)) denotes the -oiitat punit of the tangent hue
ary value problem With a single turning-point is solved numer- from (1,1) to w(t).
ically by a finite-difference scheme on a mesh which is dense Let h, = .r, - z,1-, 1 = l(1)n, and let w h and z1' denote
near the turning point. The scheme is a special variant of tht arbitiar mesh ftuctions defined on I \ {-1, 1. We set w -
upwind scheme and-it has better properties than-the standard [wl,w 2, ...,w,,-j]

T and wo U., w, -U+. Furtheimore, let
Engquist-Oslier scheme.

D_wj= (wj - wjI)/h D+wi = (wi+,-wi)/h+,
Introduction

and let f, = f(xi, wi), gi = g(xi, wi). Let us form tile discretiza-
We consider the following singularly perturbed boundary value tion of (5), (2):
problem:

-6u" -xb(x,u)u'+c(x,u)=0, xEi [-1,1], (1) Xwi:=(Twh)i 0, i=l(1)n-1, (7)

Twi = -[D+w, - D-w/h, - D-fi + g,, i = l(1)m - 1,u(-1) = U_, u(1)-= U+, (2)

where e is-a small positive parameter, U., are given numbers, b Twi=-4D+wi-D-wi/h,+i- D+f,+gi, i=?f+1(1)n-1,

and-c are s.-fficiently smooth functions, and Twn = -c[w,, -
2
wn + Wm+i]/h , - Ifn+i - f.-I]/2hm + 9 .,

c(xiu) = xci(x, U) + ec2(X, u), (3) (note that hm hm+i). Tie following stability inequality holds:
b~xu)_. b. > 0, x E I, u ER. (4) I'lw - z <-1 1 g'IlTw" - TzhIl,

with the discrete L' norm:

Let
m n-I

f(x,u) = f xb(x,s)ds, g(x,,) = f.(x,u) +c(x,u). = -- thil + Z h,+,lwI.
0i= i=m+i

Then (1) -can be written downmin the form. Then the first older uniform counveigence can be proved due to
the special mesh and the estimates from the Introduction:-6u"-j(x, u)' +g(x, u)= 0, xE1. (5)

S- ,JIll <Mh
-Furthermore, we assume:

where M does not depend on h, yh is the unique solution to (7)
gu(x,u) = c(x,u)+(xb(x,u)) > g. >0, x El, u ER. (6) andyh is the restriction ofyon 1h\{-1, 1). Moreover, numerical

results show pointwise uniform convergence as well. This is not
Numerical-treatment of problems of this type was considered in the case with the Engquist-Osher (EO) scheme (1] in general,
2 (the linear case)-and [3] (the semilinear case b = 6(x)). By 'see (2). The EO scheme is uniformly convergent only globally
using the teclmique from [2], [3], based on inverse monotonicity - in the standard discrete L 1 norm (1-3]. This is because the
and (3), (4), (6), we can get that the problem (1), (2) has a EO schem uses D with (h, + hi+ 1)/2 instead of h and hi.
unique solution y and that the following estimates hold for x E Another advantage of our scheme is that it uses a simpler mesh

I generating function A-than the upwind schemes in [2] and (3].
We illustrate these facts by some numerical results for thelu(X)l_ M, I(z))'l_ M, IY(a))"l__. M[1 +'U-iv(xA, problem with b = 1, c = -zjxsin(-r) + cr cos(rx)] and U- =

l/'(x) < M[Ixl + ' + V(x)], IY"'(x)I _< M [1 + jfm v(x)], -2, U+ = 0, for which thc solution is kiiown, see 13]. Let E
denote the maximal pointwise error for c = 10-12 . Our schemewhere/t = c'/ and v(x) = exp(-Ijx/p), and throughout M gives E = 0.386, 0.215, 0.115 for n = 50, 100, 200, respectively.

denotes any positive constant independent of e. These estimate- Results for other values of e are similar due to the special mesh.
are needed in the consistency-error analysis. The EO scheme does not converge: E = 4.99, 8.131, 8.09 for

Numerical Method the same values of n.

We shall use finite-differences on a special discretization mesh, 6
the approach from [2], [3]. The estimates above show that y [1] L. Abrahanisson and S. Osher, Monotone difference schemes
has an interior layer at x = 0, and because of that we shall use for singular perturbation problems, SIAM J. Nuner. Anal.
a mesh which is dense near that point The mesh 1 h has the 19 (1982), 979-992.
points: (2] R. Vulanovi6, On numerical solution of a turning point prob-

lem, Univ. u Novorn Sadu Zb. Rad. Prirod.-Mat. Fak. Scr.
S= A(mi - 1), i = 0(1)m, h = 2/n, n = 2m, Ii E N, Mat. 19, 1 (1989), 11-24.

w(t) := pt1/(1/2- t, if t G [0,a], [3] R. Vulanovi6, On numerical solution of a mildly nonlinear

A(t) w'(a)(t - a) +w(a) if I e [a, 1,] turning point problcn., RAIRO Math. Modl. Nurner. Anal.
-A(-t) if t E (-1,0). 24 (1990), 765-784.
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A NOTE ON A SPLINE-COLLOCATION METHOD FOR
SINGULARLY PEW;,'URBED PROBLEMS

Katarina Surla Zorica Uzelac
Institute of Mathematics, University of Novi Sad Faculty of Technical Sciences, University of Novi S ,d

21000 Novi Sad, Yugoslavia 21000 Novi Sad, Yugoslavia

Abstract: The exponential spline collocation methods for sin- ,' = (p+/(l - r- P-Cxp(-A-)/(1 - eXp(-L-)) ,
gularly perturbed boundary value l)roblem are considered. The rc = -r- - r+

convergence between mesh points for different collocation con- +
ditions is compared. Numerical results are presented. - 1 - eXP(-P+)))

q= ( - cxp(--) - ye p(--)lCP-(1 - ep(-A-))),
Introduction ,+ = p+h, p = p-h, p4 = p+/, p- = p-/e, p- and f" aie con-

We consider the following- singularly perturbed boumn.ary value 9tant apioximations to p(x) and f(x) on the interval 4z,].
problem: By deterining p - = (p(xjli)+p(xj))/2,f* = (f(x,)l)+f(x;))/2

sy" + p(x)y' = f(x), x E = [0,1 , (1 we obtain EMW scheme, whereas for
y(0) a0, y(1) = ,(2) 1= p(xj ± h/2), fl = f(xj ± h12) (6)

where c is a small positive parameter, ao and al are given nui- we obtain the schene from 13) ( (4),(5),(6)). In [11 the exact
bers, p and f are sufficiently smooth functions and p(x) 2 p > 0. solution of the problem:
By using exponential spline e(x) from 12], c(x) r Ci(I), as a
collocation function a-family of difference schemes i6 deived in zu" + p+u' = f+, x) < x < +l,
[4]. The well known Allan-Southwel- Win and El Mistikawy-
Werle ( EMW ) schemes are membcrs of this family. Some of u(xt) = ui, u(xj)
the properties of the scheme (4).(5),(6) , which belongb to the i6 uted foi the approximation between mesh points. The func-
same family, are better than those of EMW scheme ([3]). In tion c,(') has the form:
this paper we consider the approximation between the mesh
points which correspond to both EMW scheme and to sclienic (.r) = span {1,, cxp(0or), cxp(-plx)).
(4),(5),(6). Both splines have f&r,r, order of uniform convergence Sie onlitions (3) lead to the elininajon of the function
on the whole interval, but the numerical iesults are much better riner condrtions (3 plleadbto eth somhna yi s of the con
for the scheme (4),(5),(6)_ This is the consequence of the bettei ri(rj.r) from the spline base. . some analysis of the con-
accuracy at the nodes. It will also be shown that the collocation Otmit,; on, can see that u(. ) = c,(x). Thus, the calculation
spline given in [4] is equal to the one used for the derivation of becomes simlplei when one tkse the spline in the form of the
EMW scheme ( 1]). pieccwise function u(x) . The properties of that function are

given in [2]. Some connections between the spline e(x) and the
-Collocatioi NIethod cubic spline are given in 16). The family of difference schemes

eorrespoding to the cubic spline is presented in (5]. With re-
The spline e(x) has the form (121): goid to second older polinomnials some characteristics of scheme

(4,(5),(6) mie shown in [3): the scheme becomes exat when e
) = e,(x) = u, +hmn bgi(ehl~t, - l)/p,+q-(.hl~tf --lL)/, goes to zero : the major term of the error is four times smaller

. [ ,] than the one for EMW scheme when h < e. Both schemes have
Ell-,ecoid order of uniform convergence at the mesh points.

where t=(x-x,)/h, x=jh, h=1/(+ 1), it, li,,p. j-0(1)m,, The pictfeated anumercal results show that the error between
are tension paramneters. The values 9, amhd ti, al( d( t h i sl puhiims lid similar properties. In the way presented in [1
from the requiremint c(x) C C' (I) Frium the ullut ti,,Q r 1U1 11, .,,,m Proxe that the etinmates given foi spline corresponding
ditions to EMW scheme are also valid for the spline corresponding to

scheme (4). (5),(6).
ec"(x) + -p+eI(x) = f + , x x,, = .rx , (3)

Numerical results
where p+ and f+ are constant aproximations to p(x) and f(,r)
on the interval 1I, x,+,] for fixed j, the follo%% mug fmtml of th, TIt , ai-I h i, t-iken from i1> WC denote by E, the maximum
difference schemes is derived in 141. of Jy!(. + h12) - utx, + h/2)}, j = 0(1)nr. The order of conver-

genc- (Ord) for two succesive values of n with respective errors
r-uo_. + r'u, + r+u+ 1 = q-f- + q+f+, . = l)", (4t) E, and E2 ,, is defined in the usual way as in [Il. Tables 1 and

2 pesen t lie numerical results obtained by EMW and scheme
10= a0 , u = (=)01~),6) respectively. The better behaviour for small e of the

where schem presented in Table 2 results in hasty decline of Ord.
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n __ _n

21 25 2-10 2-11 2-1 2- 2-10 2- 14

_8-5.578(-3) a8.314(-3) 3:373(43) 1l53(43) E,, 8 1-364(-3) 2.049(-3)- 1.045(-3) 1.070(-3) jL,
___ I _ _ _ __ _ Ord __ _ __ -Ord

16 1.393(-3)- 1.891(-3)- 9.356(-4) 8.176(-4) E 16 3.464(-4) 4.040(-4) 2.585(-4) 2.-685(-4) fE 1
____ __ ___Oi'd -Ord_

32 3.491(-4) 4-0865(-4) 2.940(A4) 2.095(-4) E,, 32 8 716(-5) 1.152(-4) 6.360(-5) d6.663(-5) fE
1.985 1.856- L924 1930 Ord 1.967 1,138 2.011 1.945 v~rd

64 8-.733(-5) -1.221(-4) 3.055(-4) 5.378(-5) E 64 2.183(-5) 3.006(-5) 2.085(-4) 1.650(- 5) E.
2.000 1.976 1.938 1.966 Ord - 1.996 1.758 2.109 1.980 [-Ord

128 2.184(-5) -3.070(-5) 2.173(-4) 1-400(-5) E,, 128 15.459(-6) 7.642(-6) 1.891(A4) 4.084(-6) E
2:000 1.956 1.876 1.983 Ord - 1-1999 1.873 .836 -2.004 -Ord

256 5.459(-6) 7.667(-6) 4.800-(-5) 3.774(-6) E,, 256 1.365(-6) 1-.920(-6) .4.172 (-5) 1-.010(-6) E,
2.000 1.993 - 1.687 1.990 Ord __ 2 ;OWWO0 1.965 - -1.186 2.031 Ord

5121.35(-) 1922-6)5.870(-6) 2.549(-6) E 512 3,412(-7) .0(7 471(-)1286)E

L-12.000 I1.998- L633 1.989 IOrd~ - 2.000 1.9 0.252 (-1) 2._0_75 -Ord

Table 1 Table 2

References

[11 A. Berger, J. Solomon and M, Ciment, An Analybiz, of a [41 K. Surla and Z. Uzelac, A Family ol' Spline Difference
Uniformly Accurate -Difference Method for -a Singular Per-. Schemes, ZAMM (to appez).

turbation-Problem, Maih. Comput. 37 (1981) 79-94. [51 K Surla and Z. Uzelac, Sonme uniforn2) convergent spline
12) WV. Hess and J.W.Schmidt, Convexity Preberving hiterpola- difference schentcb~for bisularly perkuutbed bunrdary alue

tion with -Exponential Splines, Computing 36-(1986) 335- problem, IMA J, Numer. AnaL 10 (1990) 209-222.
342. 161 K. Surla and -Z. Uzelac, The spline collocation method for

[31 KSraadZ zlc An Analysis aiid Improveiiiciit of El boundary value problem, Proceedings of the Conference
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A Posteriori Error Bounds for Piecewise Linear Approximate Solutions

of Singularly Perturbed Nonlinear Elliptic Problems

Koichi Niijima

Department of Control Engineering and Science

-Kyushu Institute of Technology

lizuka 820, Japan

Abstract: A method- for finding a posteriori error bounds for-piecewise lin-

ear -approximate solutions of singularly perturbed nonlinear elliptic-problems is

proposed. A relation between a line integral on an edge of a triangle and volume

integrals in the triangle plays an important role.

1. Introduction R
Recently, we developed a method-for finding er-
ror estimators for piecewise linear approximate 6(V(v - w), V(v - w))

solutions,-of nonlinear elliptic -problems (Niijima +(f(z, y, v, Vv) - f(Z, y, w, Vw), v - w)

[I), Niijima [2]). We will apply this method to > 6 11 V(v --W) 112+a II v - w 112
piecewise linear approximate solutions of singu- where I1. -1 indicates an L'(Q2) norm.
larly perturbed nonlinear elliptic problems. Gen-
erally, numerical solutions of such problems do Consider a triangulation of R and let F be the

not necessarily have a continuous piecewise lin- set of triangles. Let r be a triangle in F and

ear form. So numerical data obtained are inter- let three edges of T be tI, y2 and y3. Denote

polatedplecewise linearly such-that our method the vertices corresponding to -y, 72 and 73 by

can-be-applied. (X1 ,:y1 ), (z 2 , Y2) and (X3, yQ), respectively.

2. Preliminaries We have the following lemma.

Let-R be a bounded polyhedral domain in R2 with Lemma 1. For g belonging to the Ililbert space
a boundary 0f2 and-consider the following prob- HI(r), we have

lem: (1,Lg' 3  [2 = '[2  g),

-eAu+f(,YU',VU) = 0 inil, (1) +(X-X3,g) . +(y-Y3,9g)].

u = 0 on Ol, (2) lHere < .,. >., and (.,.)r indicate inner products

on 7a and r, respectively. Also
,vhere-c is a sufficiently small positive constant
and Vu = (u., uv). 11 = (X2 - Xm)(y3 - Y) - (3 -Xm )(Y2 -Y)

A weak form of (1) and-(2) is and 1731 denotes the length of 73.

e(Vu, Vv) + (f(x, ,. u, Vu), v) = 0 (3) This relation is a formula-changing a line inte-
gral on an edge into the sum of three volume inte-

for any v belonging to the -lilbert space III (ft), grals in r. By this formula, we can rewrite the line

where (-,.) denotes an L2(ij) inner product. integrals appearing in partial integrations of the

We assume that gradient term by elementwise volume integrals.

1l. (3) has a solution in 1102), 3. Main results
112. there exists ot > 0 such that for v, w G Let E be the set of edges -not on 0ft. Consider

496



two-triangles t.. and -r+~ sharing an -edge -y in E, We-obtain the-following theorem by applying
where a normal direction-n-is outward from- r... the Schwarz' inequality -to the right hand sidc of
Let-(xi, yr), -(x21 y2) and-( -x., y-) be the vertices- L in Lemma 2.
of r-, and (xi, y1 ), (X2 ,-y2) and (x+,-y+) the ver- Theorem. We have, for e = u
tices of r+. Denote the mesh size by It. Let uh be
a- continuous piecewise linear function- and define ClIVeilf + audII12

a jump in guh/On across -t- by -h{I ~ 1 u h12+ek 112) (4

aub Du Oth u h TV of
an- ~ T- Remark: infw{.1II 66hUh + fh11 2 + cIjr" 112) is

17or -atter convenience. we-define [Ouh,/On]7 = a quadratic minimization -problem.

for edges 'y on OfZ. 4. Numerical results
Let r be a triangle in F and let -yi, 7y2 and y3 be Example.

thr~ee edges of T. From now, we use the symbol u h 66 3+U g=0
to-denote a-piecewise-linear interpolate solution- -~
of (3). We-now -define an operator Lh- by in Q=-(0,1)-x-(0,1),

3u u=0 on OS2,
Au__2 3- uh
A~~ -I'I(h; where-c = i0-3 and g is determined such that

1j'-1 u =-(1- exp(-x('-r 2))(i - exp(- 4 J1-11))-satis-
Here, -if -yj E E, then the parameter wT,i has a fies the above equation. It is easily verified that
relation 112- holds as ae = 1. Divide the interval (0, 1) into

wr,i + wr',vl = r-equidistant subintervals and make a-triangula-

for the parameter w,,,i, -Where T-
1 is the other to.Tenmrclsltosu eeotie

triagleshaingyi.If yi-is n-a2, henw,, is by thie-Iitz-Galerkin method. A post".riori error
rieangle shrin = If1. i n OZte Tji bounds were-computed following Theorem, and

Using the same symbols as above, we-further were compared with actual errors.

define a two-dimensional vector r.!b m /'r.h~s of (4) V1.Lj of(4)

3 4 0.732 0.402
r, = yy-(. K .iiiI -y7 (x- xi), 6 0.486 0.281

ZWT, 17i[751 8 0.353 0.214

On -f Y O 10 0.274 0.170

12 0.223 0.142
We define 6h and rh by 6" =-L (A!),EF and r' 14 0.188 0.121
(r!),rEp, respectively. By W, we denote the set 1 .6 .0
of -vectors whose components consist-of all Wr .

Using Lemma 1, we can prove

Lemma 2. Let-u be a solution of (3) and let u h The experiment was performed by using Turbo
be-a piecewise lIinear initerpolate solution of (3). Pascal Ver.5.5 on the p~ersonal computer EPSON
We put e = u - uh and define L bY PC-286UX.

L = e(Ve, Ve) Refereces

+(f Z' , U VU - (x Yu hI Vh),a).[1] I(.Niijima, A posteriori error bounds for p~iece-
+(f~, ~ uVii - ~x, , u, Vb),a).wise linear approximate solutions of nonlinear el-

Then we have liptic equations, to appear in Math. of Comip.
[2] K.Niijima, A posteriori error bounds for p~iece-

£ = _(_CAhUh + fh, C) + (erh, VC), wise linear approximate solutions of regularized
compressible flow problems, to appear in Numer.

where we put fh-= f (X, y, uh, VUh) for simplicity. Math.
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Iterative methods for convection dominated flow*

R. B. Kellogg B. Peaceman Rachford type Iterations

Inst. Physical Sci. Tech. We consider the convection diffusion equation
University of Maryland Lur=-Au+p.Vu+ru=f, infl

College Park, Md. 20742 USA u=o on r=an. (4)

Abstract -- Some iterative methods are considered for the numerical Divide r into two subsets, r,, = {(z, y). n p < 0}, and rut r r\,

solution of convection diffusion problems. The first class of iterative Here n is the outward point unit normal-to r. We consider the CDI

methods is Chebyshev accelerated iterations. The issues-of parame- method for solving (i); guess u°, and define Of , u1 , , by

ter selection and convergence rates are considered. Secondly, we con- _Auk+/ puk+12 - puk -p. Vuk-uk + f, uk + 2 =0 on r,
sider convection - diffusion type iterations where the iterations are of a p. VUk + 1 + puk+l = pak+1I2 - Duk+ / 2 + f, k+ l = 0 on rin.
Peaceman-Rachford type. Here, a convergence method is established, To study the convergence of this method, it is convenient to define
and a conjecture is given concerning a related problem in-functional the operator L by
analysis.
A. Chebyshev iterations LDu--Au, u=0onr,

We consider Chebyshev accelerated iterations for the numerical so- and the operator LG by
lution of discretizations of the convection diffusion equation Lcu P. Vu + ru, s - 0 on rin.

-eAu+pu +qu 1 1 +ru = fin , With these definitions, the iterations may-be written

U = Y on 0 (1) (pI+ Lo)uk+/ = (pl- Lc)u) k+ _,

(pl + -c)ul+ = (pIL- LD)Uk+1 2 + f. (6)
and related systems, such as the Oseen system. If a discretized version We regard LD and Lc as closed, unbounded operators on L2(fl). LD
of (1) is written and LECare accretive in the sense that for some a > 0,

., ,()(Lou, s) > a(u, is), (7)

-the methods we consider may be written (Lcu, u) > a(u, u).

S= ok-i (3) Also, LT 1 and L ' are bounded operators on L2(f), and L, 1 is a com-
-ak~uk +ku u - ,  (3 pact operator. Finally, any positive p is in the resolvant set of LD and

with initial guess is
0 , where the iteration parameters ak,k,'k satisfy Lc. With this understanding we define

vk+
/

2 (pI+Lo)uk+12, k ,,-.-, (8)

P,+-==1, 1o=O. (4) 0/ =(pI+Lc)uk, k=0,,.-.,
and we set

From (3) and (4) one finds that the solution u is preserved under TD = (pr+ Lo)-(pI- L)= 2p(pI+ Lo) -a- I,
-the iteration, and the error e = -U satisfies e = akAek +,-k'+ 9y/ k

'
k. Hence, defining a set of polynomials PA(A) by Ta = (pI +Lc)-'(pI-Lc) = 2,P1p+ Lc) - -LI

Thus, TD and Tc are bounded operators, and TD is a compact pertur-

Po(A) = 1, PA+(A) = crkAPk(A) + PA:P(A) r yePk-A(A), k 0,1, bation of -I. Also, from the secretiveness of LG anmd LD one c., show
that

we find that c' = P,(A)es. From this formula it is seen that the iter- IIToI -< 1, 11TCII < L
ation parameters should be chosen so that the values of Pk are small In terms of these operators, (2) may be written
on the spectrum of A. Manteuffel [I] has shown how to choose the Pk Vk+12 = TCu, + f,
in terms of Chebyshev polynomials so as to optimize the convergence of k+1 = ToUk+1I2 + f.
the iterations. Manteuffel's choice requires a knowledge of an ellipse C

that contains the spectrum of-A and that does not contain the origin. To establish the convergence of the method, .c must show that
In the first part of this talk we show how to obtain ellipses C in an (ToTc)kW -- 0

explicit manner from a knowledge of the coefficients of the equation (1), for any w E I.(fl). This is easily shown in the finite dimensional case. It
the mesh spacing h, and the discretization A. We also give estimates for becomes an interesting conjecture in the case of the differential operator.
the asymptotic rate of convergence of the resulting iterative method in
terms of the parameters e and h. Finally, we give similar results for a References
preconditioned version of (1),_where we precondition by the self adjoint 1. T. A. Manteuffel, 'The Tchebychev teration for nonsymmetric ma-
part of the operator k trices", Numer. Math. 28(1977), 307-327.

Details of this work are contained in [2]. 2. R. B. Kellogg, 'Sp.ctral bounds and iterative methods in convection

'Supported in part by the U. S. Army Research Office dominated fow', to appear.
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EXPLICIT FINITE ELEMENT METHODS FOR

CONVECTION-DIFFUSION PROBLEMS

GERARD R. RICHTER

Department of Computer Science

Rutgers University

New Brunswick, NJ 08903

Abstract. We describe some recent work on explicit fi- We need some additional notation to describe these meth
nite element methods for convection dominated convection. ods. For a generic tringle T, let Pn(T) denote the set of
diffusion problems. We-develop the methods for pure hyper- polynomials of degree < uver T, i. e., linear combinations
belieequations, and then discuss-their extension to problems of Ziyi, 0 i t j < n. We denote by S° the space of piecewise
with diffusion, polynomials over the given triangulation whose restrictions

to individual triangles T-lie in P,(T). A function wh E SR
will in general be discontinuous across triangle edges -r, and
for P E Pi we d.afine its upstream (-) and downstream (+)1. Introduction. Our purpose is to summarize some re- limits by tv (P) = lim_o+wh(P ± ca). The space SA C S

cent-work on finite element methods for convection-diffusion will consist of continuous piecewise polynomials over the same
equations in which convection is the dominant term. One al- triangulation.
ternative for such problems is the streamline diffusion method
[3,4], in which the -usual Galerkin's method test functions are The discontinuous Galerkin method [6,7] produces an ap-
augmented by a convective derivative term. There are also proximation uh E So satisfying the conditions
explicit" finite element methods, whic'a permit development (1.2)

of an approximation in an element by le., nt, as opposed to
global, frshion. -It is the latter class of methods that we shall (a- VUh "t-Uh,vh) - / (u+ -uZ)vh a. nd-r
be concerned with. = (f, vh), all vh E P,(T).

We first describe these methods for a linear, scalar hyper-
bolic problem Here ( , ) is the L2 (T) inner product and T denotes arclength

along the boundary of T. The approximate solution u4 starts
(1.1) CW - Vu + P(z)u = f(Z), Z E 11, off as an interpolant of the given inflow data g, and is propa-[ = g, z e r5 n(fl), gated, triangle by triangle, via the above inner product condi-

tions. The triangles must of course be processed in an explicit
Here (1 C R 2 is-a bounded polygon with boundary r, and order.
a is assumed to have unit length. The "inflow" boundary To formulate a continuous analog of the discontinuous
ri,(11) c r is characterized by-a -n < 0 where n is the unit Galerkin method, we need to distinguish between one-inflow-
outer normal to R. side (type 1) triangles and two.inflow-side (type II) trian-

We shall assume fi has been divided into triangles and/or gles. In developing ua, E S, in a type-I (type II) triangle
rectangles in such a way that the nonalignment condition T, note that uh will have t + 1 (2n + 1) fewer degrees of free-
la. nj -0 holds for all element edges. This amounts to an as- dom in- T because uh, now continuous, is known already on
sumption of unidirectional "flow" across all edges, and allows rI,(T). Thus it is natural to define a continuous approxima-
the elements to be ordered explicitly with respect-to domain tion us e S, via the conditions [7]:
of dependence [6]. In other words, the solution - the con- (1.3) (O -Vus +u.ts, Vh) = (f, vh), all 1% e VA,
tinuous problem (1.1) can be developed first in one element
(the inflow to which must be contained in ri,(fl)), then in where Vh = P,-I(T) if T is of type I and V = P.- 2(T) if
another, etc. In general there will be many explicit orderings T is of type 1f. This will gite equality bet;ecn the number of
for a given mesh, and it is potentially advantageous to view equations and unknowns in each triangle. We Assume n " 2
the solution as evolving as a front, in parallel, across layers for method (1.3), so that the inner product conditions are
of elements. The class of finite element methods of interest nonmacuous for both types of triangles. As before, U,, starts
here are those which allow development of an approximate so- as an interpolant of g on r..,(fn).
lution in the same explicit manner. Henceforth wc shall deal Both uf these finite ck.iciit methods alc gcnciaZzations
exclusively with the case of triangular elements, of the must basic first order opwind finite difference scheme.
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'they share its good stability properties, and may be applied Extensions of the methods (1.2) and (1.3) to-equations
for arbitrarily large n. Numerical computations typically show with a nonlinear convection term are currently under study.
the optimal O(hn+' ) rate of convergence when the solutionu is
sufficiently smooth. Theoretical error estimates may be found REFERENCES

in [1,5,6,81. Moreover,-the methods yield good results when
applied to problems with discontinuous solutions ill;. It can ',I I S. FALK AND C. IL RICHTE TI Analysis of a continuous finite

be shown t2Vhat the influence of-a disturbance propagating element method for hyperbolic equations, SIAM J. Numer. Anal.,
-24 (1987), pp. 257-278.

along a characteristic is confined to a band of width approx- i2j IL S. FALK .N G. R. RicirrHEr, Local error estimates for a finite

imately O(v'hi) about the characteristic. Thus as h -, 0, the element method fox hyperboliu and convmetion-diffusion equations,
-preprint.

methods methods exhibit the right limiting domain of depen- [3] pT". J. R. HUGHES AND A. BRooKs, A multidimensional upwind

dence behavior. scheme with-no crosswind diffusion, in Finite Element Methods for
Convection Dominated Flows, T. J. IL Hughes, ed., ASME, New
York, 1979.

2. Convectioa-diffusion equations. We now consider t4l C. JoHNSON, U_ N;vERT, AND J. PrX A, Finite element I
methods for linear hyperbolic problems, Computer Methods in Ap- I

a convection-diffusion equation plied Mechanics and Engineering, 45 (1984). pp. 285-312.
(S] C. JOHNSOnAND J. PITKXRA-,TA, An analysis of the discontinuous 4

(2.1) - CAu + a .Vu + fu = f, E-fl, Galerkin method for a scalar hyperbolic equation, Math. Coinp.,

U = zE r, 46 (1986), pp. 1-26.
[6 P. LEsAIN7 AND P. A. RAviAirr, On a-finite element-method for I

solving the neutron transport equation, Mathematical Aspects of
where a, a.-before, has unit length, and c is a positive con- Finite Elements in Partial Differential Equations, C. deBoor, ed.,

stant. If e is large in comparison to the mesh size h, then dif- Academic Press, New York, 1974, pp. 89-123.

fusion will be the dominant transport term, and the standard I W. H. REED-AND T. I. HLL, Triangular mesh methods for the
neutron transport equation, Los Alamos Scientific Laboratory Re-

Galerkin method performs well. However, if 1 is small, con- port LA-UR-73-479 (1973), Los Alamos,-New Mexico.
vection will be dominant, and Calerkin's method is no longer '91 G. IL Rica-R, An optimal-ordex error estimate for the d, s ntw-

the-finite element method of choice. Solution features that uous Gaerkin method, Math. Comp., 50 (1988), pp. 75-88. 4
[9] G. IL lUCHTER, A finite element method for time dependent con-

are not resolved generate oscillations which tend to propagate rec ton.diffusion equations, Math. Comp., 54 (1990), pp. 81-106.

throughout the dmain. The methods (1.2) and (1.3) can be 10 C. IL RIc-nNR, An explicit finite element methos for conrection

extended to convection dominated problems of the form (2.1), dominated steady state conrection-diffasion equations, SIAM 3-
Numer. Anal., to appear.

thus providing an alternative. -11] G. R. ItcH-t Explicit finite element for scalar hyperbolic equa-
tions, Appl. Num. Math, to appear.

The discontinuouts Galerkin method can be extended to 12] G. IL Ric-rgrt Thediscontinuous Galerkin method with diffusion,
(2.1) by treating the diffusion term in essentially the same preprint.

way as the convection term: [13] M. I. VzsTUX AND L. A. Lsrrtsurn, Regular degeneration and
boundary layer for linear differential equations with a small pa-
rameter, Uspekki Mat. Nauk., 12 (1957), pp. 3-122; Amer. Math.

(2.2) Soc. Transl., Ser. 2, 20 (1962), pp. 239-364.

(-AUh + Cc- VUI. + PuitVA) +j fri ( On On)v d

- (u+ - u- ha. n dT = (fvh), all-A& E Pn(T).

This scheme-uses upstream values of both uh and its normal
derivative. (A minor modification needs to be mode if rin(T)n
r ,(fl) -6 0 because Oi is available only in the interior of 11.)
The approximation h, starts as an interpolant of g on rin( ),
and is developed in the same explicit manner as in the pure
hyperbolic case. It is shown in [121 that this scheme is stable

for sufficiently small f, assuming the triangle sides (with the
possible exception of those on r) are uniformly bounded away
from the characteristic direction. Near optimal error estimates
are also derived there. Similar extensions of the continuous

method (1.3) are developed in (9,10).
For a convection-diffusion problem in which convection is

dominant only over part of l, these hyperbolic-based finite
element methods can be applied locally, in conjunction with
the standard Galerkin method. For example, the solution to

(2.1) typically has an outflow boundary layer of thickness 0(t)
[13). One could apply (2.2), say, up to this point and then use
Galerkin's method over a finer mesh to resolve the outflow

boundary layer.
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ON THE DETERMINATION- OF THE -ORDER1OF UNIFORMI CONVERGENCE

Paul A. Farrell Alan Ilegarty
Department of Mathematics & Computer Science DeIteto ahmtc

Kent State University Universitv of Limerick
K~ent, 011 44242, U.S.A. Limerick, Ireland.

Abstract:- We shall ifiscuss-a-rnumber of-methods-used in the-fit, where
erature to calculate-rates of uniform convergence. We mention some 4=max i. 1141. h== = - xR1IA. (4)
anomalies-concerning interpretation of the resulting tables and rates, O~si<.

which lead-to the determination of experimental rates of uniform con. The expermerkant4 iit , i ic ., .mereu hen determin-ed asi

vergence lower than -the correct rates. p mnt h- z=vr,,,

Introductionp ip h-p avrgx 4 ()
Doolan, Miller and Schilders remar -that the-choice of the-range

The- determination- of the order of uniform convergence is not a-1 of h values permissible is limited, since-if '- mesh-is too coarse the
waysa staigtforard ask A nmberof pprochesexit inthe solution of the difference scheme is not sufficient.; .nresentative of the

literature, the two major variants being that-appearing in (6] and-[II solution of the differentia equation to permit mneaningful discussion of
and that in [2]- convergence, that is hi is not .sufflciently small. whereas if it is too fine

The former approach involves solving numerically a singularly per- then rounding error predominates. The method has the advantage that
turbed differential equation on JZLZRJ for which the analytic solution it reursn- roikoldeo h au'o h ouinof the
is known. The difference equation is solved-for decreasing values of h iequins and myas-yprioik o ramed denerine an texpeimna l

and he ate f cnvegenc caculaed romrate of convergence for a wide variety of problems.

p. (n c;', -n e),/In (2) ()Anomalies

where In either of these methods however, great care must be tat-en in
C., max Iu! - u&(xJ, h Jz(L - ZIA(2) interpreting the table of .alues of X". or pz' for the reasons which -weO~i<,vwill outline below. To simplify the arguments we shall consder only

The equation-solved is-chosen so that the solution and its deriva. the rate of convergence, for a non-turning point prob~em, as considered
tives exhibit exactly the analytic behaviour hypothesized in the proof in (6), that is:
of the error estimates. in practise-this is achieved by choosing a solu-
tion and then determining a differential equation-of the-correct form Li"e- af:)r? - &(X)mz f(x), 0 < zz <1
which this satisfies. zzIO) = . Xf 1)= Ht.

The uniform rate is determined by inspecting aL table of values
of p,4, for varying h-and c. constructed- by setting c = h-' for various Jher I~x ck ;' U - TL< dee' nto fterto ovrec
vaues of s. Results of this form are given in [6) for a non-turning point depends on the assumption that
problem-and in III for a turning-point problem of the type considered '

in [3.41. In the case of the turning-point problem the choice of solution < 4 , (6)Iinvolves making the boundary values functions of c and hence by the where C is independent of hi and c. This is not necesarLy the strongest
choice of c -_ h' functions of h, .A disadvantage of this method is the bound zvaz!able and in fact the following one. ( cf- (6]) . is a more
requirement of prior knowledge of the solution since this limits-the '.ccurate estimate:
ease with which it can Ebe applied to other problems. An alternative
is, of course, to use an accurate approximation on a fire mesh, if th is 4%iLI)-ipCe) (7)
is determinable-h C- -

The Double Mesh Method where p = h'c and a > 0. Soi more accurately

The method proposed in [T2) is based on a conseuence of the Gen- <-
eMl Convergence Principle which states

which is not inconsistent with (G) sice by considering the limits ais
Theorem ((2. Theorem 1.5.11) p 0 and p -c.for a fixed . we can see that Cijpa) is bounded.

Let 0, bc dhz oruuoar al a 4:Affezenuali Cqu-nizon and 04 a d-ffCrCrca Let .a .ssune LLAL :O~z a~ Ok ant Zemnt the rate of
appro-rmcfion. Let p > 0 andi Ct. 87- &c psiUre carstnts indeprn- tonVergence TLE-w
denf of h. Then. for ell i > t.11 U_ It -3. azn ll c> 0

(if and considerirg this f-r - xip -lsa-d t - -p - X1 We get,

- Ta~~~~r." if W- # &twrin lLe ra:0. f. ~'vr~~t ~.f ftixe h. and
Furjzeri~or C, is icn ren e it uT#: c va n fre-m x to~ 0l. it wil .rv fremn 2 X- I as rxrreted. The

asu=p6-.n vm imp. itlv ma.-is tn - ordzers r4f

F~is#entmaltv the * :-1Ir ten teqanrtt g~tri-n ~ 5-c = ht~ -- ~a- '~-fa ~ iiu a
fill which wec shall cali tL-'. o-'-:e rn-armr rL. atd determnining a is 1. T?:is is ntst .in faei.-t A-ws as tle f(nt- I givv-a %y 19) may
rate o~f c-n-riceAttain a *zs~ 1-a T, -_' t-AV t- '-- ;0 PFz I . which is

4~ sIn e,s - in t Ini 2 tiwhna- '--_ fr r a i o C
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2-It is clear that eh is a function of h alone and thus we may expect
p to-be approximately-a constant independent of h. This will lead to
a better estimate for the uniform rate of convergence. In the case a =
0.25, this is p+ = = = = 1.00. The pIn-method has been used
to determine the rate of convergence in [3, 4] and many-later-paperG.
-Weremark however that-it does not give any additional information

P about-the variations in behaviour of the scheme as h -- 0-or --* 0.
P.P Therefore it is also useful -to include tables of p1 to provide more

precise details of this behaviour. This is particularly so for problems
0 having more complicated boundary or interior layers.

We should remark at-this point that there remain certain problems.
In particular, the restriction that h was sufficiently large is crucial. If
It becomes small, the most prevalent effect-is-for rounding errors to
corrupt the results. lowever, if the calculations were done "exactly",

0 10 20 30 ,0 so that rounding error- were absent or negligible, then a more-serious
problem would arise. If-we produce tables for arbitrarily small h, but

Figure 1. Double Mesh, pd, and Exact, px, Rates of Convergence only for finitely small t, then most of the rates in the table will be for
h- < c. In this case, we are in the region where classical convergence
theory applies and thus-the rates will be-greater than or equal to 1,
for most schemes. These rates will dominate the table, and, if we

N 8 16 32 64 128 256 -pd, use-p+ or p+ as the calculated rate, cause-even non-uniform schemes

to be reported as uniformly convergent. This may be viewed as a
1/ 2 1.89 -1.94 1.97 1.98 1.99 2.00 1.96 consequence of the form of the tables, where, in this case in particular,
1/ 4 1.81 1.89 1.94 1.97 1.98 1.99 1.93 the rate of convergence is a function of p = h/c. Thus the rates
1/ 8 1.68 1.81 1.89 1.94- 1.97 1.98 1.88 aln h lagonals- are equal. To get an -accurate reflection-of the
1/ 16 1.48 1.68 1.81 1.89 1.94 1.97 1.79 rate of uniform convergence it is therefore- necessary to extend the
1/ 32 1.10 1.48 1.68 1.81 1.89 1.94 1.65 table at least as far in c as in h. In the one dimensional cases, which
1/ 64 0.33 1.10 1.48 1.68 1.81 1.89 1.38 we have-tested, (ef. [3] ), we extend the-table until the errors, for
1] 128 -0.75 0.03 1,10 1.48 1.468 1.81 0.94 given h, stabilizes, which occurs when one is-solving, up to rounding
1/ 256 1.55 -0.75 0.33 1.10 1.48 1.68 0.90 error, the reduced equation. The finest mesh used in the calculations is
1/ 512 1.44 -1.55 -0.75 0.33 1.10 1.48 0.86 h = 1/4096. In practice, using either double or fine mesh-methods this
1/ 1024 1.02 1.44 1.55 -0.75 0.33 1.10 0.78 has given acceptably accurate rates. In allcases the rate calculated
1/ 2048 1.00 1.02 1.44 1.55 -0.75 0.33 0.76 using the fine mesh method proved higher. A more cautious approach
1/ 4096 1.00 -1.00 1.02 1.44 1.55 -0.75 0.88 might he to use p) or p., which are less prone-to this effect, although
1/ 8192 1.00 :1.00 1.00 1.02 1.44 1.55 -1.17 these will again report lower than actual rates of uniform convergence.
1/ 16384 1.00 1.00 1.00 1.00 1.02 1.44 -1.08 We remark that there are other circumstances in which these meth-
1/ 32768 1.00 1.00 1.00 1.00 1.00 1.02 1.00 ods will report positive uniform convergence rates where, using the
1/ 65536 1.00 1.00 1.00 1.00 1.00 1.00- 1.00 normal definition, the scheme would not be considered uniformly con-
1/ 131072 1.00 1.00 1.00 1.00 1.00 1.00 1.00 vergent. This is particularly true of the centered difference approx-

pd 1.00 1.00 1.00 1.00 1.00 1.00 -1.00 imation to a self-adjoint problem and of two or higher dimensional
problems exhibiting certain phenomena. These issues are considered

Table 1: Double Mesh Rate of Convergence, pdP, a =-0.25 further in [5].
the-rate of convergence calculated usingthe Doolan, Miller, Schilders
doublemmesh method. In this case the actual rates are given in Table References
1. It can be seen that serious problems can arise here in interpreting
the table, particularly if we take the rate of convergence to be the [1] A E. Berger, II. Ilan, and R. B. Kellogg, A priori estimatcs and
minimum of ph(p) over all c, since tis -will be less than the-actuai analysis of a numerical method for a turning point problem, Math.

rate of uniform convergence and for some problems may in fact be Comp., 42 pp. 465-492, (1984).

negative. This probleinis significantly more noticeable for the rates [2] E.P. Doolan, J.J.lI. Miller, W.l[.A. Schilders, Uniform numem,-
calculated using- the double mesh method thau fur thuw calculated cal methods for problems with initial and boundary layers, Boole
uksing an exact or fine-rresh approximation. In the case r = 0.25, for Press, Dublin 1980.
example, the minima are -0.75 and 0.32:respectively. This is what [3] Ps-A. Farrell, Uniformly convergent difference schemes for singu-
might be expected fromcomparison of the two curves in Fig. 1. The laly perturbed turning and non-turning point problems , Ph.D.
experimental rates of uniform convergence, for a = 0.25, are pd = 0.76 thesis, Trinity College Dublin 1983.
and P-= 0.80 respectively, both of which are significantly lower than
the-true rate of 1.00. More examples of these phenomena are given in j I] P.A. rarrell, Sufficient 4ouditions for the uniform convergence of

[5], Reporting excessively- low rates of uniformi convergence is thus an a difference schemes for a s.ingularly perturbed turning point prob-

expected feature of this method. lem, SIAM J. Numner. Anal..25 pp. 618-6,13, (1088).
In-view of these reservations we propose the following estimates for [SJ P.A. Farrell, A. Ilegarty, Some Comments on the Determination

the rate of convergence of the Order of Uniform Convergence, Technical Report CS.91-
p+ average h  and p, = min 03-02, Department of Mathematics and Computer Science, Kent

A l h N State University, 1991.

where [6] R.B. Kellogg, A. Tsan, Analysis of some difference approxima-
in(4't - Cd)/ln1(2) tions for a singular perturbation problem without turning points,

and Math. Camp., 32, pp. 1025.1039, (1978).
ch 21
Cd = maxcdh, = max( max luih - l),

5o<i<0
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SPECIAL MESHES FOR-TWO DIMENSIONAL-ELLIPTIC SINGULAR PERTURBATION PROBLEMS

Alan F. Hegarty John J.H. Miller Eugene O'Riordan 0.1. Shishkin
Department of Mathematics Department of Mathematics Department of Mathematics Ural Branch
University of Limerick Trinity College -Regional Technical College Academy of Sciences
Limerick Dublin 2 Dundalk Svcrdlovsk
Ireland Ireland Ireland U.S.S.R.

Abstract. In this paper, numerical- examplesare presented, which where
indicate that upwinded finite difference~schemes on special meshes are
numerically a-uniformly convergent for the numerical solution of ellip- Sxiz (z(x +xpVj) -

tic singular perturbation pmblems; for these examples it is also shown 6.,z -- (z(z-, t) - z(x,- t,,))/h,
that upwinded finite difference schemes on uniform meshes behave un- 62,z (6, z - 6,z)/h, and h, = (h,+, + h,)/2,
satisfactorily. The numerical results given here validate the theoretical
retsults obtained by the last-author in [3) [4]. o aiu ehswShishkin [4] has proved that-on a uniform mesh no ae-uniform finite

1. INTRODUCTION difference scheme exists for a problem with a parabolic layer, such as
In this paper, the following linear singular perturbation problem (l.la,b,d). In §3 a method which is a-uniform for all types of layers

is described. This method was first introduced by Shishkin in [3] and
Lu -aAu + a.Vts+ aou =f- on f = (0,1)x (0,-l) (1.1a) uses classical upwinded difference operators on a special piecewise-

u = g on 0" (lb) uniform mesh. Numerical results are presented for specific examples

of (1.1a,b,c) and (1.1a,b,d).
where d = (al,a2) and-0 < e < 1 is examined. Two cases are

considered: 2. Classical upwinding on a uniform mesh
In this section, the numerical performance of the upwinded differ-

al al,a2 >2 and a + a2 > 0 (11lc) ence scheme (1.3) on the uniform mesh

a, _> a1l> 0, a2 O (1.1d) w' {(xiyi) : xi = ih, i = jh,i,j =0, N),

where Oil, 0t2-are constants and a,a2, ao, f and g are smooth enough where -h = 1/N and N is the number of-mesh elements used in both
-to-ensure no interior or comer layers. directions, is examined when- applied to-examples of (I.la,b,c) and

In each case-for small-values of e, boundary layers appear near some (I.Ia,bd). The problems are solved on a sequence of meshes, "ith
of the sides of 0. In the case (l.la,b,c) regular layers appear nuar N =8, 16, 32, 64, 128. The errors lz(x,,y,) - u(x,,y,)l are-ap-
x = 0 and -y - 0 and in the case (I la,b,d) a regular layer appears near proximated for successive values of e on the four coarsest meshes by
r = 0 and parabolic layers near the-sides p - 0-and p = 1 which lie eU,(i,j) =j zt(x,,y,) - z12 (x,,y,), where the superscript indicates
along characteristics of the-reduced differential equation (a = 0). For the number of mesh elements-used. For each c the maximum nodal
small values of e, it is well known that classical numerical methods for error is approximated by
(1.1) may produce spurious oscillations throughout the whole domain.
Various stable upwind methods have-been proposed to eliminate these E,,N = rmaxem(i,j).

- s,3
oscillations. In §2, numerical examples demonstrate that the nodal er-
rors for an upwinded method of this type (on a uniform mesh) depend Convergence rates for each a and for N = 8,16, 32, are estimated by
not only on the number of mesh elements used-but also on the value P,,N where
of-a. Numerical methods which converge independently of a are usu- Pj' = log 2  E,2 '
ally said to be uniformly in a conver'gent or a-uniformly convergent.Moreprecisely, aunuformeync moneeth for ln(.s-uniformly These estimated rates are given in tables 2.1 and 2.2 for the followingMore precisely, a numercal method for solving (1.1) s -uniformly prbes
convergent of order p on the mesh Wh, = {(Zip),i, " = 0,1,..., N} problems:
if Problem 2.1 aAu+(2+x2y)u=+(l+z)u, = Oon (0,1) x (0,1),

max Iu - zjI < CN-;'; (1.2) with boundary conditions:
where u is the-solution of (l.la.b,c)-or (l.la,b,d), z is the numerical u(Z,0) = 0; u(X, 1) 4X(1 - z), z > 1/2,

u~,)=0 , 1, z <1/2
approximation to u, C and p > 0 are independent of e and N is the 1, 2 < 1/2

number of mesh elements used. u(0,)=0; u(1,p) = 8(y - 2y2), > 1/4,

The following upwinded.finite difference operator will always be used,

to obtain a numerical approximation z-to u Problem 2.2 eAu + (14 x2 + p2)u, = 0 on (0,1) x (0,1), with bound-
ary conditions:u(z, 0) = z; u(z, 1) = X2; u(0, y) = 0; u(I, y) = 1.

a(6,+z (, Problem 2.1 has regular layers near the sides z = 0 and y = 0; the

+ ao(zj,yp)z = f(z, yj) (1.3) estimated convergence rates are:
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N=8 N=16 N=32 N=8 N=16 N=32

1.0000000000 0.82 1.10 1.54 1.0000000000 0.81 1.10 1.53
0.5000000000 0.92 1.13 1.54 0.5000000000 0.92 1.13 1.53
0.2500000000 0.86 1.07 1.52 0.2500000000 0.86 1.07 1.51
0.1250000000 0.84 0.97 1.46 0.1250000000 0.66 0.84 1.22
0.0625000000 0.46 0.98 1.37 0.0625000000 0.90 1.01 1.43

-0.0312500000- -0.07 0.66 1.35 0.0312500000 0.81 1.02 1.43
0.0156250000 -0.59 0.17 1.11 0.0156250000 -0.77 0.99 1.40
0.0078125000 -0.20 -0.40 0.69 0.0078125000 0.68 0.97 1.41
0.0039062500 0.18 -0.24 0.08 0.0039062500 0.60 0.91 1.38
0.0019531250 0.30 0.21- -0.13 0.0019531250 0.58 0.68 1.35
0.0009765625 0.35 0.42 0.25 0.0009765625 0.57 0.86 1.34
0.0004882813 0.38 0.55 0.66 0.0004882813 0.56 0.86 1.34
9.0002441406 0.40 0.62 0.89 0.0002441406 0.56 0.85 1.34
0.0001220703 0.40 0.67 1.06 0.0001220703 0.56 0.85 1.34
0.0000610352 0.41 0.69 1.17 0.0000610352 0.56 0.85 1.33

For the problem (1.la,bd), define the special-mesh , by
Problem 2.2 has a regular layer near the side z = 0 and parabolic layers
near -y= 0 and y 1; the estimated convergence rates are: , {(x , ) :0 N

where xi=2ioa/N, i=0,1,..., N/2,S N=8 N=16 N=32

1.0000000000 1.72 1.52 1.38 Ozi + 2(i - N/2)(1 - .)1N, i =N/2,.. .N,

0.2500000000 1.02 1.19 1.56 yt=4io1/N, i-=O,1,...,N/4,
0.0625000000 0.49 1.01 1.43
0.0156250000- -0.39 0.12 0.96 = v + 2(i- N/4)(1 - 2a't)/N, = Nf4,... 3N/4,
0.0039062500- 0.29 -0.39 0.17 y, = (1- or) + 4(i-- 3N/4)(or,)/N, i = 3N14 .. , N,
0.0309765625 -0.90 0.67- .0.03 1 -m _ N
0.00024414 06 -1.88 -0.69 0.96 where ou=min{-,elnN}, and or,,=min{4'tInN).
0.0000610352 -1.94 -1.82 -0.27
0.0000152588- -1.95 4.96 -1.50 Using-(1.3) on this mesh, We obtain the following convergence rate
0.0000038147 -1.95 -1.97 -1.86 estimates for problem 2.2:
0.0000009537 -1.95 -1.97 -1.95

C N=8 N=16- N=32

In fact, it is well known-that upwinding-on a-uniform mesh is.not 1.0000000000 1.71 1.53 1.38
0.2500000000 1.02 1.19 1.56

uniformly in e convergent; however, in neither case is an estimate of 0.0625000000 0.92 1.05 1.40

the unifonn convergence rate calculated because the maximum value of 0.0156250000 0.91 1.07 1.43
N is not-large enough to-make such estimates meaningful. 0.0039062500 0.77 1.06 1.47

0.0009765625 0.78 1.01 1.48
0.0002441406 0.81 0.98 1.46
0.0000610352 0.82 0.97 1.44
0.0000152588 0.83 0.97 1.43
0.0000038147 0.83 0.97 1.43
0.0000009537 0.83 0.97 1.43

3. Numerical results on special meshes.

For the problem (l.la,b,c), define the special mesh wi,, by While, again, no estimate of the uniform convergence rate is given for

either problem, the rates for each e and h are evidently far superior
to those obtained using a uniform mesh. A fuller discussion of the

where zx = ihl, for 0 : 5 < N12, numerical experiments outlined above can be found in [1],[2].

= a' + (i - (N12))h 2, for N/2 i References
hi= 2o4/N, and h2 = 2(1 - ux)/N.

1. Hegarty, A.F., Miller, J.J.H., O'Riordan, E._and Shishklin, G.I.,
The points {y,;) are defined analagously The transition point a., is Nuncnt~al methods fur solving singularly penurbed problems from an
chosen to depend on both the layer width and the number of mesh engineering viewpoint, (to appear).

elements used. 2. lHegarty, A.F., Miller, J.J.H., O'Riordan, E. and Shishkin, G.I.,

Special meshes for finite difference approximations to an advection-
cr -min(1/2,Cjcln N}, C1 > a diffusion equation with parabolic layers, (to appear).

3. Shishkin G.I., Grid approximation of singularly perturbed parabolicThe transition point ost is defined analagously. Using the upwinded eutoswhitmllyrSw .Nnr nl ahMdlig

difference operator (1.3) on this special mesh, we obtain the following equations with internal layrs, So. J. Nt7ner. Anal. Math Modelling,
v.3, n.5, 1988, pp.393-407.estimates of convergence rates for problem 2.1: 4. Shishkin, G.I. Approximation of the solution to singularly perturbed

boundary value problem with parabolic layers, J. Vycisl. Mat. i Mat.
Fis., 29, No. 7, 1989, pp.963-977.
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CONSTRUCTION AND ANALYSIS OF PETROV-GALERKIN APPROXIMATIONS

FOR CONVECTION-DOMINATED FLOWS

B.W.SCOTNEY

Department of Mathematics, University of Ulster
Cromore Road, Coleraine, BT52 ISA.

Abstract - Error estimates are shown for l1u-U1T < (I + (bh/a) 2/12)1 /2 inf Iu-ViiT
Galerkin and Petrov-Galerkin approximations to - VS h

a- singularly perturbed problem in one dimension.E (2.6)
An optimal PetrovrGalerkin formul-ation is is obtained and shown to be the sharpest
presented for variable coefficient problems, attainable bound.
and it is used to analyse the common practice The estimates (2.5) and (2.6) exhibit the
of approximating variable coefficient problems importance of the mesh P4clet number bh/a in
by the use of locally constant methods, the degree to which optimality of the Galerkin

1. INTRODUCTION approximation is lost as the differential
We consider the model problem operator loses self-adjointness.

Petrov-Galerkin methods may be formulated for

-au"(x) + b(x)u' (x) = f(x) , x c (0,1) singular perturbation problems with a view to
u(O) = g~ u(1) g (. 1) recapturing the optimal approximation

L u R properties enjoyed by the Galerkin approxima-

, wtion for self-adjoint problems. A test space
where a > 0, b(x-) C H with b(x) > 0 and T h C H Iohrta h i mlyd etnTC I other than Sh is employed. Setting

f(x) C L2 ' Th = Th HI , the Galerkin system (2.2) is
TE

For the case when b is a positive constant 0 0 h
Hemker (1977) developed a Petrov-Galerkin replaced by the problem of finding U & SE
formulation with a piecewise linear trial h
space which generates a nodally exact solution. such that B(U,V) = <f,V> V V e TE  (2.7)
Here we develop an optimal Petrov-Galerkin 0

approximat-ion with a piecewise linear trial Morton (-1982) shows how to achive bounds
space for the general variable ve-locity problem sharper than those obtained directly from the
(1.1). Lax-Milgram Theorem, such as (2.4). He

identifies the crucial requirements to
2. WEAK FORMULATION AND ERROR ESTIMATES establish optimal error estimates. By the

The weak formulation of ptoblem (1.1) is to hiesz Representation Theorem (see, for example,
find u c H1 such that Adams (1975)), there exists a map

E I 1 1
B(u,v) = <f,v> V v c (2.1) R: 1E ->H such that

0 0

where B(-,.) is the bilinear form B(v,w) = <v',(Rw)'> V v,w c H 1 (2.8)
B(W 1 ,w2) <w ,_w + bw2 > 0

For a piecewise linear trial space Sh C H
I  If the constant A is defined by

h h 1 I IIV-RWII
and S = S n HE , the Galerkin approximation = sup h  infh (2.9)

0 hO 
VcsE WeTE IIVIIT

is to find U C S E such that 0 0 T
E

V h and U is the Petrov-Galerkin solution to
E (2.2) problem (2.7) the following estimate holds:o0 Ilu-UIIT (I - 2)-'/2inf Ilu-VII~ (2.10)

If we denote by I W Tl the norm on 1 1 defined T IVS h Ti

E E

by 11wh1T = <w',w> (2.3) This is the sharpest possible estimate since
there will exist a function f C L2 for which

the Lax-Mi-Igram Theorem (see, for example,

Ciarlet (1978)), together with a Friedrichs- (2.10) is an equality. (2.8), (2.9) and (2.10)

Poincard inequality yields the following error provide the basis for Section 4.

estimate for the Galerkin approximation U: 3. PETROV-GALERKIN METHODS FOR CONSTANT

I1u-UIT < (1 + b/na) inf 11u-VIT (2.4) COEFFICIENT PROBLEMS

huV 1 we consider a uniform discretisation with
F nodes x. j= Jh, j = 0,...,N, and Ph = 1.2

where b max Ib(x)I. For the problem (1.1) when b > 0 is a constant
xc(0,1) the test space TE proposed by Hemker (1977)

If an Aubin-Nitsche duality argument (see o
Aubin (1972)) is used, an improved estimate Hs H
can be achieved of the form has a basis j = I,...N-1) with i'!(x)

u -U T I < ( I + b h / a ) n f h u -V T (2 .5 ) x- (x - ) / h
Tl (e -x )/h - l/e8 - I) jlxx

CS E  (e- ?(x 
- xl)/h(e -11 , xj<ex j+1 .1)

In Scotney (1985) the optimal estimate
0 , otherwise
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where 8 = bh/a. The solution of (2.7) thus T + (a - T) (x - x.)/h , x <xXxj+l
generated is nodally exact. It is straight-
forward to show that the best fit U* C Sh to a. xj~ <X

u in the norm U1 is also nodally The explicit form of 4.(x) may be obtained by
I substituting (4.7) into (4.6), satisfying the

exact, and hence that U = U*. requirement for local support and normalisa-

Numerous Petrov-Galerkin methods have been tion. Restricting the support of to that

proposed for problem (4.1) which generate the of *. requires us to set P.(x) = 0 for x j X,
same finite difference operator as the test J+1

space defined by (3.1), namely that of Allen & i (-
Southwel (1955) - see, for example-, Heinrich yielding Tj = j (4.8)
& Zienkiewicz (1979). Such methods are not (Yj

optimal since they differ in their treatment xk B(s)
of the source term f. However Scotney (1985) where Yk-i = f (e ds , k = 1,...,N
uses the estimate (2.10) of Morton (1982) to xk-I (4.9)
show that many are near-optimal. Griffiths &
Lorenz (1978) have analysed these methods by and B(x) = fx(b(t)/a)dt (4.10)
direct use of the Lax-Milgram Theorem.

Normalising by setting 1P (x ) = 1 gives
4. RIESZ REPRESENTATION

In the variable coefficient problem (1.1), h(y. - ylB(x )

from the defining relation (2.8) we may deduce a = :1 (4.11)

that
and hence we obtain W(x) =

(Rw)(x) w(x) + fox (b(t)/a)w(t)dt - xa(w)
(e[B(x ) - B(x)] /yjl) fx eB(S)ds,x.j,_<x x

V w H1  (4.1) x j-1
o (4.125

where a(w) = f I(b(t)/a)w(t)dt (4.2) (B(x /y- j )Bx] B(s)
0(0 fr, e 3l ds,x <x<x

Sx j -j+!

From (2.9) and (2.10) it is clear that if 0 ,otherwise
h =h

RT =S then the it is straightforward to check that if
0 0 b(x) = b > 0, a constant, (4.12) reduces to

Petrov-Galerkin solution is optimal. We the test function p. of Hemker (1977) as in
therefore aim to construct a basis

j9 suh ht j h with (3.1).
.j = 1,... ,N-) such that R' a S If the test space generated by (4.12) is used

o in the Petrov-Galerkin formulation (2.7) it
the additional property that the support of can be shown that the system of linear
'j is restricted to the support of the piece- equations generated is of the form

wise linear trial space basis function j, act

namely (xj I , xj+1). The key to the localisa- h(y y - Uj.I + (y+yj_1)U

tion is to set RjP. to be of the same form as :-1

H 3 yj-1 Uj ) = <fv > j 
=  I ... N- (4.13)

The significance of (4.13) for the variable

(R'.)(xW = 'P (x) + f x (b(t)/a)'P (t)dt xa coefficient problem (1.1) is analagous to that
(0 x of the Allen & Southwell (1955) difference

V w H (4.3) operator for the constant coefficient problem.
90
1 5. LOCALLY CONSTANT METHODS FOR VARIABLE

where a. = ,f(b(t)/a)'P(t)dt (4.4) COEFFICIEP'T PROBLEMS
Writing g(x) = (RP )(x)+a x It has been commonplace for many authors to

r n generalise the use of Hemker's test space (or

= (x) + l' (b(t)/a)'P(t)dt - xa. (4.5) its near-optimal counterparts) to variable
j 0 3coefficient problems by selecting the value of

we obtain b in . to be determined locally at each node

Wj~x) = e- x x g' We fs(s b(t)/a)dtds or in each element (e.g. b = b(x ) for
S0 f s(4.6) x (x jXj+l ), or b = (b(x j I ) + b(x.))/2

From Scotney (1985) we take the required form for x c (xJ-lXj)). Only with the availability

for g(x) as below: of 'P.(x) as in (4.12) is it possible to

0 , 0x<x J 1  properly analyse this practice.

(T Ih)(x - x , x.<xx Consider a modified form of problem (2.1) in
h) ( -- j- j (4.7) which the velocity field b(x) is replaced by a

piecewise constant field b(x) defined locally
on each ejement: Zind u r 'HE such that
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B(u,v) <f,v> V V C H (5.1) RLVERENCES
0

Adams, R-.A., 1975. Academic Press, New York.
where b(x) = b = (b(x ) + b(x ))/2 Allen, D.N. de G. & Southwell, R.V., 1955.

i i Quart. J. Mech. Appi. Math., 8, pp 129-145.
for x c (x,x J+I)-, Aubin, J.P., 1972. John Wiley & Sons, NewYork.

Ciarlet, P...., 1978. North Holland,
Amsterdam.

0,...N-I, and B(.,.)is-LBi.) with Griffiths, D.F. & Lorenz, J., 1978. Comp.
Meti. Appl. Mech. & Eng., 14, pp 39 - C4.

b(x) replaced by b(x). Heinrich, J.C. & Zienkiewicz, O.C., 19-79.
H A.M.D. - Vol 34, A.S.M.E., New York,If we denote by tthe test function of p 105-136.

Hemker, P.W., 1977. Thesis, Mathematisch
Hemker with b(x) replaced by 1(x), we may Centrum, Amsterdam.

Morton, K.W., 1982. Lecture Notes in
consider the modified Petrov-Galerkin Mathematics, 965, Springer-Verlag, Berlin,

formulat-ion:find C S hsuch that pp 113-- 148.
n E  Scotney, B.W., 1985. Ph.D. Thesis,

(U,)= <f, j = ....,N- (5.2) University of Reading.

The formulation (5.2) is an obvious
generalisation to the variable coefficient
problem (1.1) of the use of Hemker's constant
coefficient test space described in (3.1).

By substituting b(x) for b(x) in (4.12),
we can show that the optimal test space for
problem (5.1) is precisely the one given by

in (5.2). That is, the obvious

generalisation of Hemker"s formulation
generates the optimal approximation to the
solution of the modified probleR (5.1).

Moreover, '(x) may be written in the form

-(x) = (x) + j lj_!(x) x i <x<xj_ 5

(x) - j i j(x) x, <x<x.j 1

where a (x.) = o(xj) = 0
3 3 j+1

and 1 haJ+ a.(x)dx = (5.4)

xj

Then the system of linear equations
generated by (5.2) may be written as

(-a/h - (1 + 4_ -1)J-4 /2) uj-1

+ (2a/h + ((I + 9j1 )bJ_1- (I - j)b j)/2) U.

(5.5)
+(-a/h + (1 - Fj)6j/2) U J+ = <f,T >

j = 1,... ,N-1

Since (5.4) implies no knowledge of the
functional form of a.(x), any of the

conforming Petrov-Galerkin test spaces used
for the constant coefficient problem can be
modified to fit (5.3) and hence used to
generate the left hand side of (5.5).
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EXpO114 LNTIALLY FITTED BOX METHODS-AND THEIR
APPLICATION TO SEMICONDUCTOR DEVICE SIMULATION

W.HA. Schilders
Philips Research Laboratories
Applied Mathematics Group
Building WAY, Room 2.09

ABSTRACT PO Box 218, 5600 MD,-Eindhoven (NL)

The system of differential equations describing the behaviour of semi- Jp= -qpn,,,je(-0)/UrVp (9)
conductor dcvices is singularly peturbed, and therefore requires spe-
cial discretisation techniques. To tnis-end, an exponentially fitted- = -q1nninte0-"l/UTV n (10)

box method has been developed, whch is known as the Scharfetter- A third Jioice of variables can be motivated by remarking that the sys-
rGunmel method in t'-i3 paper, we will discuss this discretisation tem of equations can be put into self-adjuint form, which is convenient

technique, which is applicable to n-dimensional problems. Application in designing suitable discretsation bcile-..es. This cai, be .Aueved b.
of this-techr.ique is not~restricted to semiconductor device problems, applying a Liouville transformation. Th, ,esult is the formulation of
it is suitable for any singul-rly perturbed-problem in divergence form the. ,.,Aiconductor problem in the set oi variables ip, P, and !,, the
It is conjectured that- his method yields uniform error-estimates for -latter two being termed the Slotboom v&aubles (cf. j111). These are
arbitrary polygonal meshes. It is also-shown that the -d scieme is defined by the relationships
essentially the same as Il'ins scheme, thus paving the way for uniform
error estimates on the solution of the semiconductor problem. On the p nmte-5 IUT~p (II)
other hand, the way the scheme has been constructed is different from
the construction of I'ins scheme, and therefore this may-be of interest n = njnteolUT4 n  (12)

to singular perturbationists. Finally extensions of the scheme to a spe- In this case, equations (5)-(6) read.
cial case are discussed; where exponentially fitted methods-for small
systems of-equations cat, be used. Again it is suspected that uniform 5p = -qfpUTnnCe-9/1[rVqp (13)
error estimates may be.obtained. r, = qpU~ni,,e /?Vc (14)

2.SINGULARLY PERTURBED CHARACTER

1.MIONDUCTOR DEVICE SIMULATION

The differentie.l equations describing the behaviour of semiconductor :Firdt we c oider equation (1), ,hich is oft..-eferred 'V as Poisson's
devices are deived ftram the Maxwell equations and frum Bultzmann's equation. . e scale the equatiun and the sariables as described in
equation. An excellent account of this can be found-in '10,12;. -In 7,8*. If we hen rewNite the Poisson equation in terms of the scaled
order to adequately describe the behaviour of semiconductor devices, quantities, %. obtain
another charged particle is introduced,namely the positively charged
hole. Thus, currents are not only caused by moving electrons, but also \ 2V. V0 = n - p - D
by moving holes.We wil restrict ourselves to the following system of equatins: where the right hand side is of the order of unity. The parameterA is rather small. Typically, its value is ol the order of magnitude

V. (eE) = q(p - n + D) (1) 10-3 - 10-'. Thus, from a mathematical point of view, the Poisson
equation is singularly perturbed.

V 3p = -qR (2) The singularly-perturbed character of Poisson's equation is not of too

V .J = qR (3) much interest, since it is a self-adjoint equation-for which the applica-
tion of standard difference schemes does not lead to erroneous solutions

where the electric field E, the hole current density 3 and the electron (although accuracy could be an issue). Much more interestinF is tilt,

current density 3 are given by because of the size u. the parameter A, the entire system 'A;(6) is

E = (4) singularly perturbed. For more details on the demonstration of-this
f'-. we refer the reader to 17]. This book also contains asymptotic ex-

= -qp,,(UiVp A) (5) pan-r, r.!- the olutir., which is important in view of the necessary
conditions br:e I'dfr " ec:.:ne to possess the property of uniform

J= qpn(UTVn + nE) (6) convergence (ef ,. For the discuss..)n in this paper it .vill suffi.e to

Suitable boundary conditions are applied. The variables in th:s systeni remark that, Lecause vf the behaviour of the elecL.ic field, the equa-

are the electric potential ip, the hole concentration p and the electron tLuns (.) and (6) .an be .risdercd as sngularly perturbed first order

concentration n. equations f., , , and n, respectively. This is an important observation,

For the application of exponentially fitted methods, it, ib somrn.times sin(e i, A,,lains why standard difference schemes c,.n nvt be applied

convenient to rewrite the system (1)-(6) into other variables. First of to the discretisation of these cquations.
all, the electric potential and the carrier concentrations differ very
much in size. Therefore, it is convenient to introduce the quasi- ITTING
Fermilevels #p and &, defined ...y the relations _P NTIAL r

p n,,. -(,, -0}/  (7) As has been dcussed in the foregoing section, (5) and (6) can be
considered - singularly perturbed first order differential equations for

n (8) p and n, respectively. Application of the standard central difference

where n,,, is the intrinsic carrier concentration. In this case, the equa- scheme on a mesh (xu, ... ,it) leads tu the fulluwi,, expression for the

tions (5)-(6) become hole current density in the interval IX,, x,+iI (denoted by Jpi+ 12 ):
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UT PI+I - A :pi+ - EN -Rearranging this expression leads to the following expression for Jp inP, +1/= -qp(T, -+1/2) (15) the inter, zl x, xi+iI, which we again denote by Jp,i+/2:

where 0i+ 0+1/UT - 'P/UT lpo.+i - 4P, (20)

Ei+1 /2 + i'+1 - X( pn +,I/UT - xiii -

ksimilar expression is obtained for the electron current density. Tvese Using the relations between the carrier concentrations and thL S'ot-
vxpressions are then used in the discrete versions of equations (I)-k5) boom-variabl it is ver. easy to show that (20) is exactly the same
which, for (2), reads: as (18). On-closer examination of (20) we see that, in fact,-the dis-

cretisation of the rapidly varying coefficient e0/ UT has been performed
Jp,,+-/2 - Jp,,-i = -q(zl+1 - xi-/2)R (17) by using a harmonic average of this coefficient. In other words, for an

approximation of this coefficient on the interval [xi, xr+11 we have in
It is wellknown that this scheme yields non-stable solutions. In fact, fa t ,ken 1
closer investigation shows that the concentratlons may become nag- (e-O/u-)
ative, meaning that iii solution in-terms-of the variables tP, K f+ eoUrdx
exists. Thus, the discrete scheme does not guarantee existence ",.o- ..... aq,-. for second order differential equations in divergence
lutions. 'In' . '. ally varying ccefficients, has also been described and
Applying exponential fitting techniques to the discretisation yields ,I. i in 1Ll]. Also, the so-called generalyed finite element method

Uo+ .orls along-similar ideas. Finally, .nc above technique of har-
Jp~i+1/2 - ....qlaiUT Pi+1 - Pi- Pi+ Pi E,+1 /2) (18) ine .averaging appears in a natural way in the mixed finite cclment

met d who-, applied to semiconductor problems. For more details we

-with- -i) Ej+/I(x+ -. re eader t- several papers by Brezzi and co-workers (cf. (3,4]).
U =o2UT 2UT ()N N TO HIGHERDIMENSIONS

which is exactly the l'in fitting factor (cf. 16]).
This scheme has first been described by Scharfetter and Gummnl (cf.
[9]), and therefore the resulting difference scheme is known to devic The box niothod is ideally .. itedfor-the discretisation of equations of
modellers as the Scharfetter-Gummel scheme. As we remarked-i .i n the form
above, it is-exactly the same as ll'ins scheme. A coincidence is that the form
both sch=(ne) were developed in 1969-(
Beause the above method is the same as II'ins scheme, (uniform) error The starir.g point is a mesh, fonsisting of triangles, rectangles, q.iadri-

-esti.onates for thelatter can be carried over directly to the semicondu,- lateals or other polygons. A tio-called box B, is constructed around
tor problem. Then we obtain: each mesh point xi, in such a way that the union of all boxes is the

entire simuhtion domain and-such that boxes do not overlap. The
Theorem I most common way of doing this is t-0 construct Bi using the midper-
We have the followi i 9 error est:mat. for the discrete solution (p,,i - pen Jliculars of the mesh sides. Hay..t cimpleted this conctruction, we

integratp (21) over each of the-boxeT:
IPK -p )lCh p .V = <Ch

where h is the maximum mesh sip':ng and Cis a constant independent JBi

of h and the coefficients in Zhe equation. which, using Gauss' theorem, leads to

0 ,F.ndS fdV (22)

Since the estimate here vncerns the relative erroi, the-result an also The distretsat. ,i is nol _onipleted bLy aproxiriati.ig the integrals
be rewritten as an error estimate for the quasi-Fermilevel 'Pp. :a this eqL :.fior. A standard ptedure is to use the lowust order
The scheme in (18) has been derived in the above by applying expo- quadratui-rle- fv, both integrals. 1hus, the right h..ud s,de of (22)
nential fitting techniques. On the other hand, it is very interesting :s approximated by v oi(B,) f, The left hand side is ap,roximated by
to see the relationship of this derivation with the way it is normally
derived in the area of semiconductor device modelling. To this end, we 1 tk F- n
again onsider the homogeneous form of the second order differential k
equation obtained by combining (2)-and (5) From (2) it then follows wherethe nk -re the normals in the midpoints of the mesh sides and
that 4p is onstant; sinc this can be concluded for each interval sep- !k are the lengths of the corr-'-ponding box sdes.
arately, we will assume that J4 is piecewise constant. Using this and Equations (1)-(3) can be discretised using the box method. The re-
the expression for J. in terms of the Slotboom variable 4 , (cf (13)), maining problem is to evaiwate the normal components of the electric
we o'tain: field E and the current densities Jp and 3., Because of the construc-

V = eolUT tion of the boxes, however, this is rather straightforward. Namely, the
qypUjni"t normal components are exactly the components along the mesh sides.

1kP,i-+ - -'i !E + e lufd+ Thus, to obtain the desired quantities. we can just use the techniques
qupUTnn1f 7' outlined in the previous section. In other words: the one-dimensional

and, assuming that b is linear in [xi, xi+11: arguments used to obtain exponentially fitlced discretisatbnd of the
first order differential equations for Jp ap 1 ', ;,ctw en two mesh points

= I UT(-,4+,I r _evI )  can be used here. For the electric field the situation is even simpler,
-# 

= -qpU-ni -- I because we do not need any fitting. In that case we just use expres-

or sions of the form (16).

,p+ _ pm _JP xi+1 - X, (cv..,/('r _ '/r
qvmPUT11in 0i+i/UT - 0UT
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The box-scheme-for-equations (1).(8), combbnedvnwth the exponentially Sic ~Ja 2 A+z(.)is-a constant vector, which-we-will dnt
fitted, schiemes for- equations (4)-(6), provide ii suitable dtiscretisatiqn by J,.1/2 (substitute x = x,+112 1), we have that
method-for the semaiconductor equations in t-d, -2-d- and 3-d. 4V= D'( i'2A+ 4/

In fact,.we -conjecture here that the proposed -exponentially fitted box aditflosht
schemes yield uniform error estimates (this~bias.bten shown in 1-d and f,- ~ n1yz+,).,

2 -in the 2-d rectangular case). '+1 Ij~ L e dyp12)j(2 yJi/ 2

-From this we obtain a discrete expression for the current- densities on
5. -EXPONENTAY FITT1IN £QLS-MALL SYSTEMS: the interval [xi X.+11:

THE-CASE OF AYAILANCI14E GENURATION
-- ;hre JX) 12j.'(27)

In this section egenerulise the- Sharetr e m to t-he J;lie /2 JZ) L=e(-ji2A+z/]'§+II2- ib.12328
case where -the effect of avalanche -F neration =is taken into account,

using exponential-fitting techniques for-s~agularly perturbed 2 A2 sys- Thu final discretisatiun of (26) is then obtained y integrating over th.;
tem~asdesribd--n'151. This effect, which may -lead -to -breakdown box (X,-X/~2 , X+1121:

of the device,- is-accounted-f',)r in the cquations-by an extra-recombi-
niation./generation-term. irmally, thesje-terms-only depend] on-the 3i12- 3

fI A.i 2 (yd± .'1/i 2 3( y(9
carrier conecrntrations, an.-not on the current, feste.T eeo

()and- (3) -are-first- order equations ii, 7p and-J,, without-any zero
v.dzr terms. F-romfa mathematical point of view this means that the Equation (29) can be expanded-fur' by substituting the expressions
c~urrent densities-will vary rther smoothly. Remark that the assump- (27) into the integrals This leads t he foil w.,.g discretisation.
tion of-piecewise constant current densities mada in the deriv..tkwn-of- e(rZi+J/2)A.+1/j1/2i~ '(iZ12A. 2j / _ 30)
t,5e Scharfetter-Guni schente agrees with this. -ez~;i2A 2./

When avalanche generation is taken into account, the situation changes References
completely. In-this case, an extra term has to-be included-of the Orm

Rj=1 (2) 11 0. Axelsson, A-generalized conjugate direction method and-its ap-
q~ c ipp & II 23) pI cation on-a singular perturbation-problem, Numerical Analysis,

Now we see that the first order differential1 equations do contaiin a zero G..Wto e),Li1vl.73p.1-1(9)

order term,-thus allowing the possibility of. iepidly (namnely. exponen- 2,' 1. Babuska, 3.13 Osborn, Generalized fni.ite element methods.
tially) varying-current- densities. It Iis cle&. that-the- assumption-of their performance and their relation to mixed methods, SIAM 3.
piecewise-linear-current densities may iiot be-adequate in this case. Numer. Anal., vol 20, pp. 510-536 (1983)
As a starting poirnt-for our derivation-we take-the homogeneous form 131 F. Brezzi, L.D. Marni, -P. Pietra, Mixed exponential -fitting
of equations (2) and (3), i.e. R is equal to-the impact- ionisation- termscesfocurncntutyqainsPo.NAE DEV
given in (23). The equations read Conf., Boole-Press, Dublin (1989)

J'=+c'IJpl + crnIJ.I k24) (4 .BezLD aii-P. Pietra, ?cvo-dimensional- exponential

= -c~4I -x~d~n (25) fitting and applications to drift-diffustuo-models, SIAM1.. Numer.
J. = Ccpl~l - n1J.1(25) Anal. (to appear) f

which-,:an be written as

3' -A (26)- 15) E.P. -Dnolan, .J.H. Miller, W.H.A. Schilders, Cniform numeri-
cat methods for problems-with initial and boundary- layers,3Buole

whre , 4)adPess, Dublin (1980) (also available in Russian and-Chinese)

+Vpcrp +'Jnon [ 6] A.'M; W1in, A differencing- scheme for a differential equation with
'k vpctp -Vnctn a -.snall -parameter affecting the highest derivative, Math. Notes

Here, t4, = sign(Jp), vi .z s;gn(J.)-are-the 'directions' of .4, and J,,. Acad. Sc. USSR, v1ol. 6, pp. 596-602 (1969)

Using -equations (9)-(1u we see that v, - -sign(0;1, V,, -st's) ~ P.A. 1%Markowich, The stationary~ semiconductor eluations, Coin-
Thus, (26) may be cuns,, ,red as a 1lnear equ ation-in 3. putational Microelectronics, S. Selberherr (ed.), Springer Verlag,
Now-we are ready-to discretise th, problem. As usual, we take a Wien, New York (1986)
mesh-{xo, ... , pxN), the midpoint of the irtezval [xi, x,,j] beiiu' de-otf..t

by x. 1p Weass.-netha A s cnstat o eah o the...intr- S.J. Polak, C. den fleijer,-W.H.A. Schilders, P'. Markowich, Semi-
by X+11. W assme hatA i contan on eah ofthe. m~r- conductor device modelling from the numerical point of-view,- Int.

vals (notaition: A,,1/2). Multiplying -(26) on the interval- [xi, xi+sJ J. Numer. Methd.-Engng.,.vol. 24, pp. 763-838 (1987)
by e-(z-j+(2)Ai+j,:, We obtain:

191 D.L. Scherfetter, H.K. Gummel, Large-signal analysis of-a silicon
e~xxi+,2);+isfe(z-~tl2)4i;2;tRead diode oscillator, IEEE Trans. Electron Devices,-vol. -ED-I16,

Thus, we may conclude-that for solutions 3 of-the continuous problem pp. 64-77 (1969)
(26) we have-that c- ,Zz4,j1Aj4 t,2 3 is , constant vrctor j101 S. 3ciberherr, Analysis and simulation ci semiconductor dtvices,
To proceed we now use equations (13) and (14). These can be written Springer Verlag, Wien, New York (1984)
in the form

3 = DV' 1111 J.W. Slotboom, Computer-aided two-dimensional anialysis of
bipolar transistors, IEEE Trans. Eclectron Devices. vol. ED-20.

where § (,p -i) and pp. 669-679-(1973)

[ -,PU-ne0U 0 (11SM. Sze, Physic-s of semiconductor devices, Wiley, New Yori
D 0 qP0 njninC*1T (1969)
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GRID APPROXIMATION-OF BOUNDARY VALUE-PROBLEMS FOR
QUASILINEAR SINGULARLY PERTURBED ELLIPTIC EQUATIONS

IN THE CASE OF FULL DEGENERATION

J.J.H. MILLER
School of Mathematics
Trinity College Dublin

and

GRIGORIII. SHISIIKIN
Institute of Mathematics and Mechanics

Ural Branch of USSR Academy of Sciences
Sverdlovsk, USSR

II. TYPICAL NUMERICAL PROBLEMS FOR

Abstract A quasilinear singularly perturbed elliptic NONLINEAR EQUATIONS

equation-degenerating into an-equation not containing On-a uniform grid it is im,)sible to construct a numer
derivatives-is considered. Problems %lhich appear when ical solution of problem (1) -converging unifoimly with
constructing numerical methods baa'ed, in-particular, on respect to the -parameter. This is because, on the one
fitting techniques are discussed. In the casL of the Dirich- hand problem (1) is nJijnear and, on the other hand
let problem on a strip, or on a domain with smooth the d Aerence of the values of the solution to problem (1)
curvilinear- boundary, principles for the construction-of on neighbouring nodes of the grid does not converge to
uniformly (with respect to the parameter) convergent zero ,iniformly-with respect to the parameter (when the
schemes are considered, grid-size tends to zero). For this reason it-is necessary to

construct difference schemes on grids condensing in the
boundary layer.

I. PROBLEM-FORMULATION- III. THE BOUNDARY VALUE PROBLEM ON

On a strip-D = {x :-0 <x x <-d, Ix., < co, s = 2,... n THE.STRIP

the following Dirichlet-problem for a quasilinear equation Frirt suppose that the coefficients of the operator L1 do
is considered not depend:on u(z). Then the solution to problem (1) is

the limit of a sequence of-solutions to the boundary value
.L(U(x)) f2L 1(u(z))u(r) - y(xu)) = 0, problem
z-E D , u(x) = ,(x), _ r. (0) L )U(k)(z) f ( X (k-1)( X),L' u(() . =e-o( ,

Here V (v)is the second order elliptic operator X E D u(k)(x) =- (x), x E P (2)

(v) F_ ak(x,v)02/8xOxa Note that this equation is linear with respect to u(k)( )
• ,k=, and that f,,(z,u) = f(x,u) - au. To solve-problem (1)
-n1 the-iterative difference scheme

+ b. Zbxv)8/Oza -c('

It s assumed that the coefficients of the operator 1' and A2 z(h,)(X) = f (x, zk-(X)),
the iunctions f and V are sufficiently smooth, and-that X E Dh, z(k)(x) = V(x), z E Pi (3)
for the function f(z, u) the following condition is satisfied

aproximating problem (2) is used. Derivatives are ap-
O/O)f(x, u) >_ a > 0, (x, u) E D x ft. proximated by classical finite differences on rectangular

grids (see, for example, [2]), which are condensed in a
The parameter a can take any value in (0,1]. When e neighbourhood of the boundary layer by a special rule
tends to zero in a-ieighbourhood of the boundary I' a (one such grid condensing rule is given in (3]). The con
boundary lal.;r appears. This boundary layer is described J;tiuns -which guarantee uniform with respect to the pa
by an ordinary differential equation. Derivatives of- the iameter convergence of the solution Lo the solutior, of
solution along all directions out of a neighbourhood of problem (3) (when k - co and-the number of nodes
the bo .idar. ,ayer and also derivatives along directions increases)- --- i 2.-ated. A similar method is used when
collincar .Ath tLh. boundary domain in the neighbour- the coefficients of the operator L' depend on the solution
hood of the boundary layer are bounded uniformly with of problem (1).
respect to die parar.ter. The numer-ral solution of such IV. DOMAINS WITH CURVILINEAR

boundar- value problems is difficult even for linear equa. BOUNDARIES
tions anid-gives rise to the problem of constructing ap-
proximations on special grids, which converge uniformly In the case ofdomains wiedoth acurvilinear bound
with respect to the parameter (see, for example, [1]). ories iterative schemes based on the alternating method

of Schwartz are constructed. A neighb~ourh.ood of the

boundary P is covered by a system of overlapping subdo-
mains. In each subdomain the boundary P of the
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initial domain Dis rectified by using-a coordinate trans-
formation. A-difference scheme (in the new -coordinate
system) is constructed by employing results obtained-for
the boundary value problem on the strip. For boundary
value problems on-domains with curvilinear boundaries,
conditions guaranteeing uniform with respect to the pa-
rameter convergence of the constructed difference scheme
are deduced.
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SPLITTING-TIME AND EXPONENTIAL FITTING-SPACE
DISCRETIZATIONS-FOR CONVECTION-DIFFUSION PROBLEMS.

On the other hand it is well known that the use of alterna-
ting directions methods permits to generate simple (like one-
dimensional) and economical schemes, for the solution of prob-
lems in mathematical phisics that involve several space variables.C. CLAVER0, J.C. JORGE, F. LISBONA. In this paper we developea new-difference method whichDepartamento de Matemitica Aplicada, combines the well-known advantages of the one-dimensional ex-Universidad-de Zaragoza, ponential fitting methods for stationary problems and the alter-Zaragoza (Spain). natin& directions methods.

Abstract. In this paper we develope a finite-difference method 11. TIME SEMIDISCRETIZATION
fr irtime dependent convection-dominating convection-diffusionproblems, modeled-by the singularly petredprli qa For simplicity in the exposition of our analisys we will con-ion perturbed parabolic equa- sider the following initial Dirichlet boundary value problem

"Du
09U- CU +VU + kuf in f? x[0,Tj, Find u(z,y,i) in Q = [0,1] x [0,j] x 10,T] solution ofwhere Sl c R 2,k > 0 and c is a (possibly small) positive con- U u Au+ u+:uf,

This method may be viewed as a combination between Fae- u(X. Y, 0) u0(X, Y),

tional Steps time semidiscretizations, and one-dimensional space u(0, y, t) =u (Y 0,discretizations of exponential fitting type. Making use of the u(1,y,t) - 2(Y, I),consistency and the contractivity of the time integration pro- u(x,0,t)= u3(z, ),cess, and the special properties of the discretizations made, via I u(z, I, t) = u4(xt);exponential fitting, for the space differential operators at each where k(x.time level, a (uniform in c) convergence result is proven. Impor- w y, t), c _> 0 and-V = (ii (x, y, t), v2(x, y, i)) such thattant advantages for computations are also obtained. Vi has constant sign, i = 1,2. We will assume compatibility
between the initial and the boundary conditions, and k, V, uf

I. INTRODUCTION smooth enough, to guarantee that the solution u of (1) verifies

Let -f be a bounded domain in 2 with a piecewise smooth {uA4iuA 2uA u,A.A 2u,A 2Aju)CC'(f1), (2)boundary r. We will deal with the numerical aproximation -of
the solution of time dependent, convection dominated, convec- where
tion-diffusion problems defined by the equation

OU- Au+Vu+ku in S1 x 00,T], 0 0
t- 2 + + '

and the initial-boundary conditions

0 iA2 M -C-L2 -v 2 !-+- 2, with ki > 0 and k1 + k2 -k.
u(T, f) 9 (x,i) in r x [0,2T], Note that if f is smooth, conditions (2) guarantee

where (,y.2) and k are smooth functions on S with e >0 Wu - C- "b(n)wr I(,•and sucr th fin n, the 0 Problem (1) zs discretized in time, so that weobtain semidis-tand suchthatiit mayocur th< lvn general, the solution of crete aproximations u"(2, Y) to u(x. Y,,) solution of (1) at-thethis problem is-not globally smooth (even for smooth data) but instant of t'me 4, = nat by means of the following Fractinalit may present rapid variations in certain narrow regions in n Stp Schemet
(layers). Steps Scheme

Problems of this kind are found in the modelling of convec-
tion-conduction of heat and atmospheric transport of pollutants. -a) uo = -o(Xy);

It is well-known that standard finite difference or finite ele- I (I + &iA3)i"+i - u" + Aif,(. 4 1 ),ment methods applied to convection dominated flows problems un4(O,,y) = u,(yr 44.),give unphisical oscilatory solutions with a reasonable mesh size; u 1(,y) = U2(y,,.+?;in these cases the maximum principle property is not preserved. (I + AfA2)u" i - tl"r + Atf2(tn+i), (ft + f2 f),The first remedy to avoid this drawback in fiite differences was t tn+]z,0) = us(x,to introduce upwind differencing for the convective term. A re- un+i(x,1) = u4(z,ifl i).lated concept was adapted later to finite element methods. (3)
These procedures generate spurious crosswind diffusion. Note that if we defne (1+ AfAr)-u" by the resolution of

More sophisticated techniques were developed with the idea of the stationary problem
introducing an artificial viscosity term which acted only in thedirection of the streamlines (streamline diffusion, Hughes & (r+ AfAj)z = u,Brooks, Johnson & Navert). z(0, y) = 0,In order to get rid of the influence, on the numerical solu- X( ,y') = 0;tion, of layer terms out of the layer, and obtain uniform in e and analogously for 'tl "+" AtA2)- u", we have that the linearconvergence results it was realized that some sort of exponential operator 'I+ AAi" are iverse monotonous andfitting has to be used. These kind of-methods (Il'in, KellogpTsan, Hemker, Dooland & Miller & Schilders) have been widely 1(,+ A=,)-i1[ < , - 1,2. (4)studied for one-dimensional stationary problems but their anal-

ysis on multidimensional and time dependent problems is a dif-
ficult task.
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We define 'he Local-Error for (3) and-the normalization condition

(5) q+ qj+q l
where fi"+2 is-the result "u+ "obtained of applying scheme (3) -In this situation, suposing h small and undcr the restrictions
taking ui"=

Under the hv~pothesis (2) for the solution u of the continuous h.< i at
problem (1),-and assuming fj and f2 are smooth, we obtain I + k1(xi,y)4t'

1jej!!:5 C(Ai)2 (consistency of the scheme (3)), (6)scee()erfs
and taking into account (6) and (4)em is) easyrtfprov

i1uQt.) - 01fl. 5 C'~t(convergcnce of the sernidiscretization). Ill]"J - i"165CAh,(S)

II.TOTL ISCETZATONwhere fi"+ is the result "u,",+" of aplying sheme (7)-taking

Using the discrete maximum principle we have proven that,
Description: Th order to obtain a total discrete method- to if we-take homogeneous boundary conitions, we-obtain for
approach (1),-scheme (3) is discretized in space-using an expo. Li*,5, i = 1, 2
nential fitting technique.

Let Pi,,be a rectangular grid (not necessarily uniform) of IK~~a'I~o1i,.(9)
points (x,y)- (O,< x,y :5 1)-and let us denote-[.Ja% the re~stric-
tion of a function defined in [0, 1J x [0,11 to S),,. -Our total dis- We have also obtained results (S) and (9) with other-expo-
cretization obtains approximations u" to Muti)Jp by means of nential fitting methods for some other cases. for example, when
the following algorithm hthere exist attractive turnig points, when the velocity field is

paralel to one of the the axis or if it is null in fl.
a) U0 = [tio]5 ; Finally, using the results (6),(S) and (9) it is proven{ n+ I =-"+An hN 0h= a jfi,)J~ Iffu~n)] - uA.U : C(LAd + h).j "-- 1'(1,Y~) = [U2(Y, t.+Ii,; 7)(uniform convergence of the tot allyv discrete scheme)

c) - XI) = [u(Zt+ Ijfh, I)h Note that the resolution of (7)b) at each time level involvesI .un+(X, 1 U.(z.fn+i1,, the resolution at each line of points inli of a tridiagonal sytein

wher ~ nd zc~ ar th-reult f dscrizzngviacx-of linear equations ( and the same for columns of po ints in f1A
whee L.,, an L2,.harethereslt f dscrtizngviaex.for (7)c) ). Therefore, the com.putational Cost is strongly de-

ponential fitting, the uniparametnic families of one-dimensio nal creased with respect to the standard implicit discretizations of
singularly perturbed eliptic problemas (3)b) and (3)c) respectively multidimensional evolution problems_

For the construction of L,,. ( and similarly for Le_.A) on This scheme also-presents other im~portant advantages for
each time level t we proceed in the following way: computations. For example, in order to resolve boundary and

Let be-It.5 = {(zo10IC(z10% ... I (XNjY)) C fla with 0 =internal layers and reduce possible numerical diffusion phenom.1
Xo <X. <... <~ 21 the line of points in 5),, with fix ordinate ena, this method admits mesh refinkent processes that hardly
y. We note hit =!i ;- ii- ,an t=mxz. increase the computational cost.

On A,* we define the exponential fitting scheme in the form Finally we will remark that, in order to obtain a good
speed-up, the algorithm can be-easily- implemented on paralel

..1h= QAi. ,Yt,, where computers, since the resolution at eachi tim level involves a set
of uncoupled liear systems.

Numerical experiments will' be presented in the oral session
T,a,%(Zo, Y) MUA(Xo, Y,) =Ui~, (,i), and the complete version of this paper.
)~ (T~j~1 , Y) = TUA(xj-3i Y) +T;jUh(zj'Y) ++u(Zj+,P),

j N W-1,
IT,au(x.v)=tA(,Y) = ii2 (y,i), and

Scheme (7) is completely determined by the coefficients rT,
rj, rt+g, q,g These coefficients are-obtained by imposing
that the operator

-(i = TZ.&wi - Q.1

is null on the set of functions

{1, XjZ2,eXp(!j Vi(j)ds.),xcxp(! vs v(s)ds)),
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ON NUMERICAL METHODS FOR INTERIOR SHOCK
LAYER PROBLEMS

Relja Vulanovi
Institute of Mathematics, University of Novi Sad

21000 Novi Sad, Yugoslavia

Abstract. A model sirtgulaxh perturbed buundar) .aiue prubv iud. as the methud frnk ,2. 2 Ncthez ths gives atiscaetu re
lem with a single shuck layer 's cousidered. Vaiuus, uruztical bu'.. Thc nuizncrka uvutwuz %,ks fine aLi'ela, Lt the
methuds are anal) zed and difficultle inesi ing thte ay. c ae 'aye i ,fted fiir, z'. There uL u -one xpaaltir, fvx thcs
discussed. phenomena: the discrete problem has its own layer which is

shifted from the continuous one.
The.Continuous Problem The best, but not, ideal, results can be obtained by the tech-

We consider the following singularly perturbed boundary value nique which was applied in [3] to a boundary layer quasilinear
problem: problem. Let k = -alnc with a positive constant a, and let

so =X - k4, -s = z + kc. Then from (5) it follows that
Tu := -u" - un' + c(')u =0, x E I = (0,11, (1) iU(x) - u1:l 5 Me

Bu := (u(0).u(1))= (U0,U,), (2) for x E [0,zo] if i = 0, and x E [si1,1 if i = 1. Thus we
where 0 <. ,. 1, Vo and U, are-giien numbers, t.L a ,uffi ha/: approximate u b; uo and u, in corresponding intervals u,
ciently smooth function and can be obtained from (3), either exactl y o numerically), and it

c(z)2:c.>0, zE. remains to solve the problem
Tu=O, zE[.o, sal, r(s,)=u(s]),i=0,1, (6)

Thus, the famous Lagerstrom-Cole-model problem is included.

The problem (1-2) has a unique solution u. We assume that which is practically unperturbed. We shall do this by applying
Uo < 0 < U1, and thus u'(z) > 0, x r I. Furthermore, let the standard central scheme on the equidistant mesh with the

step h = 2kcfn, n E N. The scheme is stable in the discrete Li
S=i jc(i)d +U , i =0.1, (3) norm if n is sufficiently great, independentLy of c. An estimateof

i the error of this procedure can be obtained in Li norm since the

be the solutions to the reduced problem (1) with r = 0, and let operator (T B) is Li-stab!e. However, this is not sharp enough

te fo- we are interested in pointwise accuracy. The po;ntwisc errorsthere exist a point xa y (, ) such that t(z) + usig) t will be illustrated by the example with c(z) = 1 and 'o =Tehnique from [a wock caner tate=x-,cf.[1.Byusing the di v-1, U = 1/2. Only the errors of tie numerical solution of (6)technique from [5) we can estimate the derivatives of u: are interesting. The numerical solution is compared to the inner

uk)(z)l -<A1(1 +C kexp[-mjx -zj/4), XzE L (4) solution of the problem, 1). For a = 5 and c = 10 - we get the
errors 8.50F.2, 1.51E-2, 4.40E-3, 4.50F-,3 forn = 10, 20,40, 80,

Here z0 is the unique point in (0,1) such that utxzl = 0, m > 0 respectiveLy. The errors for the same a and n but for c = 10"

is an arbitrary constant independentof c, and by M we denote are 1.95E-I. 4.13E-2, 7.SE-3. .71E-3.
throughout a positive generic constant independent of . zP .Reeronee
is not known usually, but it can be approximated well by x-.
Moreover, u,, i = 0, 1, are good approximations to u outside [1] J. Keo.o-Lan and J. D. Cole. Perturbazton Methods in Ap-
the i' plied Mathematics, Springer. New York, 1980.

lu(z)-u(_)l if M[ei.exp(-mjz-zp!j], e I,, t = 0.1, .5) [2j B. Kreiss and t.-O. Kress. Numerical methods for singular
pe-turbation problems. SIAM J. NA-mer. Ana. IS (19SI).

where I = [0, zo] and I, = fz0 , 1]. This can be proved by using 262-275.
inverse monotonicity of the linear op rat-r L9 2 1" Lo .3i . . Combznatio-a of in.tia and b-unda', value meth-
with appropriate boundary operators. For -z E I, it holds that ods for a class of -ingular pcrturbatioA problems. In. Prof.

gz Conf. on hc Nume.riccl Ar.clyis of Sirngcr PCrizmrsaioonLM[x- + exp(-]-' u(t)dt)] 2t ;u,(z) = -Lru(z) - ujX}z. PVMenu (P. W. Hemker and J. J. H. Miller, eds.), Aca-

demnic P.ess. London. 1979. pp. -2-0315.
and then (5) follows by the technique from f5]1 FtfR_ tV\ulan&'' Finite-differenc schtees for qua.sinerar sin-

N, tmeriA MetF ¢ gular perturbation problems. . Com:PmL AppL MatL 26
(1g9L9i 3.3-36.

The standard numerical method for solving (12) is dl.sertiza 151 R_ Iulanvxc, Continumis and nmencal analysis ofabound-
tion by the Engquist-Osher or some smilar finite-diffrene sde sr lea e, proltm. BulL Autra L Met& Soc. 41(1500). 75-
me, (4]. We are interested in resolving the layer acurafeL. and CC :
because of (4) (with z9 approximated by x') it seems rrs.-nable
to apply a special discretization mesh which is dense near x.
This approach gives good results in the cme of boundar -y layers.
(4,5] - the pointwise errors are first order aceurate uniformly in
c. Here, however, the unifor.m accuray is present in the diset-te
V norm only, and the use of the spe-ial mesh L% not justifed.
The numerical values clust- arund a point differnt frem I'
Anehcr possibility is to apply an it ative mesh rowstrueti,,n.
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AN ARBITRARY ORDER DIFFERENCE SCHEME FOR A NONSELF-ADJOINT

SINGULAR PERTURBATION PROBLEM IN CONSERVATION FORM (D

Pcngchcng Lin and- Jianshcng Zhcng

Department of Computer Sciencc Xiamcn-International Book
Fuzhou Univcrsity Centrc.
Fuzhou, 350002, PR of China Xiamcn, 361004, PR of China

Abstract Aznonsclf-adjoint singular -perturbation problcm in con. {A .iz,-i -z + AIz 1 ,1 - -z6,, -I,..,'- I
servation form is considered. We-construct a-three point difference scheme "to - 10,z a 1h, (4)

and-provc that the solution of the dfTferencc scheme convcrges uniformly whcrc A -(k-- 1,0,1) satisfies.
in-small parameter & with ordcr-h"' to the solution of thc diffcrcntial JA 11-v' (0)l<vI_< h
problem. 

2

we let
I. INTRODUCTION v[(S)- Z h'vi.(s)+h- 'I9,,, (k- -1I,0,1)

A nonself-adjoint singular perturbation -problem in conservation
form whcrc vi. (n- 0,...,n) satisfies

(LP;U) + q(x)u'- r(x)u - (x),O <x < l dpx)U(0)U (xo,-,) - 1.,x (I) 1i Y p(x,)(vl,+( ( )1 .-. + q(x,))rI(vl,)'

is considered, where c is a parameter in (0,lI,q(x), r(x), f(x)wti' - r(xI)r2vi. - 2tIk,

(-:F(x)eC-[0,J, F"-)(x)eLipschity}, p(x)ew-' ,O < ao <-- ,< bo [io(- .-e.o0), k--O,- pAx) Ivl(l)= v' 1.0(- l)=
-44x v,( -. I) 1, v(1) ,- 0, k =-1,,n ,= l,...,rn

,0 <a I - < .i, r(x)>0,p'(x)>a2 >0, ao, bo,_ai, at, bt arc hcc- l=g adlor . -px) ~ ) here I/ Io 9 A and for n_>-
given- constants, mis a positive-integer which-is-givcn arbitrarily. Under
these conditions, there is an unique solution for the cquation (). -H - (sIgA + E r. -,s^ -- v, - LL E [(n - I + I)CP4-,- + q,- 1 ]l-e l~iI-.

Recently, some authors derived an accurate-dilrrcnccschcrnes of or- I ."

der-one or twc for_(). In this paper, we construct-a three-point difference s'i(vi,)' - Z s"P,-I)

scheme for-(I). For any rn >0, we prove that the solution of the dilTerence

.schemeconverges uniformly inc withordcrh " * ' to the solutinof(i), whcregi,,p,,q,,r, aregivenbyy. =

- . TIlE DIFFERENCE SCHEME C. The three-point d;fr.hcc scheme

A. An accurate difference scheme We construct the three-point difference schcmc for (I) such2$.s

We constnct an accurate difference scheme for the problem (i) { L ut - A'-,u|.i-u + A fui.- -A ,(I-I.-.,N-) 6)

L'u, - v'-(O)u,i - u, + sJ(0)ui =. - Y0(0), U6 U0. Ui,
I i-,2,,N-1 (2) whcrc A r,= h vIL(0),k= -1,0,1.

1,20...,N-v I Ii I

where vi(s) (k- - 1,0,1) satisfies: MI. TIHE CONVERGENCE TIIEOREM
. .,~d~vi(s) [dp(x, + sh) .,d[s

hIv(s) - pcxv+ dh)vs) + (d-m x sh) + T Iq(x, + sh)]'-' s) We will obtain the following uniform convergence resuhL.
rI Ih) - ds is

-~r(x 1 + sh)r v J (s) -t2 g A(x, + sh),se( l,l),k - 10,- (3) Theorem Suppose ut be the solution of the difference scheme (6) and
vi(0)- v'..(0)- v(± I),0, i xi)bc thc solution of(l), then for0 < h < ho ,wehavc
vl(1) -v'.(- 1) -I,

h h
2  +jut -u(x,)Jl<Afh"-I,

hcri - ,T -. ,g i(x, + si) O,g o(x, + sh ) - i + sh ) where M is a constant independent ofc, h and ,.

B. Approximate diffcrence scheme IV. NUMERICAL EXAMPLE

We establish the following approximate diffcrcncc scheme. Consider the following problem

t (41' +-xUT) + I / -,-, (0 ),X
V(I +X) 2V =i-., O~. (7)

u(0)=o, u(l)- ,
(D This work supported-in part by a grant of the National Science Founda theexact solution is

don ofChina and in part by a grant of the Nateral Science Foundation of Fujian. + x
u(X)-c,1 6+X +c20 +x)-, + + '
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where ¢! (2 7 - )
- (0 + 4)(,2 - 2 -Is)

(I - 42- 402-,( +-'0( '2-- 2 "-.
E. - maxjuf--u(xj), here u(x,) is-the solution or (7), ut is-the solu.

tion or the scheme (6) whcn m = I. Numcrical rcsult lists frollowing

table.

Ji 2-0.1 1 -! 6 9 E.

u(xl) 0.1705056 0.6971326 0.9275933 5.286932 E-S

u 0.1705048 0.6971323 0.0275981

-u(x) 0.2659307 0.7201022 0.9295832:- h 1.7007319 E-,
u) 0.265896S 0.7201026 0.9296028

u(x,) 0.3551245 0.7113618 0.9268337 1.856089 E--4
_______ ut 0.3552783 0.7114487 0.9268539

-h0.025 J I 26 39 E.

- u(x) 0.621421-E-2 0.7535943 0.9825791

I 0.620246 E-2 0.7535513 0.9825695.745888 E-5

U(xt) 0.2061851 0.7457681 0.9815736 4.41685 E-6
uI 0.2061807 0.7457712 0.9815731

u (x1) 0.3101401 0.7423608- 0.9813188
c-h1140 j I7.780600

ut 0.3101479 0.7423628 0.9813186

The numerical results-show that the numerical experiment coincidcs

with the theoretical analysis.

The authors gratefully acknowledge the support of K. C. Wong cdu.

cation foundation HongKong.
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THE DIFFERENCE -METHOD FOR- SOLVING SINGULAR PERTURBATION- PROBLEMS

OF THE PARABOLIC -PARTIAL DIFFERENTIAL EQUATIONS

INVOLVING TWO SMALL PARAMETERSO

Pcngchcng Lin an-Mcifcng Yang
Department of Computer Sciene Fujian Branch
Fu.h-ou University Cyts tours Corporation
Fuzhou, 350002, PR-of China Fuzhou, 350001, PR-of China

Abstract The singular perturbation problem of the parabolic partial Cflofl.

differential equations involving two small parameters is considered. We Suppose problem (1) has the following form of the asymptotic
construct an expo ncntiallyzlfitted differenice-schemne and prove-that when t solution

~ p'Mc ~x I--c'(where 6 is a small positive number), the so-
lution of the difference scme converges uniformly to the solution of the ux)- '*(U'.iJ(x1) + V''R.

original differential equation with order one. + wi(a)+ Z,-i(X,4)

JI. INTRODUCTION where u',-Ij be-the solution of-the degenerated- problem. V,-'(Q 1.0

In-this papecr we consider the singular- perturbation problem of the wg(:),i(xi)are the boundary layer function nearx-- 0 *x--

parabolic partial differential equations- involing two- small parameters. 1-0 -rcspectivcly,_4, 4 2. - IL~ -X
Z t 1-Wang-Guoying (1) constructed a differenice scheme with fitcdfTactors. Ap-

By Vishik-Lyusternik -asymptotic method we obtain (take First orderpiing the classical and-non-classical estimation method to this-schcme, he approxirmation and-let v - vo~o,oj - coo,Z -Zo.*
proved that the solution of this scheme converges uniformly to the original
differential equation with-O(h I + At -) . In this paper, using the method_____
of-decomposing the singular term from its-solution and combining an *exp( +

asymptotic-expansion of-the equation, we-prove that the solution of the 0s+a(,)4(,gl
difference scheme converges uniformly to the solution of the diffcrcnta ex.O -JEM__________0AJ

problcniwith (h + At).I-ep.J(!!JiIf ls) t (, ) + 0s46b(0.1l2

2t
11. CONTINUE- PROBLEMw(,) [t()-ul)-(,,)-i0.)

We consider the following problem _,_Ia __t__a_______4__6.7

-~ Lu +e P - ra(x~f)Lu - b(x,t)u ex( - al,1) + a'(l,t) +4b(l~t)yl -x))

uo~x). uaex), xe(0,I) I a (l,)+ 4b(ljt) -a(0,t)+, oi(0,)+4b(0s)J,U0(X u0X)' CA02Z

ido~) = o(S, u~,:)- g (S) se(,T)Z(x,j).-(u6(x)- u(x,0)kexp( -_ fL.)z
We assume:p

(HI1): a~b~feC1(Q), uo(x)eC'(0,l],gaog eC'[0,7J Denote
a (0, t) - 47 (0t) + 4 b(0,st)

go(0)-ito(b), gi(O)-0uo.l2c

-a(lt) + ra(l) +4b(.t)
where 212c

Q -((x,r) < x< 1, 0< I<7T) a a- 4a, +4b a + 52a-4b

Q-_Qur. a - a(x,t), b-- b(x,t)
(H2): , (x,t)> :(> 0,b(x,t) >-# > 0,V(x,t)e(0,lJ x (0,TJ. we obtain

t, pu arc positive small paramcters.When t-O,p-0 (I) is l1v14,~4C-ep
dcgcneratcd-to - b(x,t)u & A,t) ,therefore it lost one boundary condi. lD,1 v(4 1,t)l 4 C, (x0eQ ix
uion in'cach side x - 0 , x -I . 1-0 . it appears boundary layer phenom. lD~v,(4i,)l 5 C -'( - A21Q

r4 C. xte

cflTlis work supported in part by a grant of the National Natural Science Founda. ID0:~xr )l
tion or China and in Pairt by a grass or ihe Natural Sciec Foundation of ID,'Z,(x,7)l g; Cp iexp( - ), (x,t)c-Q - va
Fujian
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vj- v,(A,);.v,(A 1) resprcscnt 6 neighbourhood-or corner (0.0) and thnwe:-M'Ae x I tf ( 0 )

(L'0) IG(x,.i.) G,11 A( +a)
IY(X1,. - Y~ I : AfAh 3 4 Ati).

Ml. DISCRETE PiRO]31EM j w_,:,-a7 M(A + AO),

Divide region Q into rcctangulanr mesh, x, - 1h, J-0,],---,J. h lZ(xit.) - Z~l <-Lf(A i At),

- ns~n-0,,.N7~:- Dfiemehspc Theorem 2 Assume that the cocfiicent and the right hand, initial.
N ~~ , ...Vt cicms pc boundary functions of (I)- arc suftintly smooth,and satisfy- conditions

(( Ix, a: < i <--J, 0 _<n _<N} (1) and (1-12), then when t--M'e 'x 4 I - MP , the solution or
rh,- iQ&M,r, Q-_ QA _--AA1 the difference-scheme (2) converges uniformly to the-soluiton orf(l). . ' A

Denote -0 , At - 0 . and the following estimation holds.
Dog,* ______0_ lul - u(x,,tJ) -M(6)XA + At),

2h
D-. g 2? + ?- Iwhere 6 is an arbitrary number in (0, 11

- The authors gratefully acknr.wkdge the support or K. C Wong

g g duetion foundation HongKong.
At

where g, is the runetion dcined in Q*A1  
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Take (1) Wang Guoying. The differenee mcliod ror solving singular

Atb(x,,0)exp( - bOx,,O)A: perturbation problem- s-or the parabolic partial differential equations

ex- ~x,,)Atinvolving several-parameters, Numerical Mathematics, a journal of
- 1 Px ~,0A Chinese Universities, Vol.10, No.3, 263-272 (1988).
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where for a singular perturbation-problem without turning-points. Nlazh.

*-a - -1a~ + 74b Az a-+ -a2 + 4b Comput. 32, 1025-1039 (1978).
Ai 2t - A5  - 2e -

a -a(x1,:). -b -bx,.

Define the difference operator

This operator satisfie th-aiuprinciple

We construet the difference seheme

.8- oO). U) -g I(t.). 0 < n N - 1 (2)

Define the mesh functions v7-4 ,ZJ ,G7 in the following{LA'v -Lv.(x,,t.)
4' - v(x,,0)

Y8 - v(0.1.). Y)~ - 0=

(0, - CLIx,,0)
wa- £L(.,:, W,) - COl,:.)

L"= IZ(., Z -Z. ,

LIG;- I.G(xl,:.)

G- - G(x,,0)
~Ga - G(Ojj., G I - Gli)

,hn ; v,'+ c'+ Z,1+ G;

IV. IAINTIIEOREM1

Theorem I If u(x,t) vQ si.0) + ca(yi,:)+ Z(xmt) +. G(x.:)

i--v,- + (a, + Z, 4G,-
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SINGULAR. PERTURBATION OF NONLINEAR DIFFERENCE EQUATIONS

Weijiang Zhang
Department of Applied Mathematics

Shanghai- Jiao Tong University
Shanghai 200030, The People's Republic of-China

Abstract: A kind of nonlinear difference equations is
considered. Singular perturbation- method is applied to 77 and derive a discrete equation of 77 , and let /3 Ih -

construct the-asymptotic approximation of the -solution -to Wk+1 -- Wk . Then there is such a constant [2 that

the difference equation. Using the theory of exponential
dichotomies- we show that the solution of an order-reduced - WI + f (v), k - 0, ... , n and vn~1 - (3)
equation is -a good approximation- of the solution to the
difference-equation except-near boundaries. The correctos, This-solution-exists provided that vI stay in theregion

which yield- asymptotic approximations, are constructed. in which f(u) is- monotone, and hence invertible.

1, INTRODUCTION Similarly, we can obtain the equations-for such f2

We are considering singularly perturbed difference- n - W, + f(Uk) + --L[ g(uk) -g(uk-) -1 (4)

boundary -iir~blems oV the form k - 1, ... , n-and-uo - c, u,+ 1 -3.

0-h3( )[ Using Taylor series, equations (3), (4) can be rewritten

k--1,...,-n, -0< e _o and Uo-a, un+1-f3 (I)- as

They seem-the "upwind" difference approximation of -the 0-[f,(vk+) h- h9(Vk+l)](Uk+i-Vk+)- g,(vk+,)tUk v,)
following class of boundary value problems for -nonliiear, ±oua+-vI+)-ou-v)---OvI-v+) (5)
second- order,. ordinary differential- equations

ag(u).+f(u)+I3(x)-0, u(0)-t, u(I)-fl, x [0, 1], 0 < c ! co We note that the terms involving the form VkI -V+.

are all 0 ( h ). Thus,

which has-been presented in -the-studies -of phase-locking
in chains of weakly coupled oscillators as a continuum Thc+i- Ak 7

l + H (?1, +i, p/k)-+-0 (a) (6)
approximwtien ()wre Ak - --- g'(vk+) /[ f'(Vk+) + -hg'(Vk+l) H is

In [2], Reinhardt proposed the numerical treatment of
linear singular perturbation difference problems using at least quadratic-in its variables andmk -- 1, ... ,-n.

formal approximations and correctors. In this- paper we
shall consider nonlinear difference equations. In this paper, It is clear that if f'(u) , 0 for all u a J, then the
by using singular perturbation -technique,-we construct two absolute values of Ak are bounded uniformly away from

lower-orde' difference equations for the nonlinear 1. Now we wish to-use this to show there are-solutions uk
difference- equation (1) such that the sum of two to (1) which stay arbitrarily close to- any outer solution

corresponding solutions of these equations is the defined by (3) that satisfies v.. f J in which f is monotone.

asymptotic approximation of that of (1). In this treatment For definiteness, we suppose f' > 0 in J.
the main difficulty is to prove -that the solution of a
lower-order difference equation, which is called "outer Theorem 1: Let ( Mk ) be a sequence of nXn invertible

solution'', is uniformly close to -the solution of (1) except matrices, K c Z. Suppose that the -linear difference

the boundary layer. We -have proved that by using the equation Yk I-MY has an exponential dichotomy on Z

theory of exponential dichotomies. This idea is motivated with constantsK, 7 and projections Pp.

by the- successful application of exponential dichotomies to Suppose that, for each k in Z, H is at least quadratic in

multiple coupling in chains -of oscillators [3]. The methods its -variables and (rx) is a bounded sequence. Then the

demostrated here for the nonlinear difference -equation (1) implicit, nonlinear difference equation

can be applied to construct the -combination solution for
the higher-order nonlinear singular- perturbation difference Yk+i - Mk Y + H (Yk+i, Yk)=+ c rk (7)

equations.
has an unique solution (Yk) such that for sufficiently

In 111, N. Kopell and G. B. Ermentrout have proved a small a and all -k- Z,
proposition by which we can determine where the
boundary layer of the solution to the singularly perturbed I y_ I _ 2K (1 + e-)( 1 - e-)supcz IrI I
problem is. In- -the followings we suppose f , g and X(x)
satisfy the-conditions, i.e., there is an interval J i which Proof: The proof runs analogously to that in [4J
g'(u) > 0, f"(u) < 0 f'(u) 96 0 and Q-f(cx-f(0)- 0 o(s)ds
>0, for which the solution to (1) has a-boundary layer on Theorem 1 can be used to difference equations defined
the L.H. side. For other cases, the solution has a for all k e Z while our system (6) is defined only for 1 g

boundary layer on the R.H. side, the similar procedure can k < n. We must make a suitable extension for system (6)

be used to obtain the similar results. in order to use the exponential dichotomy theory. We note
that if wk are constants, then each outer solution vk is

2, REDUCED EQUATIONS AND OUTER SOLUTIONS also a constant, and hence the linearization AI. of (6)
around vk+1 is also a cont'ant. To consider (6) as an

The reduced equations are infinitn system, we may define &?, - 0 for k < 0 and k >_
n+l. Then, -if wI. are sufficiently close- to a constant, then

0-6 Ik [(f(vk+)-f(vk)], k-0, ... ,n, and v,+,-,6. (2) the linear homogeneous system associated with the
Ki suitable extension of (6) has an exponential dichotomy

Firstly, we-denote the difference u-vk by a new varable (41). Thus, we now establish the following theorem:
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Theorem 2: Suppose that the above hypotheses. Then eu" + e'u' - sin!' - 0, u(0) - 0, uMi) - 0
there is a solution to (1) that is arbitrarily close to the
outer solution of (2) and It's asymptotic approximation is

I Uk Vk - 0-C ... Ln I-. cos-- )-Ln(l - gexv((! - Ux/d) +[ 0(c)

for sufficiently smallh. and the solution has a boundary layer near the endpoint x
- 0 (see Figure 1).

3, CORRECTORS AND ASYMPTOTIC APPROXIMATION

Suppose that in our case a boundary layer behavior --

occur-. at k - 0 , and there is a number h. such that for 0
< h < h0 we have the-estimate: I uk - vk C e, where "
C-is independent of -h and e. (:h.-can be determined by the
roughness theorem for exponential dichotomies) - n__ " -d¢,rvitn Pviti onL-aproffdr t1.:,i .*4JU ,n

Analogously to [2],-we set

Wk - C'Pk, k - 0, ..., n+1 (8) - A "-

and we can obtain Figure 1 (e - 0.01 and h - 0.02) asymptotic solution,
p I~L iteration solution and-approximation solution

0 -- F-p,--l G Pk-,, k - 1, ... , n+1 (9)
The second example we shall consider is

where Po is a parameter which will be determined by
boundary conditions, F - f'(0) and G - g'(0) cu" + e'u ' 

- (sin)e 2u -- 0, u(0) - 0, uJI) - 0

By induction, the representation- of pk immediately can This nonlinear equation is due to O'Malley [5) and the
be-obtained-as follow variable fitting factor is used to find the numerical

solution ([6]) (see Figure 2).
Pk- P- ( k k-- 0, ..... n+lPo

-h F

In order that (vk+w,) presents an asymptotic 7".
approximation we choose Po - o. - v.. Finally we have -

Theorem 3: suppose the above hypotheses, and 0 < m " i. n "-*, "Jr
I f'(u) 1, g'(u) I < M for all u Li. Then ( vk + wk ) is an ,--o~ x isns-Nution
asymptotic approximation of ( u0 } for k - 0, ... , n+I. The .. e-tirotn solutkn
error satisfies the following estimates

I uk -- (v W ) I < L c 4-

where L is-a constant independent of c and h and q > I
is-a constant. Figure 2 (c-0.01, h-0.02), asymptotic solution,

iteration solution and-approximation solution
Proof: Firstly, we have

at-k-0, uo -- (v + w c)-( -V) -p -0

at -k-n+l, un+-(v.++w,+)-3-(/+c+i-Pn+i)- -(n+1Pn+, REFERENCES

Generaly, we have [1] N. Kopell and G. B. Ermentrout, "Symmetry and phase-
locking in chains of weakly coupled oscillators", Comm.

hm - 0, ... , n+l. Pure and App!. Math. 39: 623-660 (1986).

Therefore, provided 0-< a < Co, where 1o - ( -- h )q < [2] H. J. Reinhardt, "Singular Perturbations of Difference
1,-where q > 1, we can obtain the following estim'aes: Methods for Linear Ordinary Differential Equations",

Applied Analysis, 10: 53-70 (1980)./ uk -( v +} w )l~ u , - va I + - lw~l

[3 N. Kopell, W. Zhang and G. B. Ermentrout, "Multiple
h CCoupling in Chains of Oscillators", SIAM J. Math. Anal.
Jm No.4 (1990).

< (C +IpoI). k- 1,.. n.
.- ae [4] K. J. Palmer, "Exponential dichotomies, the shadowing
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DOMAIN DECOMPOSITION TECHNIQUE FOR SINGULARLY PERTURBED

PROBLEMS AND ITS PARALLEL IMPLEMENTATION

I.P. Boglaev, V.V. Sirotkin

Institute of Problems of Microelectronics Technology
USSR-Academy of Sciences

Moscow District, 142432 Chernogolovka

Abstract - We are interested in numerical and two-dimensional problems. Here we compare

methods -for singular perturbation problems. the perf'rmance of a serial iterative algo-

Iterative algorithms for domain decomposition rithm for domain decomposition and its -paral-

are consided. Numerical examples are presented lel implementation.

for both one- and two-dimensional problems. We 2. ITERATIVE ALGORITHMS

compare the performance of a serial iterative We illustrate iterative algorithms for domain

algorithm for domain decomposition and its pa- decomposition for the singularly perturbed

rallel implementation, one-dimensional elliptic problem
2

1. INTRODUCTION L u(x)5 a2 du =f(x,u), xEQ, 9=(0,1i), (la)

We are interested in numerical methods for

singular perturbation problems. The solution u(O)=u 0  u()=u1  (lb)

of this problem exhibits a fine structure wi- u o
where p>0 is a small parameter. The solutionthin- small regions (boundary and interior
of (la)-(ic) has boundary layers at x=O,l and

layers) -of the computational domain. The tra-

ditional numerical techniques for solving sin- the size of boundary layers is of the order of

gularly perturbed problems require a fine mesh h1=lln(L)i/n. For Simplicity,w
the solution u(x) exhibits boundary layer onlycovering the whole domain in order to resolve
at x=O (the "reduced" solution satisfies the

these 'fine local details. These methods are

inefficient, since the fine mesh is not needed boundary condition (lb) at x=1).
iWe introduce the overlapping decomposition-of

in those parts of the -domain where the solu- tedmi notosboam n
tion as'amodeate ariaion.the domain 0 into two subdomains Q 1 and 9 2:

tion has 'a moderate variation.,),O~~xl. (2
We present a numerical techniue where the '1 tQ en (2)

regins f rpidchage f- he oluionare Consider two sequences of functions -{v'n),
regions of rapid change of the solution are (wn), n:l, satisfying the problems:

localized in space and therefore the refine- L vn(x)=f(x,vn), xEQ 1 , (3)

ment is applied locally (near boundary and in- v (0)=u , v 1

terior layers). The construction of these spe- L (X) =f (Xn), xEQ, (4)
cial meshes is based on mesh generating func- wn(x) (1)=U

tions (e.g. (1]). Except the grid refinement c t

approach, our numerical method is based on do- Te fis one, Al, ite a r alerting
maindecmpostio. Th doain ecoposiion The first one, Al, is the Schwarz alternating

main decomposition. The domain decomposition procedure.Here the boundary conditions Vn, wn

technique provides a natural route to paralle- from (3) and (4) ,respectively, are defined by
lism. 7n+1=wn(,:), _wn=vn(), nk , 5
We introduce and analyze iterative algorithms -, 1h)

(the initial guess V1 should be prescribed).
for domain decomposition which reduce the gi- The second algorithm, A2, is constructed
ven problem to sequences of boundary value using the interfacial problem

problems on each subdomain. This numerical L zn(x)=f(x,zn), XEQ =(x ,x ), 6a)

method is illustrated by solving singularly zn q ) )= ( - W) n.,,

perturbed problems for elliptic equations. We where x<x<x<0 . Here the boundary conditions

consider the case of two subdomains. However, from (3), (4) are determined by

the results given also hold for more general n+ (3), , (4) ar), ndl, (6b)

situations. (the initial guesses wI and are given).

Firstly the problem in the one-dimensional Algorithal is a al prcdre buten).

context is discussed. The same analysis is al- ri h A l ca beried ot by allpro
rithm A2 can be carried out by parallel pro-

so generalized to the two-dimensional case. cessing.

Numerical examples are presented for both one-

522



For algorithms Al and A2 we have elliptic problem

Proposition 1. -If x>x, then iterative algo- ,,2r u a + '_ -e7 (x,y)= (o-l)x(ol),

rithm (3), (4), -(5) converges to the solution- ax2  Oy2

of problem (1) with the linear rate q: u(O,y)=(_,._(I(ry/2), u(l,y)=O, yE(O,l],
-q=p (_)/p-(3E)<1,_ p(x)=sh(mx/j1)/sh[m(l-x)/j1] . uOu_=, Y= =  x[,]

Proposition 2. Iterative algorithm (3), (4), yO

(6)- converges to= the solution of problem (1) Introduce a non-equidistant grid Y=wxX%, whe-
with linear rate q<l provided , 2' n from re co as in ;xample 1, and & is a uniform

(2), (6a)- fulfill one-dimensional mesh in y. The results are
S-presented in 'able 2. Here N =41, N =25 and

(a) x-x->2p/m, x -x2I/m; x Y
or j=21, k-22, .,=(xjlx+l)x(0,1). If we in-

(> plement algorithm A2 on two parallel proces-
(b) if-fL is-sufficiently snail and x-x _

x- .then q(.L)... sors then tA 2/to=.541 (j=21, k=22, KA2=K=4).x -xkh then q=O (g).5

Remark. Iterative algorithm A2 can be genera- TABLE 2

lized straightforwardly to multiple-domain de- KAI 1 o 02_
compositions. 11 h0.01 0-.05 0.1 0 00.5.10.1 59 15 9 *38 04 i0

3. NUMERICAL EXAMPLES 0.05 31 9 6 20 8 6
0.01 7 4 4 6 4 4

We present the results of some nuvterical ex- 0.001 4 4 4 4 4 4
periments using- the iterative algorithms Al

A2-like algorithms can be used for solvingand A2-described in previous section.

Example-1. We consider problem (), where singularly perturbed problems, where boundary
-u,  and interior -layers have a complex geometry.f(x,u)=l-e u, u 0=1, u =0. Introduce -a- non- -

equidistant grid- -x=(x 1 0-5i-5N )-. The subdo- In Fig. 1 we present the solution (for 1=i0

mains 91' 2 and 92 from (2), -(6a) are -chosen of the following problem2- in
in- the forms: x=h11=x, X=x, O<j<k<N x , k-J- j;!1 ,  2 u + uy

x =x- I 8-x' -1, (x?+y 2 ) 2-0.5,

In the-boundary layer [O,h the mesh gene- (x,y)--QE(0,l)X(0,1),

rating function is a logarithmic type function u(x,o)=0, xE[0,0.25], u(x,l)=l, xE[0,1],

from [1]-; We approximate the differential au 0 au
1X= (0. 25, -, =0,C0 yE(0,1].

equation -of (la) by a simple vai'iable-mesh obtainedby using A2-like algorithm.

difference formula. The nonlinear algebraic

systems (after descretizations of (3), (4) and

(6)) are solved by the one-step-Newton method.

In Table 1 we give the results of iterative

algorithms Al and A2 for various g and

overlapping h=5F-x values. Here the number of

mesh points Nx=lOl , j=51 and k>52. KAI and KA2
denote a number of iterations for algorithms uu
Al and A2-, respectively, to achieve an error

of 10 If we implement algorithm A2 on two

parallel processors then tA2/t0=0.525 where

tA2 and to are execution times for algorithm

A2 and for the undecomposed method from [1],

respectively (j=51, k=52, KA2=Ko=
4 ). Fig. i.

TABLE 1

KAI KA211 \h 0.03,10.0510.1 0.01 0.05 0.1 REFERENCES

0.1 33 101 6 26 11 8 [1) Boglaev,I.P.: A numerical method for a
0.05 16 61 4 13 6 5
0.01 4 4 4 4 4 4 quasilinear singular perturbation problem of
0.001 4 41 4 4 4 4 elliptic type . USSR, Comput. Maths. Math.

Example 2. We consider the two-dimensional Physics 28, 492-502 (1988).
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SPECTRAL-FINITE ELEMENT SCHEME FOR NAVIER-STOKES EQUATIONS

GU6-BEN-YU AND CAO WEI-MING
Shanghai University of Science and Shanghai University of Science and
Technology Technology
Shanghai, 201800 P.R.C. Shanghai, 20]800 P.R.C.

Abstract A spectral-f-inite element scheme is and-L 2(Q) respectively, q=1,2,3. On the other
proposed for the lateral periodic and non-slip hand,-for spectral approximation in the peri-
boundary problem of unsteady- Navier-Stokes odic direction, we define for any positive
equations. The "inf-sup" condition is justifi- inee--hesbpc
ed, and the convergence rates are presented. ntgrNhesbpc

I. SCHEME 5N j,<N ~e3 y/a

1) We choose the trial subspace for the velocity
Let Q e-R- be a convex polygon and I = (,21t) . as follows
.L(x y) /x=(x 1,9x )eQ,y l} We-consider()(2 x (3

Navier-Stokes equations as follows Vh,N= - h 5N1 Vh N} th~ SO

{ +(UV) U-+ VP-~V U=-1 I in 1Qx(O,TJ, while-the approximate pressure p is in space

T =0in ltx[O,T], (1) Lh,N= LhDSN)fi 2 f
'(x' ,,) = U (x, y) in .1 -Let t be the mesh size in time t and

where U, P and j0 are the velocity, the ratio 1 t= L u(t+r) - uct))
of pressure over density and the kinetic vis- 5t) IVr
cosity respectively. f and U 0 are given func- The spectral-finite element scheme for sol-

tions with the period 27t for the variable y. ving (4) is to find the pair u~t)-eV h,N and
We consider the '-Lzz.J per-iodic and non-slip p(t) e-LhN such that
boundary conditions. It means that -) )+J t +S u( )'u ) v 0 )U(x,y,t) =0 1 -for -x-e-)Q, y-eT ~t, J( uut) utt tV-(p)

U (x, 0,t0= U (x, 27c,) 0 f or x e , (2) +8Orp'(t),V-v) +-)( V(u(t)+0'-tu (t), TV)
Ix,O,t)=P(x,21E,t) , frxeQ-. =f Ct) v v1v e Vh(5

In addition, the pressure satisfies the nor- -((tw I ~~t+~tt) )=0

M(P) -J,,P(x, y-,t)dxdy= 0. (3) weLhN

Let C'(J) be the set of infinitely differen- uO)ThN C)=0

tiable p functions with the period 27t for the where 9, 9 ,O0 and 0)1are parameters. The

variable y. H"(1ft) is the comple-tion of C'(fJ) parameter P3>0 is artificial compression coef-
in H~(ft) and p ficient (see [1) 1 , saprojection from

inW'ft ad 4(A =H" L2(I'1 0 Q) (11 .f) 3  [']'tovN. is

Furthermore 0 ON )(1p~f ]it h,N

L()=J w we L (Rt) / M(w) =-0 II. "INF-SUP" CONDITION AND CONVERGENCE

*Let (. ,.) be the scalar product in L2(A) and Fo cnvieew inrdefrsl svra
define Frcneine eitouefrtyseea

1 1 non-isotropic Sobolev spaces. For r,s O,
J ( u150, V ) ( C-V)u,)-- (9-7)v, U ) . r~s(ft) = L2CI,IlrCQ))flhIII,L 2C)

The generalized solution of (1-3) is the pair equipped with the norm

U~t) e C Ill,(ft ) ]3 and P(t)-e-L2 (f) such that 1112 11,1~) ht{S2 Q) 1/2

(t) IV v+ JCU(t),U(t),V) - (P(t),'V-) L(~fQ s
bt 1 3 If r,s 1 _ we define also

+ 0 ( VU~t), Vv) f C (t), v), I -ve[IH0 (ft)] M Mr~s~t) =ll CI,1r(oCQ))fllls ll,n~() A Hr-smfl

(VIJ(t) ,w) =0, weL2 (ft) (4) with the norm2 2)/
U O) = U0 * llVH's( = ( 1,12l.l + 0. 1 - lQ) +0 11 1/(Q 2

Now, we construct the spectral-finite element Q/
scheme. For finite element approximation in r~5 Q i h omltono(,,lA 2 I~l()

the non-periodic directions, we supposeihat{h inMP 0nBsds edeoeb 1 1adI
is a regular fami1) of finite triangulations inM C) Bedsw dnoebI. ad

of Q. Subspaces V~q) and Lh which are compos- the norm and semi-norm of 111(ft ), and ltW 0 ~
ed of continuous piecewise polynomials in Q, Next, let V =C -,--) and V hV hDV h
are finite dimensional approximations to Il (x 7 a x2  h '

O(Q) We give two assumptions for V h and Lh as the
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following: (4) and (5) respectively. Ue(O,_;'M
r's()

(ilL): Vh a' 1 satisfy the two-dimensional
"inf-s," condition, i.e., t here exists a con- Af H2(,T;L(ft-) ), Pe-C (O,T;Hr-H s-l))l-|l

42] p
stan C(3 $0, independent, of h, such that (cf(2]) T; 2(1) with r>l and s>,l. If the follow-

xh , 4h )L 2 M ing conditions are fulfilled,

Sup-2  >1 1Vh1 1 (i) Assumptions (ill) and (h2) hold, and h<!;
mt(Q nl11 Q)N'

1h( ) J/hiIL2(Q) (ii) -*> 2 2 T - 2 2 -1

tV, e V or 0  + '+e-zee ;
({i) there exist Co4T and constantC>0

(112): There exist k 1 and C>O such that for such that

r>2 and = min (r,k+l)= such that

in (<C lv - , U(O)-u(0)I1+,l , p*(O)p(O)2+ Cr= ,tU )-

"fq--) __h- <= h VtVh

h h Hf (Q) 1 2 2 t (tl2
_Vve~lr(Q) , (1 q 3),_ aUbt +u(v)-u( 1 )If t(t) I I +p IPt(t) 2)

inf hV hl 2 'K Ch v l1 , < ( ( 2+N2)-3
2 t-il

VheLh - VhL (Q)Q) then for all t<t O ,v e- ,
r -

1 (Q).

With the above two assumptions, the three- IU(t)-u(t)l +I lP(t)-p(t)l 2 +-- (2IU(e)-

dimensional "in-f-sup" condition holds for Vh,N u(t:) 2) C (_P +C 2 +h2(F7-).+N2(ls)) (7)

and L hN.
Remark If =0> >1 , then we have (7)

Lemma 1 There exists a constant P>O, inde-
pendent of h and N. such that olds for T

( V-v 4.t)sup .-lvl 1  ' Vv eVhN References

MeLhN [1] Teman, R., Navier-Stokes Equations, North

By Lemma 1 and an error estimate of the com- Holland, Amsterdam, 1977.

bined spectral-finite element approximation [2] Girault, V., Raviart, P.t., Finite lUenent
derived from(H2), we obtain the following Approximation of the Navier-Stokes Equa-

r-esult. tions, Lecture Notes in Math., No.749,

m 2 fxr- s-1 Springer-Verlag, Berlin, 1979.

LrsI ^() x(HD) [3 Guo Ben-yu, Scientia Sinica, 28A(1985),
p 1139-1153.

with r>l and s>1
-, is the generalized solutioa

of (4), ((U t),P(t))-e Vh,NxLhN is its 1-t.-.kes

project-ion, i.e.,

(V(U(t)-l()),Vv)=0, I veVh, N
(6)

(V.(U(t)-_U( I)),w)=O , w eL

then

u()-u (t) l +-IP(t)-P(t)1

.<C (h- 1 +N IS) (dU t)l Ws( + I P() 1 ( )

Lemma 3 ( Inverse inequality) There exists a

constant C0>O, depending only on the triangula-

tion IChI, such that

vII < (Coh 2+N 2 )hv- 2 , 1 veVhN

In order to get the convergence rates for the
numerical solution of (5), we need only to

estimate IU*(t)-uCt)ll andlIP*(t)-p(t) , where

(-U(t),P (t)) is defined in (6). By a similar

aaalysis to tkat of (3], we can establish the
convergence theorem as bellow.

Theorem Let (U,P) and (u,p) be soluLions of
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DETAILED NUMERICAL SIMULATION OF TWO-DIMENSIONAL IGNITION -PROCESSES IN 11-02 MIXTURES

U. Mans, J. Warnatz

Instittitfur Technische ,eibrennung der bnuversitat Stuttgart, Pfaffenwaldring 12, 7000 Stuttgar ,80, Federal Rcpubho. of Geriiany

Abstract following tile kinetic theory of gases and using the Curtiss-lirsclifelder ap-
proximation [3,4]. Thus, the transport coefficients depend non-linearly on

- New numericaimethods for the solution of stiff-partial differential equt temperature as well as 1MixLure uvlipvsti.vhi. "I iiroj,,d i.vjcit.As,

tion systems together with the availability of fast computers with high tol namely specifiLenthalpies anid hc at upai. i, h dtpo,1.d uit LciriLrdl.ui
age capacities now allow &he globally implicit simulation of instationary and are computed fruit pvlyvii. al filt of Jd,*d Iiii L,, JASAI" tLIs

combustion processes in two space dimensions. Computations of ignition

- processes in hydrogen-oxygen mixtures are performed-by solving the cor- The chemical reactivn mehanism usud frt I,.ii .iul..,fLi" a nmidued

responding conservation equations (i.e., conservation of mass, energy, mu- ignitivn of a hydrogen-vxyguit irix.ule -iAis vf 37 j.Lnitai. lea tihs

mentum, and species mass) using a detailed reaction mechanism (consisting [21, necessary for a detailed desiripuini J, tlt. v i w s .h ti,c

of 37 elementary reactions) and a multispecies transport model. Thermal place during the ignition process

ignition is simulated-by an additional source term in the energy conserva-

tion equation. Spatial discretization on a structured two-dimensional grid -For the simulation of laser induced ticrial igii iwi u, a ljdiogcn1 oxygen

that is adapted statically in two spatial directions leads to large differential- mixture (shown below), a source term is 1.itroduccd into th energy conser

algebraic equation systems which are solved numerically by an implicit ex- vation equation The energy density is assumed to decreae in axial direction

trapolation method. Results are presented for the simulation of a laser- and-to have a Gaussian-like shape in radial direction (sec [6) for details)

induced thermal ignition of a hydrogen-oxygen mixture in a cylindrical re-

action vessel. Due to the principal nature of the problem considered, appli- Transformation of the two-dimensional conservation equations into La-

; cation to many other problems seems to be possible, e.g. supersonic flow, grangian coordinates cannot beperformed as easily as in the case of one-

chemical vapour deposition, atmospheric chemistry etc.. dimensional geometries, mainly due to the distortion of the grid-point sys-

tem (7). Therefore in the approach of this work, the two-dimensional insta-

tionary conservation equations are solved in Eulerian formulation, taking

Mathematical Model into account spatial and temporal pressure and density fluctuations.

-lathematical simulation of chemically reacting multi-component com-

pressible flow is performed by solving the corresponding system of conser- Solution Method

vation equations (Navier-Stokes equations) which may be written as [11:
The partial differential equation system describing the reacting flow con-

-= 0(1) sists of n, +4 partial differential equations (continuity. momentum, energy,
+ div (p and species conservation equations). Together with the boundary conditions

it forms an initial/boundary value problem which can be solved numerically.

- + p i grad w, + div j'= w,M, (2) Several properties of this partial differential equation s.stem require special
solution methods. The main problems are orders of magnitude differences

+ grad P + div f + div (p 6'o v) = 0 (3) in the time and length scales, and in particular the stiffness introduced by

the chemical kinetics.
-ph OP +-div (ph)-i6Tgradp+divY + :gradi7=i (4)
at 0t Spatial discretization on a rectangular mesh using finite differences leads

with P = pressure, T = temperature, n, = number of species, wi = mass to a system of coupled ordinary differential and algebraic equations which

fraction of species i, Mi = molar mass of species i, w, = molar scale rate of can-be solved numerically by an semi-implicit extrapolation method [8,9]

formation of species i, h = specific enthalpy, p = density, 6 = velocity, f = Due to the large differences of physical length scales (here particularly vessel

heat flux, J. = diffusion flux of species i, I = stretch tensor, q = source diameter, flame front thickness, and diameter of tlie external energy source)

term for deposition of energy, t = time. adaptive gridding has to be used. In this work, the mesh is adapted statically

in radial and axial direction, using a tensor product grid, i.e. a structured

The equation system is simplified by restricting the problem to two- rectangular mesh. In the present computations, a 50 ,. 40 mesh is used

dimensional geometries (infinite rectangular column, finite cylinder). For Details of the adaptive gridding procedure can be found in [10]

cylindrical geometries (considered in the example below), there are two dif-

ferent boundaries, namely the axis of the cylinder and the vessel surfaces. Standard central difference approximations for the convective terms of

Along the axis of the cylinder symmetry boundary conditions are used. The the conservation equations can cause severe numerical instabilities ("over

outer boundary conditions (i.e. those at the vessel surface) are simplified by shoots") in regions of high gradients and curvatures Therefore. these terms

assuming non-catalytic, adiabatic walls. Nevertheless, other boundary con- have to be treated differently Coupling of the discretization scheme to the

ditions can be introduced easily in order to account for interaction of surface flow direction by use of backward-and forward differencing, depending on

processes with the gas-phase reaction, as was shown for one-dimensional ge- the direction of tie flow ("upwind differenciig") has Lit disadvantage that

ometries [2). the accuracy of the difference approximation is only of the order of the grid
point distances. This leads to a large amount of numerical diffusion . -1

In order to allow a detailed description of the underlying chemical and thus to the flattening of steep gradents Es1,c,.ally ., tc sim..ato,. f

physical processes, detailed transport as well as detailed reaction models reacting flows, such steep gradients are present in thc ratin zones to g

are used. Transport coefficients are computed from molecular parameters, flame fronts), and numerical diffusi-n vuld fils i tzr rsilu rrmarkabl,
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'ilhe approach used in this papeL is based on-thc idea to use central dif- PLP) It -I. .tc s. I.. i. -c

ference approximations -whenever- possible and-a modified upwind schemne.
based on inonotonicity -preserving-interpolatio., otherwise. It is dlescribedi
in detail in [10].

Another problem arising in Lte numerical solution of tic partial-diffcr--
ential -equation system is the resolution of shock fronts. In-order to a'wid
severe numerical instabilities resulting if the shock is not resolved by-thle 0

mesh, we apply an artificial viscosity term ("numerical diffusion") proposed
by Richimiyrr and Alorton (see [7]) which spreads thle shocks over a small .~ wr ~ *nm.-

number (typically 3) of grid points.

The system of ordinary differenitial/algebraic equations- (resulIting -after
spatial dicretization)- i s solved using the semi-implicit extrapolationi .QdL
LIMEX [8,91. The Jacobian matriA ~required for thc numnerical solutivin I'Ls
a block-nonadiagonal strutture. The dimenbiunt of the J,,obiant is gi~clla 6v
ll~d~nln., where ni~ is- the number of grids in thme radial, n,, the number, -w .acs .

of grids in the axial directioii, and-llpde the number of partial differential
equations. For the example shown-below, the dimension of the Jacoibiaii ft. cca.' ., ."0 1e -'c-

is 26000. The computation of the Jacobian is-performed-numerically b%
difference approximation. -In order to evaluate the Jacoblian-iii a time saviiig
way, use is-made-of the block-noiiadiagonal structure [10]. Due to the
large dimension of tie-systen, the solution of the linear equation bsstmit,
(required by-the time integration method) has to be performed by iteraa~. '

methods (see [6,10] for-details).

Thc simulation of Ltme hydrogen-oxygen igniton (see below) takes about
50-hours on-an IBLM 3090; the code contains about 30,000 lin-s writteni iiin * ,,'tu-

FO RTRUN.

Results *a

As an example for the simulation of achemically reacting flow. the model
described above has been used-to simulate a spatially tuo-dimcnsional ig- ~
nition processes in a hydrogen-oxygen system with cyliiidrical geometry. -

In order to simulate induced ignition by a laser beamn, thermal ignitioni
is induced along the axis with a decreasing energy density- (absorptioii of A

energy).

Spatial profiles of temperature and p~ressure in thme reaction .sdat I ps,
i.e. just after tile external energy source has been turned off, canl be seen iii-

Figure 1. The ternperature profile directly represents the spatial dlistribuitioni
of Lte ignition- energy density. It decreases in -axial as well as iii radial ' .~'-'W *'tS

direction. A-similar- behaviour shows thme pressure, becaue Lte heating
period is too short, (I ps) for Lte pressure to equilibrate all1 over thme reactiomi
volume. Thtus, the pressure increase is approximately proportional to t~me
temperature increase. Thme temporal development of thmr igamitmiw I roc.-1 in. -

shown in Figure. 1, too. At the outer bouandary of tuIn-i mmmil t,.
pressure gradient causes the formation ofa shock %a%-: mumrming anl tie raa'i '~

direction and a rarefaction wale nio in towards the. cyhmider amm. Aftm i
-lie shock wave has reacied the vessel surface (after =:-1Its), it in' rfllsi,d

and form a cornerging shock. Ignition (rapid temperature ri'.e) oceur-
after a short induction period at locations where the nionat of eiwr-
deposited during thme hecating-period was high enough. Subsequently the.

flame front formed is moving in radial direction towards the outer bjouindar%
Siulanouly teflame propagates in Lte axial threctmom: (in orlmo

Different induction times (depending onl t~me localtc iprur I.ac...'\\

successive ignition along the axis, aiid at the s;eine time- arilr1u a.- *'n '

propagation takes place.
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Conclusions

ft-is possible to simulate ignition pvrocesses in hydroh-rn-oxygeui mixtur-
using detailed chemistry and multi-species transport for tsvo-diicrnional ge-
ometries without simplifications like using a constant density approximation
or the uniform pressure assumption. Operator splittinig (which i4a .1 t
tial source of unreliable results) is avoided by using a fully implicit iur-tlod.
The method can be applied to even moyre complex reaetion systems-

Because the hydrogen-oxygen )ystem is an example for a chain branding
ignition process, it allows an understandling of the coinlex intrr6wti'-i .4
chemnical reaction and flow in systems of pratia mrtcr

Furthermore, the methods drscrihl in thisL p~aper. .tlI'wr arnill-ji

af reactive flows other thtan those in combustion proliin (r iip.r-iv
flows, chemical vapour deposition etc.).
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PLANE COUETTE FLOW AS-A TEST CASE EFOR-PHYSICO-CHEMVICAL.VMODEL STUDIES
IN HYPERSONICS

G.S.R.SARMA
MLR, Institute for Theoretical Fluid Mechanics
Bunsenstr. 10. D-3400 G36ttingen, Germany

Abstract- Iis h)pcisuiik flu%5-vf ..urreniand future cchriviugicw. prciinikriaiy resuLs based urn-thcsc, and murc-gcnca& -mudcl and
initerest-complex reactiic-diffusive procsses occur in high-temiper. data for Jissotrating-nitrogeun atnd oxygen from L31J - [91.
aturc -multicomponent gas mixtures. The Couettc flow lends itself
as a -convenient- tool for testing thc admittedly complicated physi. eoropuri Bocary co Ii-1 M8 Q
co-chemical models needed to understand and analyse such proc-
esses. In view- or its simple geometry both the physical and math- u
cmatic~al aspcts of the required mnodels c.an be £nbestagaLcJdthiuu~k ,-i 8.I1025 .caiaiyiiCWsb
extensive and -inexpensive parameter studies. Since the configura- CMoG6r.0=T,1
tion has somec-features of both external flows (boundary layers on I A2.X -. A.A+X 6 1B.e. 2 Iioaerul On-YUC waft5
vehicles) and internal flows (in ducts and-engines) such-model stu. ~odY=0.Y=0.6
dies yield information relevant to realistic prototypec configurazions. -- To Bc 3 to2IWf.4Ctea L t 2 Y ci= 0It~~M4XC isrnuacXocetilyle Wanl y = 6

Iishoped thereby to contribute towards an understanding of the dTtdyzdaldy=O.yz0.6
complex interaction of-the various physico-chemnical mechanisms
involved and their relative importance so that some tractable Fg iscaigdatmcgsi oct lw
models and simplifications for numerical-and experimental studies Fg.IDsoitnzitmegsi oet lw
can be-identified. %%Vc illustrate our current approach through a few
typical-results or such studies for-dissociating nitrogen and oxygen. HI. PROBLEM rORMuLtIKON AND SOLCTION

NOMEiNCLATURE Mig. I illustrates the-configuration and boundary conditions L;:4cr
consideration. Wc set up the general problem of a diatomic-gas

-Symbols undergoing a dissociationfrecombination reaction in a Couette flow
a = molecular sound speed V'~j,M, ,IZ c,~ specilii. heat at without assuming constant Pr and h. as was done by, larke (3].
constant-pressurc, h specifu. enthalp). k, A,. Ji ssovciatior and It consists% of a systcn-. of coupled nonlinear ordinary differential
recombination reaction rate constants, A., %j -A,,at 1.. equations with associated boundary conditions, The reles ant
p = pressure, D specific dissociation ecrg). D,. - binary boundary iialuc problems tieglcting Soret and D~ufour effects
difrusion-coefficicnt in at nivlculc mixturc, K thermal [~r, 5]) in dimensionless form are stated below. U. 6. 1- andi other
ductivity, Mt. Ms~ = atomic, molecular weight. TI temperature, quantities (e. g. jas. Ks-etc~j evraluated-at T_, are used as reference
T,, T, = ."aractcristic. temperaitures for dissaciatiork and Values. Mathcmaticaih, the problem retains the essenitial nonlinear
Vibration; T. I)P~,. C = rclatiic speed tx rccn the plaes, features arising from thec phyjsico-chemical processes of interest in

2= universal gas constant, a - speci oriccritration. .5 hypersonics We solve the boundar) value problemrs by a multiple
distance between parallel plates. q~. - cmpeicraturc expuncr.t it, shooting method in the general case using thermnophysical data
reaction equilibnium constant K,., I adiabatic exponent .,-. from (5] - [8] and byi Newton-Raphson iteration in the special case
P= dynamic viscosity-, v = kinematic viscosity; x t thermal di. of chemical-equilibrium (3].
fusivity = Klpr',; p -densit; 0 = TIT.: T shear stress; rr
flow time sce: r, =chemical reaction-time scale Momentum:

Subscript p4 a , ozsan I
0, %v lower mall; 1--uppecriwall (temperature) and atomic Species: P
2_* molecular species; rel- reference quantity.

Dimensionless parameters Energy:
Darnk~hler number D~am kIj'Z.T4 ulews nuns- KdT ' DI, dis
her hec D,,..ir Mach number Aha.= [ ~a.. Prandil number Pr - dit T 0f+ cc) 111
'lIK; Schmidt number Sc - r'Do 2  Pr! Ie. Nfu (2)

I. INTIRODUCTION + EP N- e-nissrar

In viewv of the resurgencc of interest in ;iyp-snnies for spac
transportation systems the basic acroilhermodynamnic problems or pcis
high -temperature gas dynamics are under intensive study in order
to assist the R & 1) efforts for an cflicient and ecornnmic design of D~ 6,; Damn 2412,l.~( a,)I
the proposed prototype configurations. The challening newr If I- )4'( + ag j
aspects involved in the flow fields. in these configuratio.-t are T I
related to the multiconsponent reactive-diflusive gateouc mixtures
pre.sent around the vehicles and in the propulsion systems (I]. [2]. 1.-2
Since the fundamental pltysico-chemical processces occurring in (I - apr'r r x4-wil
these configurations are highly complicated and depend on a large Wc may niate that k,. and k,~ arc in generl diffrent dependaing on
number of uncertain and incomplete setc of experinmental data and thctayi leenroteatmad oeueasheepcie
theoretical modeL-it is felt worthwhile to investigate the effect- of CArso ate Le. rA n1 )
such inputs on some global quantities or rractical interes such as roPateMC. Ae ,inFgiX
beat transfer and skin 1fic-tion at the ichickall In thi% -exs' ftpicad thcmruaand Khma.liundars cndiiiv'us arc i.nJnate-A In
hypersonic Couette, flou. I,% unders srisstigatoa-rt in parrcuiai to Us&. 1. Hth iw.-&hp c.;nJawcn holJ& In each casc- mnl 0 at
iu'entif~j the cffecs of transport property camttont. reaction rate Z01 I .
coefficients and boundary conditionc- The pinneering wo~rk of Th i-n*nc gremroups i7z~m r efndM
Clare (3] on Cotiette flnw was based tin ani-htiualiv trseflul-)eri, boeael~hd
approxitattons such as constanr Prandrl and LcwisC numbers anid p- C F
laighthillrs ideal disstociating sas (llG) modiel (-31 and other I),1 Ir ar, G,
assumptin regarding tr'.nsoIt ropertims We ptesent fic~ sonmeW:, ~ 1.. ~
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G .is related to the dimensional equilibrium constant S in the general case have been discussc in [10], [11] under b. c.
I (with U = 3.5 km/s, p = I atm, 6 = I cm, 7 = 1000 k). Tile

K= CTY'cxp(-+n/7) (4) profiles of T and cc indicate that temperature and concentration

by the-equation maxima can occur in the interior (and not necessarily at the hotter
wall). This is known to occur in hypersonic boundary layers [12].

KJ(7) = (pG.l7,'l.)T cxp( - '17). (5) In fact it is-even present in Couctte flow at lower speeds 1 13] and
is due to -viscous dissipation. The temperature maxima move

The specific enthalpy of the diatomic molecule is taken to be [3], towards the-hotter wall with increasing applied temperature gradi-
[4], [8],-[9] cnt as molecular energy transport dominates viscous dissipation.

r The velocity profiles deviate slightly from linearity- essentially due
h2 = - + Fv(7) (6) to compressibility. A steeper rise in heat transfer rate is noted at

Al2  2 v ' temperatures (- 2500 K for-oxygen and - 4500-K for nitrogen)

where where appreciable dissociation begins. This is due to tile availability
of more energy carriers, so to say. The skin friction S on the other

o T__T hand is not significantly affected by dissociation and increases
b(7 )= {exp(7T17) - 1) (7) mainly due-to the viscosity increase with temperature (nearly linear

velocity profiles contributing little to this increase).
is due:to-the harmonic oscillator vibrational energy of the molecule
and ,ontributes accordingly to molecular specific heat e2 and B. VibrationalContribution
conouctivity K2 [ 3] - [5]. In Figs. 2, 3-we show the results-of a comparative study of models

F(T) 1n eqn. (2) represents-the-ciithalpy difference for the ibrational Lontribution to the heat trausfer and shc,r stress
7) '[" 5v for nitrogen (Fig. 2 (a), (b)) and oxygen (Fig. 3). In both gases

(h, --h2) = D .F(7) . + vibrational modes are activated around 800 K but oxygen is fully
(8) dissociated by 5000 K when nitrogen starts dissociating appreciably

(7/To) 1 [12].The relative differences DII, 1)S (= absolute difference/ mean
ep )value) in heat-flux 11 and skin friction S induced by the choice of

Icxp(Tl 7) - 1models and approximations arillustrated in Figs. 2, 3. The refer-

IDG model [3], [4] is tantamount to assuming Fa(i)= 1/2, ence values arc those from the full equations of §11. The i1)G
= OF(T) 1, and G. equal to some average value via a preas- model and three ofits modifications arc consideredlicre. In all themodlilicatiorls c d = 4oM 2 (IDG value). Il modifications two and

signed constant po, [4]. three the equilibrium constant is-that of IDG i.e.

IDO IDG-m-odification K4= exp( - cach with a differcn (constant) Pn.

7 *v K 71, K PD g1cm 3 P1(?,) gicn 3  7,, K

Nitrogen 3395 113261 130 137.4 2698 In the first modification
Af2 =-28 hl - h2 = D (i.e., T> 7)
M,=14 _____

Oxyg-n 2275 59355 150 170 1807 and K, has the experimental (dimensional) value [8], viz.,

M =-32 K = CT'I exl( - 7*1/ 7)M, =_16

In the second modific'ition

Table 1. -Characteristic reference values used in the calculations. .7, / T .
(Data based on values given in [4], [9]). (hi - h2) = 1 4- 7) PI, = PITn)

Ill. RESULTS AND I)ISCUSSION i. e., vibrational contribution is averaged withmo neglecting 77i,

A. General Model and in the third modification

The predominant influence for the cases considered by Clarke [3] .7 / 7',
(to be discussed later) is that due to the variation in Lewis number P., -Pt,), h, - h2 = , 1 -,.

and thereaction rate coefficients. Variation of Pr in the temper- 2

ature range considered is not signficant. On-the other hand Le can Tlhe interest in the last two modifications is that the main assump-
vary by more than a factorof two as a function of temperature and tion in Ii)6, viz., F,(/) = 1/2. happens to hold exactly at the
atomic concentration. In general we do not assume Pr and Le to temperature 7, wherPI has its relative maximum [14J. Ii)( uses
be constant. We solve eqns. (I) -(3) using the mixture formulas a (smaller) representative value ofmp xu [3], [4j. We sue thatste IG
[5] -[7]for transport coefficients and reaction rate coefficient data model is quite good for oxygen (lFig. 3) and the relative difference
from Wray et al. cited by Vincenti and Kruger [8), so that we have in I I actually goes through zero at temperatures where the vibra-
a standard dissociating diatomic gas in chemical nonequilibrium. tional activity in oxygen is overtaken by dissociation. lere II)(
Furthermore (assuming thermal equilibrium) we include tie vibra- overestinates the hcat transfer tip to - 2800 K and understuates
tional contribution both to the molecular enthalpy as well as spe- it at higher temperatures. But for nitrogen (which is vibrationally
cific-heat. The ideal dissociating gas (1l)G) of Lighthill (4] model active even at-uhigher temperatures) the IDG model is improved (ef.
assumes that halfthe vibrational states are excited and also that the -DI I gets smaller) in modifications two and three (1ig. 2 (a)). IDG
equilibrium constant for the dissociation/recombination reaction is consistently underestimates 11 for nitrogen even for 7000 K. The
such that a-characteristic constant density p, iclated to the atomic deviations among tile different modifications manifest themselves
species concentration a, at chemical equilibrium can be defined at temperatures where appreciable dissociation begins (i1gs. 2
by (a),(b)). Oxygen also shows this tendency for DII (Fig. 3).

(I -icq)/D.tq = (Pip,) exp(7,,J7). (9) The difference in II both for nitrogen and oxygen is a few percentin magnitude but is found to be of opposite sign. Macroscopically
'his-p 0 is a function of temperature in general and has a rdativc the representation of vibrational energy is subsumed I
maximum at a temperature 7, < 7 [4), [8]. involving the ratio 7j7,, (cf. eqns. (6) -(8)). hlence the above dis-

Profiles of velocity, temperature and atomic concentration i( tinction between the two gases is to be attributed to the large dif-

variation of the lcat flux peto the colderwall and thle skin friction ference in their respective dissociation temperatures (cef. Table 1).
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20 - Under b. c. 3 thc dmmcnisionaL-va I tis of-the global quantities 11, S,
C3 and -temperature T(I) at the-tipper insulated, nonca-talytic wvall and
WA m()a()were computed [I I] as functions of thc lower wall

-zOiF~TOI temperature 7'. up to 1000-K. Since the- lower wvall quantities are
-U uscd-in- our nondimcnsionalization the computed results in dimcn-

1 0OIFICkTl0N N2sionless form are not easy-to-compare in-this case. I entce the actual
- ----- D 11OO1IlCkTION N I dimensional values were used. hleat transfer, skin-friction an- 7,

-(b) w -HTH Itt-)--- are found to increase with T. alnost linearly while thec-con(,cr-
tration~ratio varies very steeply in view of the -negligible -atomic
species-concentration at t;,e low T. values [11]).

M % ,- - D. Transport coefficientsXF
CQ_ We now turn to the special case [3) of chemical equilibrium under

b. c. -1 -to illustrate the cffects~of tranport coefficient variation. We
0 - '-regard- here Pr-and Le as dimensionless representatives of diffusive

________ - tranport. It may also be noted that the- equilibrium case serves as

C =60 ja useful upper bound for estimating hecat-transfer and wvas also used

____ 16-
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tT mertr
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as such in Space Shuttle comparisoiis .12]. Setting Pr = 3j4,y = dtfferenCes for oxygen in I! (1 ig. 5(a)) and, I,,, (rig. 5(b)) as
413, p = I- atm and assuming A, vr as in [3] we conipute th. roi,.tions of Le and Ma. kvith refcrence-to tile equihbrnm constant
velocity and-temperature profiles for given a1,4(1) at equilibrium. in terms of pD used in the I DG model [3] and that of Wra) ct al.
We observe that a,,() in the flow field is compatible with the kited by Vainenti and Kruger [8]. As alrcady mentioned, the equ
catalytic wall-n b. c. 1. Clarke showed-that setting constant-valucs librium oncentration in the general case s gi vu in Lerms of G.
for'lr and Le considerably reduces the nonlincarity in thc problem by
and allows-integration of the (modified) eqn. (2). In the equilibrium
case he uscd-thc I)G model for as,j whereas we test other models
as well. Fig. 4 (a) shows that the heat flux in contrast to the skin G (qibum +t

- exp( - 7D/') (10)
firiction is quite sensitive to variations of Le, especially atlower t (equihbriun) = 4 + G7(l< +i exp( - Tn/')
Mach numbers. Skin friction shows a slight dependence on le at
high Mach numbers. Although both1 I and S increase with Ala as I he dilferenLce are a few percent here and arc foud to bccen
to be expected their variation with Le is different. The latter dif- smaller for S and b,,_. I hus the li)G model is in this sense quite
ference with respect to Le may be interpreted as due to the-role of useful especially for oxygen.
diffusion (proportional to Le). Diffusion of species increases energy
transport and- also tends to equalize momentum, i. e., to reduce IV. CONCLUSIONS
velocity gradients in the fluid layers. Thus with increasing Le-skin ID(y model offers a numerically acceptable approximation for
friction is reduced. But this effect is-only slight and confined-to the nitrogen and oxygen for heat transfer and skin friction but the
higher Mach numbers. intrinsic differences between the two-gases are nevertheless quali-

As indlicated-in the inset of Fig. 4 (b) temperature overshoots, ie., tatively discernible. Although the computations tested specific

temperatures higher than at the hotter wall, can occur in the flow assumptions and approximations ii particular examples the results

field. In Fig. 4 (b) we show the maximum temperature I,,, and the shown in the simple cases considered illustrate the feasibility of

corresponding U,,,, as functions of Ma. and Le. Variation of UI,,, assessing various physico-chemical-models and role of parameters
shows (since velocity profiles are almost linear) that 7,, moves with regard to their influence on practically relevant quantities of

towards themiddle of the flow field-at all Le. Thus temperatures interest in hypersonics. Such efforts should prove especially valu-
at Which iization and raditon wouldbecome iportant factors able in optimal use of experimental and numerical efforts throughfor electromagnetis and heat transfer e. g. I,,, 10000-K at identification of trends to be expected and selection criteria-for

Ma= 18) can arise in the flow field. Under such circumstances the useftil models. In view of the relative simplicity of the configuration
basie problems-have to be reforniulated appropriately. It is found geometry efficient numerical means cain be devised to analyse even
that the temperature overshoots-start to occur in nitrogen at lower elaborate and-complicated physico-chemical models.
Ma. than in oxygen but are then overtaken by oxygen at higher
Ma.. This has corresponding implications for air in which nitrogen
is-the more abundant componeit. REIERENCES
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INTERFACE MORPHOLOGIES DURING LASER MELTING OF THIN SILICON FILMS

S. R. CORIELL and G. B. McFADDEN and L.-N. BRUSH
National Institute of Standards and Technology Department of Materials Science and Engineering

Gaithersburg, MD 20899 U.S.A. University of Washington
Seattle, WA 98195 U.S.A.

ABSTRACT - Thin silicon films on a cooled substrate are often
found- to develop-highly nonlinear interface-morphologies upon ra- Steady solutions tu the nonlinear governing equations may be ex

diative heating. We develop a boundary integral representation of pressed in-terms of boundary integrals, which also provide an accu

the thermal field, and obtain numerical solutions for nonplanar solid- rate and efficient computational procedure. This effectively reduces

liquid interfaces, the dimensionality of the problem 2om two to one, and allows the
calculation of interface shapes that-are not .asily expressed as a

I. INTRODUCTION single-valued function. Implementation of the boundary integral
technique for the treatment of arbitrarily shaped interfaces is facili-

Radiative heating of silicon is an important processing technique tated by using a relative arclength representation for the solid-liquid
for:silicon wafers, especially formaking silicon on insulators which interface. We set e = SIST, where s is the arclength along the inter-
are dielectrically -isolated from a substrate, and also for-annealing face and S is the total arclength of the interface over a full period.
of buried layers-created by ion implantation. Two-phase mixtures We then-describe the interface parametrically as the set of points
of solid and liquid silicon have been observed to form during the {z(e), y(e)} for 0 <e -< 1; the functions y(e) and js(e) - ej are both
laser-processing of thin silicon films on substrates such as fused sil- periodic functions of e. Given an interface shape, the temperature

ica. Furthermore, it has been observed that the morphology of the at a point z' = z' + zy' in the liquid can be written in the form
interfaces separating liquid and solid phases may either be planar or
corrugated, depending upon the values of the experimental param- TL(Z')-= JL(Y - WL) 2 + , iL() 5)ds, (5)
eters. The experimnental results-for the two-phase silicon mixture o
appear to be fully consistent with the fact that liquid silicon has a
higher reflectivity than solid-silicon. Upon heating the silicon-layer where
above its melting point, supercooled liquid can form adjacent to GL(zZ') = 1 logI sin7.(z -2)1 + IlogIsin (z -
superheated solid silicon. This thermal configuration gives rise to , lo
a two-phase mixture,-and leads to conditions under which planar is a periodic Green's function withreflection symmetry about the
solid-liquid interfaces within the mixture become morphologically ine peri; hree i on ie n bymmeryabout-the
unstableline y = L; here the image point z is given by z" = '+i(2 -Y')In this paper-we extend the linear analysis byurtze and Jackson The normal derivative and the integration in Eqn. (5) are performed

[Journal of Crystal Growth 71 (1985) 385J for a periodic array of with respect to the unprimed variables, and s is the arclength along

silicon lamellae, and develop a numerical technique to treat the fully the interface curve - over a single period. The outward normal to
nonlinear free boundary problem. the curve -y is given by the vector (ye, -2z)IST. The unknown dipole

distribution (7L is determined by theDirichht boundary conditions
II. NUMERICAL METHODS AND RESULTS (3) for TL. An integral equation of the second kind for L is ob-

tained by letting z' tend to a point on the boundary y; this equation
Jackson and Kurtze consider a two dimensional model for heat is discretized and inverted to give an approximation to the dipole

flow in the film consisting of twc dimensional diffusion-equations distribution aL. Having found aL, we compute the normal derivative
with source terms that result from the imposed heat fluxes J through 4TLi4On required-in the conservation of heat condition at-the-inter-
the plane surfaces of the film; in each phase the source term is taken face, Eqn. (4). A similar procedure is used to compute 8Ts/8n. In
to be a constant. The diffusion equations thus assume the form general, for arbitrary interface shapes, the heat flux equation is not

1 'TL _2 9TL 8
2 TI, satisfied, so iteration of Eqn. (4) using Newton's method-is applied

__ _ _ - 4- - - JLj, () to find the-unknown interface {z(e),y(e)}. For each updated guess
L + 07yof the interface shape,-the entire integral equation solution method

for the liquid phase, and,-for the solid phase, is repeated in order to find new values of 8T1,/Dn and 49Ts/On.

1 OTs -82 Ts 2~ sProvided the initial guess is sufficiently close, the-procedure quickly
-s 

=  + 2 + is; (2) converges to an interface shape consistent with all equations and
as 4t 8X eyboundary conditions.

here the quantities ctL and as are the thermal diffusivities of the We choose to parametrize the interface by the tangent angle (e),

liquid and solid, respectively. = tan -' dyldz (7)
At a crystal.melt-interface the Gibbs-Thomson condition, e(e)

TL = Ts = Ti - TAfrK, (3) and express l(e) as a Fourier series,

gives the equilibrium melting temperature-at a curved interface, 00

where r = 1/L is a capillary coefficient, -1 is the surface tension, L (e) E (a. cos 2n7re + b, sin 2nr.e). (8)
is the latent heat of fusion per unit volume of solid phase, end K =0
is the mean curvature of the interface. Conservation of heat at the Given the function 0(e), the interface shape (z(e), y(e)) can be cin-
interface requires puted from the 0(c) and the initial values z(0) = 0 and y(0)-by

klVTL . i - ksVTs - i = -Lvn, (4) quadrature.
For numerical purposes we retain a fiite set of Fourier coefficients

where i is the unit normal vector at the interface pointing into the for 0(e) by truncating Lte infinite series at n - A. T'he botadary
liquid phase. kL, and ks are thermal conductiities, and ,,t is Lte integral equations dre then discretized using the trapezvid rule, tis
normal velocity of the interface, results in a numerical approximation with spectral accuracy. The
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heat i,nservation boundary condition (4) is also discretized to give poit on the nonlinear solution branch corresponding to solutions
a system of nonlinear equations-in the unknowns a,. b,, and y(o). w ith period \,'2 (n - 2). This \,'2 family of solutions bifurcates sub-

We have used values appropriate to silicon in our numierical calcu- critirally from the planar solution at JL, - 3.5(10') Kcm2 , and the
lations. Periodic solutions ha ing wavelength A are computed most family is initially unstable to twu types of perturbations, for small
efficiently by choosing the computational dumain to have length A/ 2 amplitudes, the unstable distuibances are approximately sinusoidal
in the z-direction, with no-flux-boundary conditions applied at z - 0 with wavenumbers w and 2. The \,'2 family reaches a limit point
and z - X'2, we achieve this in practise by imposingthis symetry near JL - 2.3(10 ' ) Ki'cm', where it sheds-one mode of instabil
on the Fourier coefficients, setting a. - 0. On this domain one may ity, and then encounters the secondary bifurcation point with the
compute solutions which are periodic with wavelength A, and also fundamental solution branch, where the remaining mode of insta
solutions which are higher harmonics aith wavenumbers which are bility is lost, the A6'2 family is then stablc fr increasing values of
integer multiples of w = 27r/A. the power. The A/3 family bifurcates subcritically at JL = 7.0(10)

K/cm2 , and initially has three modes of instability. The A/3 family
also has a limit point at JL = 3.0(107) K/cm, which is followed by

........................... -- ................................. two secondary bifurcation points, after which it continues to larger
power as a stable solution branch. To avoid further complicating
the figure, only the primary solution branches are shown, and the
solution branches issuing from these secondary bifurcation points

......................... "" . are omitted.

............................... ............................. . .
2.5

2......- - - - - - - - - -- ................................ A-------...-

................................ . ................. .- ---

1.0,

0.5 -'

Figure 1. A sequence of interface shapes tracked along 0.0 - - -
the A solution branch. 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Fig. 1 shows a sequence of interface shapes calculated using a i0 -  J (K/cin2)
continuation method starting- with a planar shape at the onset of Figure 2. Bifurcation diagram of interface amplitude A
instability of a perturbation with wavelength equal to A. We define
the amplitude A of an interface shape to be the square root of the to integer multiples nw of the fundamental wavenumber
sum of the squares of the Fourier coefficients for the tangent angle, th
so that the amplitude is zero for the planar state. As the solution
branch is traced out to larger amplitudes, nonlinear effects cause Further primary solution branches for the families with periods
higher order harmonics (in particular the first harmonic) to develop. A/4 through X/8 are also shown in this figure; their points of bifur-
The fundamental component-gives way to the appearance of its first cation occur off-scale. Although the separation between these bi-
harmonic, and ultimately disappears entirely. furcation points from the planar state are increasing well-separated,

The computational domain also allows solutions with wavenum- they are also progressively more subcritical, and have limit points
bers that are integer multiples na of the fundamental wavenumber that all occur within the range shown in the figure with amplitudes
w; these solutions bifurcate from the base state at progressively at the limit point in the range 1.5 < A < 2. In each case the family
higher values of the power JL. The result of tracking several such with period A/n initially has n modes of instability, and the trend of
solution branches is shown in Fig. 2, which is a plot of the amplitude shedding instabilities at secondary bifurcation points once the limit
of-the steady state interfacial shapes as a function of the power Jj. point is passed also seems to hold; to avoid further complicating
We also calculate numerically- the linear stability of each of tile com the figure the secondary bifurcation points are not shown for the
pute(l nonlinear steady states. On the plot, stable nonlinear inter primary modes with n > 3. The primary mode with n = 4, for
face shapes are represented by solid curves while the dashed curves example, regains stability at JL = 6.9(10) K/cmZi as indicated by
represent unstable interface shapes. The planar statefirst loses sta- a dot in the figure.
bility to the fundamental mode (n = 1) at Jj, - 1.7(107) K/cm2 , W.Te are indebted to K. A. Jackson for suggesting this problem.
which bifurcates supercritically This fundamental solution branch This work was conducted with the support of the Microgravity Sc-
increases in amplitude with increasing power until it reaches a limit ence and Applications Division of NASA, and the Applied and Com-
point near JL, = 3.4( 10*) K-/cM2, after which it increases in ampli- putational Mathematics Program of DARPA.
tude with decreasing power; this branch loses stability at the limit
point. It terminates at finite amplitude at a secondary bifurcation
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ACOUSTIC PROPAGATION IN THE OCEAN-SURFACE BUBBLE LAYER'

MICHAEL J. BUCKINGHAM
Marine Physical Laboratory and The Institution of Sound and Vibration Research
Scripps Institution of Oceanography The University
La Jolla, CA 92093, U.S.A. Southampton, S09 5NH, England

Abstract Wave-breaking events on the surface of the ocean entrain
air, which creates a layer of bubbles immediately beneath the surface. C

The sound speed in the layer increases monotonically -with depth,
forming a surface duct in which sound may propagate in the form of
normal modes. Since sound is cirrently being used to study a number
of surface processes, including-gas transfer across the air-sea inter-
face, the effect ofthe profile on the observations is ofsome concern. 16
An-analytical theory of sound propagation in surface-ducts has tog(z/z,) 12
recently been developed, based on an inverse-square profile, which
provides an exact solution for the acoustic field in terms of a sum of 1.5
normal modes. On the basis of the theory, it is possible to-obtain the
solution of certain inverse problems; for example, once the parameters
of the profile have been prescribed, the source depth can be estimated 2

from the width of the modulation structure that appears in the acoustic
spectrum at the receiver. The theory also provides an interpretation of v-4

the acoustic signatures of wave-breaking events observed in the La
Perouse'and FASINEX experimnts. Figure'l. 'The fifth mode at progressively increasing frequencies,

as indicated by v which scales with f. See the text
I. INTRODUCTION for further details.

When an ocean-wave breaks, air is entrained and forced below, the whith shows the fifth mode at four different ftequencies. The asterisk
sea surface, %here it fragments into a large number of micro-bubbles, on each curve depicts the exinction depth, whwiii becomes shallower
Acoustically, the-bubbles have two important effects.-for a few as the frequency nses. Thus, at a fixed depth, as indicated by the
milliseconds after the instantof closure a bubble rings, that is to say, horizontal dotted line in Fig. 1, the phenomeno, of mode drop-ot
it oscillates in the radial or breathing mode, hence acting as a very occurs. below the drop-outfrequency the extinction depth falls below
effective acoustic source, this being the mechanism- which is the line, so a receiver on the line detects the mode, but as the
responsible for much of the sound produced by breaking waves, and -frequency increases and the extinction depth passes upwards through
the presence of-tie-large population of bubbles reduces the speed of the line, the same receiver delivers a-null response since the mode-is
sound immediately below the-surface by as much as 20 m/s. The now in extinction. The drop~out frequenc.y of the mode is defined as
sound-speed profile down through the bubble layer is monotonic tha. frequency for which the extin,.tion depth is coin ident with the
increasing, which-gives rise to upward refraction, thus creating the receiver on the line. Obviously, the drop-out frequency depends on
condition necessay for the formation of a surface waveguide. The the depth of the line and on the mode number.
sounds from breaking waves are trapped in this bubbly waveguide _ _ _-

and-hence undergo dispersion, which manifests itself in the form of 33
well-defined features in the spectrum observedat a receiver in the duct I

31]
An-analytical-model of sound-propagation-in the ocean-surface [

bubble layer has been developed [2], based on the so-called inverse-
square profile: 2

If d 2 2
S-1+ -I , z , () 1 ,

C2 (Z) ca~ Z2 ) IS 17
where c(z) is the speed of sound as a function of the depth coordinate, "
z, the parameter:d provides a-measure of the effective depth of the . .I'*5 "
duct,- and c* is the asymptotic value of the sound speed in-the limit of
infinite depth. In the coordinate scheme of Eq. (1), the origin of z lies o.
above the sea surface, which falls at z = zs. Below-the surface, the ....
ocean is treated a a semi-infinite medium,-and the surface itself is % 2 4 6 , 10 12 14 16 is 20
assumed to be a-plane, pressure-release boundary. The most sig-
nificant features of the new theory are described briefly below, with
emphasis placed-on their relevance to the interpretation of wave- Figure 2. Spectral shape of modes 3, 8, 12 and 17 at a fixed depth.
breaking spectra. The vertical Jines indicate the drop-out frequencies of the

respective modes.
II. PROPAGATION IN AN INVERSE-SQUARE DUCT Fig.2 shows the magnitude of several modes at a fixed depth as a

The Helmholtz equation can be solved exactly for the harmonic field function of frequency. In this example, the parameters of the inverse-
from a point source in an inverse-square channel bounded above by a square profile are representative of the surface bubble layer in the
pressure-release surface and extending below to infinity. The solution FASINEX experiment [1]. Each mode occupies a finite bandwidth,
takes the form of a branch line integral, representing short-range within which it displays several well-defined peaks. It is evident that
radiation, and an infinite sum-of normal-modes. Only the modal on performing a coherent modal synthesis, to obtain the power
component c. the field is significant in the present context. spectrum of the field, interference between the overlapping regions of

Immediately below the sea surface each mode shows oscillatory the modes will occur. Thus, the resultant spectrum will inevitably
behaviour, down as far as the extncton depth. The oscillatory region 'how a complicated structure of peaks and troughs. It is reasonable to
is where the modal energy is concentrated. Below the extinction depth suppose that a measured spectrum of sound (from breaking waves or
the oscillations cease and the mode exhibits an exponential decay to any other source) in a surface duct should be similarly complex.
zero. The oscillatory and evanescent regions are illustrated in Fig. 1, In the analysis of such spectra, the mode drop-out frequency would

seem to be a useful interpretive tool, and indeed it is, as Farmer and
SResearch supported by the United States Office of Naval Research, Vagle [1) have demonstrated; but, at best, it is rather crude. This

erecontract No 14-91-J-1 118. observation is illustrated in Fig. 2, where it can be seen that the drop-
unde o tout frequency, depicted by the vertical lines, falls close to the principal
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maximum in the odd-order-modes but is almost cointident with the -hatched, horizontal stripes indicate the spei.traI maxima obs nr ed by
highest zero in the even-order-modes. In general, the drop-out freq- Farmer and Vagle [I]. Noti,.e the isolated spe, aI maxima and the
uency is not an accurate indicator of the position of the principal fidelity of the match between theory and experin,-nt.
maximum in the spectrum ofa mode, diffenng perhaps by 10% or so, Similarly, Fig. 3b shows the inverse square theory (solid line)
as in modes 8 and 12 in-Fig.-2. When a number of modes-are compared with experimental observations (cross hatching) for
superposed, this discrepan y-is compounded by the fact that each -FASINEX, the deeper of the two-surface channels. Again, the
mode shows secondary maxima which may be tomparable in theoretical spectrum contains well-defined maxima, but in this case
magnitude with the pnncipal maximum, making interpretation of the *..lutered into groups, or bands, separated by regions of little or no
peaks in the spectrum doubly difficult. Both problems are eliminated energy. The positions of the bandsclosel ) match the experimental
by computing the full theoretical spectrum for comparison with [he observations [1], as indicated by the cross hatthing.

experimental observations. The detailed agreement between the inverse-square theory and
experiment suggests strongly that in-La-Perouse and FASINEX the

Ill. WAVE-BREAKING SPECTRA observed spectral structure is an effect of propagation through the
-upward-refracting surface bubble layer. An alternative proposal [3],

Farmer and Vagle [1] recorded the sound of breaking waves at tW. that the spectral features are an effect of the sour.e (nun-linear bubble
locattons, identified as La Perouse and FASINEX, with a-shallow oscillations), may be valid in other situations, where the surface
hydrophone at a depth of 14in and 24 m, respectively. A surface bubble layer is not well developed, but in the La Perouse and
bubble layer was present in both cases, its depth, as measured by the FASINEX data sets the propagatlon-doeb appear to dominate the
parameter d in Eq. (1), being a factor of 2.5 greater in FASINEX than spectrum.
La Perouse. The observations were made over the frequency band
from I to 20 kHz. IV. SPECTRAL PEAKS AND SPECTRAL BANDS

The observed spectra from the two locations are different in
structure. that from La Perouse shows half a dozen well-defined, The two spectra in Fig. 3 show well defined maxima that are
-relatively narrow peaks, whereas the FASINEX spectra show several- obviously related to the spectral peaks in the individual modes.-In Fig.
broad bands of energy -separated by distinguishable gaps. These 3b, these peaks are strongly modulated, to form bands which are
features are believed to be~genuine, rather than artifacts of the separated by gaps, where little energy exists. In fact, a similar
instrumentation, because they are repeatable over a number of wave- modulation is present in Fig. 3a, but so much slower that it is barely-
breaking events but with minor vanations due to the slowly changing noticeable. (The spectral period of the modulation is inv ersely prop
nature of the bubbly surface duct tD. M. Farmer, private commun- ortional to d, the effective depth of the channel, which is larger in
ication, September 1990). FASINEX than in La Perouse by a factor of 2.5).

Apa't from d, the modulation also depends on the source depth,
x10 z'. If Afo' is the spectral period of the modulation (i.e. the distance

- between the bands), then the following approximate relationship
. s ,holds:

' La Pe , s Afo, =  c, (2)
2d1n(.)"

S ',It follows that, once the parameters of the-profile are known, it is
possible to perform an inverse calculation to determine the depth, z',
of the source from a measurement of Afo'.

IOn applying this argument to the FASINEX data, a source depth of"A2
1.5 m is obtained, and this is the value that was used in the comp-
utation of Figs. 3a and 3b. Now, this is unexpectedly deep for
acoustically active bubbles. The bubble layer is known to extend
down to several metres, but most of the constituent bubbles are

" ' mature and hence quiescent. It is, perhaps, possible that the
° 2 4 6 a 10 12 14 16 is 20 roughness of the sea surface and the non-uniformity of the bubble

a) fmquancy.k1iz layer could be factors in leading to-an exaggerated estimate of the

x1o- depth of the bubble sources. Although this cannot be discounted, the
,4 fact that such good agreement -between theory and experiment is

observed in Fig. 3 suggests that the bubbly duct does act as a
3.5 deterministic waveguide with a planar- pressure-release boundary, at

FASMOC least over the short ranges considered here. Such behaviour would not
3 be expected if non-uniformity in the channel, for whatever reason,

were a significant factor.
2.5

V. CONCLUDING REMARKS
2-

TThe inverse-square theory of sound propagation through an upward-
-. 5 refracting surface channel shows excellent agreement with obser-

I vations [1) of wave-breaking spectra obtained at two locations with a
.i 1 near-surface hydrophone. This agreement supports the conclusion that

_the spectral structure present in the observed wave-breaking
0.5 signatures is introduced as the signal propagates through the bubbly~surface duct.

2 4 6 8+ 10 12 14 16 18 20
b) frequency.kift REFERENCES

Figure 3. Inversc-squarc spectra (solid lines) for a) La Pemusc and b) FASINEX. 1. D. M. Farmer and S. Vagle, "Waveguide propagation of
The cross-hatching indicates obscevd spectral peaks in a) and spectral ambient sound in the ocean-surface bubble layer", J. Acoust.
bands in b). Tha vertical dotted ri,-s in a) depict the drop-out Soc. Am., 86, 1897-1908 (1989).
frecquenciesoftheindicatedmoaes. 2. M. J. Buckingham, "On acoustic transmission in ocean-

Fig. 3a shows the spectrum (solid line) of a wavebreaking event at surface waveguides", to be published in Phil. Trans. Roy.
La Perouse, as computed from the inverse-square theory using Soc., June 1991.
channel parameters obtained from measurements [I1 of the sound 3. M. S. Longuet-Higgins, "Bubble noise spectra", J. Acoust.
speed profile through the bubble layer. For comparison, the cross- Soc. Am. 87, 652-661 (1990).
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MARCHING TECHNIQUES BASED ON ELLIPTIC WAVE EQUATIONS

George H. Knightly' and Donald F. St.Maryt
Center for Applied Mathematics and Mathematical Computation

Department of Mathematics
University of Massachusetts
Amherst, MA 01003, USA

Abstract-A class of methods for marching acoustic wavesz for- successful. In the next sectio.. ,e outline some marching schemes
ward in range is presented, based on a -far field elliptic ap- for (1), in section III we derive stability criteria for the schemes
proximation to the Helmiholtz equation. The stability of the and-examine two particular s5hemes in more detail. Some re-
methods is analyzed and two particular schemes are examined sults of computations testing the criteria are presented in section
in more detail. Explicit stability criteria are obtained for -these IV.
two schemes, amounting to easily verified restrictions on-the-step
sizes. The stability criteria are affirmed in sample computations. II. MARCHING SCHEMES

I. INTRODUCTION

In this section-we develop a-family of marching schemes for
We are concerned here with-the problem-of deterrnii ng -the problem (3) by (i) introducing Pade rational-approximations for

acoustiL wave due to a source vf-given frequency, w, in the ocean an operator in-(3a), (ii) discretizing the resultant approximate
waveguide. We suppose the solution is known-(e.g. by measure- problem and (iii) specifying a technique for-solving the-discrete
ment) -out to some range, ro, and we wish to propagate the problem.
solution forward to larger ranges. To simplify the discussion We first rewrite the far field elliptic equation (3a) as
we consider here:only the azimuth-independent case and utilize 1 02
the range coordinate r and depth coordinate z. Thus, we-in- + iko)2u - (iko)2[ + 1 + -Jw= 0 (5)
vestigate the following problem for the Helmholtz equation with (Or ko 9z2

variable wave speed c(r, z), pressure release boundary at the sur- and use a Pad6 rational approximation [jP}2 for the operator
face z= 0 and hard bottom z = B.

V 2p + 2(r, z)p = 0, ro < r, 0 < z < B, (1a) 1+h=(V'i7F-) 2 , (6)

p(rp0) =0, '(r, B) = 0,b) where 1 (

p(r, z) given, r < ro, (1c) We apply the chosen approximation in (5) and operate with Q2

where--t(r, z) = wlc(r, z). to obtain
When backscatter is unimportant, parabolic equation meth-

ods are widely used (e.g., see [5] and references cited therein) Q2wrr + 2ik°Q2wr + k°(P 2 - Q2)w = 0. (7)
to march-the solution- forward :n-range. Here-we continue some We specify mesh points by .hvosiag a range step size dr and
investigations i1, 3, 4, 6; into marching- with a far field elliptic a depth step size dz = BM, f r a chosen integer M. Set
-equation that retains the-potential to include backscatter.

To develop a far field elliptic approximation to problem(I), n = w(ro+ndr,mdz), m = 0,1,...,M+1; n = -1,0,1,2,...

let ko denote a reference wave number and HPI) the usual Hankel and
function satisfying wn = (w,,...,w n ! , n=-1,0,1,2,...

r 1 ( The-boundary conditions are discretized as w ° = 0 and w$r+ x '
V kor krkr >Wfl-1 Various marching schemes can be obtained by making differ-

If we-now make the substitutun-p - w(r, z)H0("kor), and- use ent choices of the operators P,_Q and their discretizations P,, Q,
the far field property (2), then ki) leads to the problem and from using different methods to solve the discrete system for

w, 3.a 4 For example, if we use central differences to approximate
w, + 2ikow, + w.. + kw = 0, (3a) w, and w,,, then (7) leads to a discrete system

w(-, 0) = -(r, B)-= 0, ro < r, (3b) 0 =Q2 W " 1 - 2w. + wn_,
19Zn( (Ar)2  -

w(r, z) given, r _< ro, 0 _< z < B, (3c) + 2  ""'n) + knP, 2 Q2 (8)

where 0rz)=[-r /k]2-1(4+ ion 26r )+ gp wn
= [iK(r, Z)/ko2 -1. (4) where P, and Q, are M x M matrices.

Problem (3) is ill-posed! There are solutions arbitrarily small at We ;l:ustrate the above approach by specifying two such
r = ro but arbitrarily large at r = ro + 6 for small 6 > 0. Yet, schemes.
as seen in 1, 3, 4,6, marching methods for problen 'I) can be Scheme I is the basic marching method, close to that devel-

This research supported in part by ONR Contract N00014- oped in (3), obtained by making the choices

90-J-1031. P2 (h) = I + h, Q2(h) = 1. (9)
tThis research supported in part by ONR Contract N00014-

91-J-1119. Then equation (8) becomes
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0- + 2ik(wn+l wn-1) + k-khnW,. (10) . .

where h,, is the-x M tridiagonal matrix having mt' diagonal -.
her , is th -M x

entry o'-(2(koAz)')-and all entries in the adjacent diagonals ., \: i '
are ao - (koAz) 2 , -except the entry in row M column M - 1 is _ 4.
2ao. Equation (10)is easily solved explicitly for w.n+ in terms I 0
of w, and w,-.- Since-w is given for r < ro, w-1 and wo are :
known and enable-the marching to proceed. "

Scheme II is obtained using -04

nP(h)-=x + 1h, Q(h)-= 1+ h, (11)W

so that W is-the-usual Pad6(1,1) approximation to . -,,..-.
Then Pn and-Q2-are 5-diagonal matrices. We use a 5-diagonal 1. 22.00 14:80 , :00 1800 20.00

system solver in this case to solve (8) for wn+,. RANGE (KM)
FIGURE 1.

III. STABILITY conservative estimates from (19),(20) give

Scheme I: Az > 22.2m (21)
Each of the schemes,=I and 11, leads to an interpretation as

Scheme II: Az > 19.2m. (22)
w .M+ = .,,W.. (12)

With Az_= 25m in Scheme I, Ar < 12.9m is required by (19).
Here W,. = (w,,w,_)T is a 2M-vector and Mt, is a 2M x 2M- With Az-= 20min Scheme II, Ar <9:95m is required by (20).
matrix of the form Figure 1 shows propagation-loss curves for this problem, based

on calculations using Scheme I (dashed curve) with Az = 25m,
= IT -TI (13) Ar = Im-and using Scheme II (solid curve) with Az = 20m,

1 0 Ar = 3m. The reference solution (dotted curve) was obtainedwith using the -higher order methods of [5)- Note the improvement

1 1 - ikoAr of Scheme II over Scheme I (at the cost of some small high
r = 1 (14) frequency oscillation). The Scheme I curve did not improve sig-/=1 +ikoAr' 1 + ikoAr-teShmI nificantly as Az was decreased below 25m. In fact, the Scheme

T,(2+ k(A)) (Ar) (Q)P (15) calculation became unstable for Az in the-vicinity of the limiting
value 22.2m given in (21).

For stability, we require that all cigenvalues, A, of-A,. satisfy

l I< 1 (16) References

The e--igenvalues of M, are-obtained-from the eigenvalues, X, of [1) K. J. Baumeister, Numerical spatial marching techniquesThby the relationf induct acoustics, J. Acoust. Soc. Am. 66, 297-306 (1979).

0-= A' - 7jxA + T. (17)
For schemes I and II the x's are real and one derives from [21 J A Davis, D. White, and R. C. Cavanagh, NORDA

(14), (16) and (17)-the stability condition Parabolic Equation Workshop, 31 March - 3 April 1981,
NORDA Technical Note 143, NSTL Station, MS, 1982.z2 < 4(1 + (koAr)2 ). (18)

For both methods LandII in the constant coefficient case the 's (3] G. H. Knightly, and D. F St. Mary. Marching methods for
can be found explicitly and the stability condition (18 ) yields elliptic models of underwater sound propagation. Compu-
the following restrictions on the step sizes. These limits gave atid.al Acoustics: Wave Propagation, D. Lee.,et al., eds.,
reliable guidelines for choices of step sizes in the test problems. North-Holland, New York, 397-407.

Scheme I:Az > 2, Ar < Az[(- -)2 - 11 (19)
[4] G. H. Knightly, and D. F. St. Mary. Computational Ocean

Scheme II:Az> < fILAI2 Acoustics, to appear Proceedings of the Second Edward
S> Ar <-,-" z) - 3] (20) Bouchet International Conference on Physics and Technol-

ogy, Accra, Ghana, 1990.

IV. CALCULATIONS [5) G. H. Knightly, D. Lee, and D. F. St. Mary. A higher order
parabolic wave equation. J. Acoust. Soc. Am. 82, 580-587
(1987).

We illustrate the implications and validity of the mesh re-

strictions (19),(20) through some test calculations performed
with schemes I and II. The test problem is Part B of "test Case [6; V. Y. Zavadskii, Y. S. Kryukov, Finite-difference calcula.
2 (Bilinear Profile)" taken from the NORDA Parabolic Equation tion of sound fields in an irregular ocean sound channel,
Workshop ([2], p.36). For this problem ko = 0.9 and the most Soy. Phys. Acoust., 29, 449-453 (1983).
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TREATMENT OF HORIZONTAL DENSITY VARIATIONS IN A 3-DIMHENSIONAL OCEAN

DING LEE AND GEORGE BOTSRAS WILLIAM L. SIEGMANN

Naval Underwater Systems Center Department of Mathematical Sciences
NewLondon, CT-06320- Rensselaer Polytechnic Institute

U.S.A. Troy, NY -12180
U.S.A.

Abstract -- Az technique for handling vertical density A complete mathematical model to accommodate
variations -in a three-dimensional ocean-has been density variations in all directions must contain the
introduced-by Lee-Schultz-Saad. -It is generally capability-of handling the horizontal density varia-
believed that the acoustic effect of density varia- tion. A mathematical model, based upon:Ref. 1, is
tion in the vertical direction-is stronger than that developed to handle horizontal density variations
of a density-variation- in the horizontal direction. which has the expression
We-extended the above-treatment-to handle horizontal
density variations in-a 3-dimensional-ocean by the- u = (-ik + iko [_+ ;1X+ -

1(X+)2 + Y+])u, (4)
same numerical technique and incorporated-this r o 0 2 -8 2
extended technique into the FOR3D (a 3-dimensional
wave propagation prediction code). This updated code
was -applied-to examine-the effect between-vertical Y+ = I p(e,z)
and-horizontal density-variations in a selected 2-2 = ...L 1(k r
region. Findings will be reported. 0

This formulation allows Eq.(4) to be solved by

I. INTRODUCTION the same numerical procedure--used to-solve Eq.(1). As
a result, -Eq.(4) can-be solved in two-steps by 2

Density variations in--the ocean medium influence tri-diagonal systems of equations, provided both°
the acoustic intensity;-thus, techniques must be -vertical and horizontal density variations are
developed-to handle these density-variations treated satisfactorily on the interface. Vertical and
adequately. A number of techniques-are in existence horizontal density variations are accounted for in
-fdor such-treatment. In this paper we enhance the steps I and 2, respectively. Detailed numerical
numerical technique-developed by Lee et al. [1] for solutions-of Eq.(1) as well as the numerical density
haidling vertical density variations to handle treatment can be found in Ref. 1.
density-variations horizontally. The purpose of this
enhancement -is to examine the effect caused by-both III. AN APPLICATION
vertical -and horizontal-variations. It is generally
believed that the density variation in the vertical An environment was selected from aGulfcast
direction-has a stronger influence on acoustic generated by the Harvard Open Ocean Model [3,4]. A 25
intensity than the density variations in-the Hz source was placed 100 meters in depth- above the
horizontal directions. A mathematical model having- continental slope at latitude 39.5*N, and longitude
density variations in all directions is presented. A- 72°W. Propagation loss predictions-were computed in-a
numerical solution follows. This-numerical solution 3-dimensional wedge that measured 10 in width.
is incorporated into-an existing 3-dimensional -Direction of propagation of the center ray emanating
computer code FOR3D [2]. This updated code is applied from the source located at the vertex of-the wedge
-toexamine the overall density variations-in a was 180°T. The water depth in the wedge is variable
selected region whose inputs-were obtained- from and ranges from approximately-500 meters to approxi-
Harvard University [3,4]. We report our findings mately 3500 meters. Density in the water and in the
based on this set of data in a-selected region. bottom are assumed to-be 1.0 g/cm 3 and 1.8 g/cm3,
Some discussions-are given at the end. respectively. Four propagation loss predictions

computed by the FOR3D model are shown in Fig. 1.
Since FOR3D computes propagation loss in two steps,

I. A MATHEMATICAL MODEL AND it was possible to modify the code such that differ-
ITS NUMERICAL SOLUTION ent densities are accounted for in steps 1 and 2. In

step 1, density variations in the vertical plane are
A 3-dimensional mathematical model [13 having accounted for resulting in a 2-dimensional solution.

vertical density variations has the expression in step 2, azimuthal density variations in the
horizontal plane are accounted for resulting in a

1 + 1 + 2 1 3-dimensional solution. The following table summarizes
r= (-ik° + 2 - (X ) + Y])u, (1) the various combinations of density conditions under

which these solutions were computed.
Step 1 Step 2

where Water Bottom Vertical Horizontal
Curve Density Density Density Density

y+ n2 -1 8 83 3 M33
X=n(r,G,z) -1 + 2~ [p(z)az (-) s) (2) 1 1.0 g/cm 1.0 g/cm 1.0 a/c3  1.0 g/cm

0 2 1.0 g/cm
3  

1.8 g/cm
3  

1.8 a/cm
3  

1.8 g/cm
3

-22 2a (3) 3 1.0 g/cm 1.8 g/cm
3  

1.3 g/cm
3  

1.0 g/cm
3

k0r ae 4 1.0 g/cm
3  

1.8 g/cm
3  

1.0 g/cm
3  

1.8 g/cm
3
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Fig. 1: Propagation loss with vertical and horizontal density variations
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Abstract - The application of phase space and -functional integal (0+
methods to-scalar and vector, direct and inverse, wave propagation (4 = )
problems is briefly outlined. 0-0)

I. INTRODUCTION ((- 0 B ' + I)iB1 (0 B2)iB2  ++)

This paper addresses wave propagation in extended, inhomoge- ' B (-!0 B " + 1) iB2  -(_)
neous, multidimensional-environments capable of-channeling energy 2 1 2  2 2 )\

over-many wavelengths. Sound propagation in the ocean- and-elec- It is straightforward to show that (i) - (3) imply k4) and, conversely,
tromagnetic guided- wave-propagation are two-examples. For the that (2) - (4) imply (1). Moreover, (2)-and (4) are-consistent.
most part, the application of classical, "ma, roscopic" methods has Choosing BI to correspond to the-forward-(outgoing)-wave radiation
resulted in direct wave field approximatioi.s, derivations of approx condition and B2 to correspond to the backward wave radiation
iiate wave equations, and discrete numerical approximations. lIn condition-completes the identification.
the-last several decades, hoxcvcr, developiments in Fourier anm.I.is, Soundmpropagation in the ocean, certain guided-wave electromag-
partial differential equations, mathematical physics, among-othcrs netic propagation problems, and borehole-to-borehole seismic mod-
have been synthesized into what is -now called harmonic analysis cling are-near one-way propagation problems in extended environ-
in phase space [FO). This -analysis on the configuration space R' ments. To zeroth-order, these propagation problems can be viewed
done by working in the phase space-Rn x R' has produced sharp, as transversely inhomogeneous, suggesting a-weak-backscatter per-
Umicroscopic" tools (pseudo differential and Fourier integral-opera- turbation approach to the general direct and inverse wave-propa-
tors, wave packets) appropriate for attacking wave propagation prob gation problems. In this context, tile transversely inhomogeneous
lems-in extended environments [FO]. In conjunction with the global problem -is first solved and then used to attack the- more general
functional integral techniques [SC] pioneered by Wiener (Brownian formulaoi (WEI. Mathemaeally,thms is expressed through the ap-
motion) and Feynman (quantum mechanics), and so succeIsfnlly proximate diagonalization of the first-order lelmholtz system in (4).
applied- today in quantum field theory and statistical physics, the For a transversely-inhomogeneous environment I 2(Z)_- K 2(1), (4)
n-dimensional wave-field propagators can be both represented ex- is agoalhoadenouionvionae n,
plicitly and computed directly. The phase space, or "microscopic," is diagonal. The forward evolution (one-way) equation,
methods and path (functional) integral-representations provide the /2
appropriate framework to extend homogeneous Fourier methods to (iT) ( ) (02() X (1/2)V +(. = 0 , (5)
extended inhomogeneous environments, in addition to suggesting the is the formally exact wave equation for propagation in-a transversely
basis for the formulation and solution of corresponding arbitrary-dimensional nonlinear inverse problems (WE). inhomogenos half-space supplemented with appropriate outgoing

wave radiation and initial-value conditions (WE).

Unlike the transversely inhomogencous-scalar Ilelmnholtz equa-
II. WAVE EQUNI ION MODLING AND FORMAL tion, which factors in terms of a formal square root operator, tie

WAVE FiELI)-SPLITTING transversely inhlion ogeneous Maxwell's equations do not admit such
For sound propagation in the ocean, the initial modeling is a simple decomp sition. The frequency-domain form of Maxwell's

provided by the i-dimensional scalar Ielmholtz equation, equations in three spatial dimensions is taken to-be

(V2 +.2K()) (z) = 0 (1) 8M()+ 2W -E.(M ) + A ( - () = 0 , (6)
where, under transversely inhomogeneous conditions, the matrix
operators A 2 (Z,) and _(z) are defined in (BR]. For transversely

where K(s) is the refractive index field and - is a reference wave inhomogeneous environments, the electric field vector (L_) can be
number. The environment caii be characterized by a refractive split into physical forward (f + ) and backward (f-) propagaLing
index field with a compact region of arbitrary (n dimeisiomal) wave field -components. The exact diagonalization is given by [BR
variability superimposed upon a transversely inliomogeneous ((n- 1)-
dimensional) background profile. Splitting the wave field 4 (i) into (..( ) iB1  0 .+(X)
two components, 0+(Z) and_0-(1), via the transformation (7 i IC)

) , (2) whereO'(Z BI iB2 0-W") 
A1

where Bi and B2 are the two operator solutions of the simple ( , (8)
quadratic- operator equatio, BoE-') ik iB, (=)

B 2 - (j.22(Z) + V2 0 (3) 1 is the 3 x 3 identity matrix. and T and R are the two matrix

results in the equivalent formulation-[\E] operator solutions of the generalized quadratic operator equation

112 - iC()-B-A(2 )0 ()
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For it transversely- inhomogeneous environment, (6) is equivalent-to (a +PIZ + q) - (t/Jk)Q( + 0(7) (BRJ.

111. PHASE SPACE ANDPATH INTEGRAL CONSTRUCTIONS .(14)

Theo formal one-way Ilelinholtz wave equation (5) can-be recast 11(4,=-
and analyzed within the-~phase space framework as a3.eyl-pseudo- hi 14,,(pI) is defined in [BRI,E = (Pz,pM),q= (ql-q 2 )- a1d0t0
differential equation-in-the-formn [WE] solution 1j orodn o h ugdg(or~r~aito

condition is chosen. The operator symbol in the scalar case has been
(i/k D~~ ~ (kI fro--,~ replaced by an operator symbol matrix in the vector case. Analogous

path integral and marching algorithm constructions follow [BR].
fln (Ej +-Z)2) exp (ikE1 (-4 - 0')) Z = 0 1 (101 For wave propagation problems in the presence of two (generall.)

wher fl 3(jq)is he smbo asocitedwiththesqure oot different) transversely inhomogeneous lialf-spaces separated by n,
1/2planar transition region- of-arbitrary length and inhomtogeneity, the

Hlelmholtz operator B (K~k) -f-(/~)v In th, Wt 1 one-%%ay phase space-and path integral method,% can be combinerd
pseudo-di ffe-ren til- operator calculus, the operator bymflBit,2 %%ith iniarint ;nibcdding techniques. For the Hlelmholtz equat;on,
is dlefined through the -WeyI composition equatson designating the left and right-boundaries of the transition region-at

'2 2 _ x = a and x = b, respectively, and generally locating a source in each
= Is~g 1 - alf-space, the incident wave-fields are connected to the scattered

(T-M2n-2 41kdlk QB (L+ L' 2: 1)wave fields through the operator--.a] ued scattering mnatrix-(a,b),

_T+a,b) R-(a,b) 0+(a,M)With szgp(p,q) the symbol -associated with the square of-B, B2 ' Rfr(a,) T(a,b) ) 1 6~~L,Zm

Solution represeirtatiozs for pseudo-differentawl couatiuiis The stattersng iiiatuix is defined it, trmof the appruprkate fn;mwaid
-is (10) can be-direCtly expressed-in terms of infitiite-diiiieiisiuuai irght-traselingj and backtward left- traseclng' reflectiun and trans
functional, or path, integrals iSCI, folloxwing front Lte Nldak . miission uperaturs S soated wlith the transitionk regiunl. iILat
or seigroup, property of the propagator. The path Integral imbedding jWL; ituiti~ely %ie%%s the, scattering matrix fur a it
representation for the propagator takes the forim jWE] region as lheing -unipmed of .Lattering inatric.,a fa lge ninib

~ N of contiguious subregions, and-thus computes the effect of adjoiniii
= ~ ~ ~ ~ ~ ~ ~ ~ a li ld, lAI~aiivery thin slab to the right-hand side of the transition region. Thle

Nee1t.~i2Ni)resulting coupled invariant imbedding initial-value systenm is (WEJ

(1~ 0i~b
V eiti~~1  (., ~~-: ObaS(a, b) = 0 T-(a,&) 0 -1)

+ (12) LIMb - (T(a,b) It (16)

where II(Li,yq) is related to the standard pseudo-differential I 1)-h~)i h prtrvle arxi 4 vlae tx=I
operator symbol (WE). _

The~~~~~~~~~ ~~~~~ on-aTnrlim~loih i ae n()temrhn rito iniitial conditions for (16) are determined by the appropriate pla-
range step (following from the path integral),-(2) a sophisticated nritraepoln tS a h nain medn rcdr
symbol analysis (reflecting the detailed study of tie (Hfelimholtz) tranisforms Lte Helimholtz boundary-value problem of (4I) into an
Weyl composition equation (11)), and (3) Fourier component, or iiilvlepolm truhtecmlt pcfcto ftet
wave number, filtering in phase space (for increased efficioncy. component wave field colunmn vector at, either x = a or x = b. The
decreased computational time, and reduced error). Tito detailed formal operators in (4), (15), and (16) aire explicitly represented as
numerical algorithim is discussed in [WE]- Sufficiently accura~e WVeyl pseudo-differential operators [WE]. Equation (16) providle the
approximations of the square root TIDO symbol over the relevant basis for both direct and inverse algorithms [WE].
region of phase space result in very accurate numerical w-ave field
calculations [WE]. ACK~NOWLEDGMENTS

Theo phase space andl-path integral constructions for the one w-ay This work was supported by INSF, AFOhR, and OZNR.
Hlelmholtz equation (5) cani be extended to the one-waky Maxwel
equation (7). The explicit phase space constructions are particularly
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Abstac The question uf the utillzaton vf parabolic eq,,atwons tovn of the system are considered, en one the full problem is
to appruximate the elast;c -wave equatons rth iq-,idisold in discretized direct., ;n the other the svhid and liquid parts are
terface is studied. The main consideration is the development slvIed successively. The Crank-Nirison d csretization method
of-numerical schemes which are stable. Crank Nicolson dis- is employed in the case vf a, equations in an attempt to ensure
cretization schemes for a parabolic elastic system of equations stability.
with interface are discussed- Two approaches to the solution In the next section we present the system of equations
ofthe system are considered, in one the full problem "s dis whch cunstitutes the pazaboici approximation to the elastic
cretized directly, in the other the solid and liquid parts are rave equation with interface. In section three we describe the
solved successively. Crank-Nicolson discretization of the system and suggest an ap-

proach to breaking it into two systems to be solved successively.

1 Introduction 2 BACKGROUND
Recently, considerable attention has been given to ques-

tions revolving around the effects of the ocean bottom interface We adopt the notation of (6) and refer the reader to (6)
on propagation in the water column. In fact, the Office of Naval for a detailed description of the derivation of the material pre-
Research, USA, is currently supporting fundamental research sented in this section. The parabolic approximating equations
in this area through an accelerated research initiative called utilized here emanate from potential equations in-both media.
Acoustics Reverberation Special Research Programr. Here, the In the elastic medium the potential equations might be thought
interest is in scatter from the ocean bottom, the partitioning of as a series of local potential equations (the medium is
of the incident acoustic wavefield by the bottomlsubbottom, said to be locally isotropic) which have been joined so as to
and re-radiation into the water column. have nonconstant parameter functions. In the liquid medium

Parabolic approximation methods, having been applied ex- the parabolic approximation process is well established and for
tensively, and successfully, to underwater acoustics problems these purposes yields theistandard (PE)
in the water column are beginning to be utilized in the case
of an elastic medium, namely, the ocean bottom, see e.g. (6, A _A
7, 3, 1, 2). This activity usually involves the approximation of Zr - - br-2, (2.1)
the elastic wave equations by a parabolic-type partial differen- 2 [ ,i
tial equation and the implementation of interface conditions to i 2k
represent the liquid/solid interface under consideration. It (6),
Shang & Lee .hoose to focus on the implementation of this in- where k is a reference wave numbez. T:.e parabolic syst-

terface in 2-1) by working to connect the traditional parabolic approximating the elastic wave equations is given by
equation, (PE), which is applied in the liquid medium, to a aA. 8'A2  aB 2

parabolic approximation of the elastic wave equations in the -a =4aA 2 + +
elastic medium. The scheme developed ;n (6) is unstable. In (2-2)
this paper, we reconsider the approach in [6], with the goal of B2 =aw 2  2 2,

creating a numerical scheme with robust stability properties. 8 8 +  8-'
The essence of the approach in (6] involves the utilization of where c2 and 4 are coupling coefficients whose definitions along
a parabolic approximation to the elastic wave equations which with other symbols are given by
Shang & Lee extract from the work of McCoy 14, a clever Tay-
lor polynomial approximation to a second derivative gleaned a2  o (i2ko)ikL(r )- ,). b2 - .i2j,
from [5), and threa systems of equations - one representing the C Jr-I v) (.Ak4),
liquid medium, an interface system of three equations in three
unknowns, and a system representing the elastic medium. In m2 (zf2hIr0(r.:) - k-, b;1 2E-s,
the development presented here, two approaches to the solu- in (-Ii2ks)(A.I-,),

Vok supported by ONR, N00014.90-J-1031
,Work supported by ONR, NOOO4-91J-I19
4vork supported by ONR. and NUSC Independent Research
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w here - D, i = ~ 2( D X , a2A 6P, ) Ck~' 1S - 1Dp and -- denotes 3-( AOB 2\complex conjugate. Now 2 o r 8Z

-- 2w
2/(X2 + 2 2)- where j represents the interface level, ii) to approximate these

second order z-partial derivatives by a Taylor polynomial, e.

and- g.
.2 =2/C T2W 2 1721A2) 2 (A 2) 2

where A, and j are Lam6 parameters, w frequency, and addi- Oz2 jI -Ez-z OA + A

tionally, e. g., T represents an approximation to A(r, z) with

relative error cA, iii) to use the value of the second derivative at a lower node.
It would be desirable to develon a stability analysis and/or

A2 = 2 (1 + e,(r, z)], computer implementation of ea rhese approaches to the
"full" system. Our efforts have L- . concentrated to date on

over-an interval of-length Ar. dividing the full system into two parts along the interface. Gen-
Again, the derivation of the inteiface conditions in terms erally, we have included the discretized (2.3a) in the liquid sub-

of -the parabolic potentials is contained in [6]. We-re-piesent system, and discretizations of the modified (2.3b-L) equations
them here for purposes of completeness. We would also like in the sold subsystem. In attempting to accomplish the dis-
to call attention to-the fact that in their derivation-the usual association into subsystems somewhat arbitrary decisions are
PE terms are dropped, namely, terms of Ihe form - a , r() made, e.g. in solving the subsystem for A2 , B2 at the (n + 1)fh
The continuity of vertical components of displacement and of riage step, certain values of A, are requred at the (n 1 1)"
stress translate respectively to range step, thus as a consequence of breaking the system into

two subsystems we replace these values by the corresponding
OA = IcD A+ Ks (2B2 + iksB2 , (2.3a) values at the nfh range step. Methods i) and ii) have been

O - _ 19Z implemented-in the context just described-and seem to give
-pwA= 2 2 a. + Iks V )K.b) reasonable agreement with an exact solution-of a test-problem

+ (A2 (8 + 2ikD' - A 2) + 2Y2B8,) KD. presented in 16] over the first few hundred iterations. Resid-

Finally, the vanishing of the horizontal components of stress uals eventually become unacceptably large -as the number of
iterat-:.s continue. Methods related to iii) remain a subject

on the interface yields for future research.

2-0 2+ 2ikD- = (OB - k B2il + Tk5 B2 I KSD (2.3c) R frne
OzOr+19B .Or References
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points, e. g. in (2.3b) O2At/OZ2 is replaced by

544



SIMULATION-OF ACOUSTIC PULSE PROPAGATION
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Abstrac. - The-improved -simulation of-sonic boom propagation
through the real- atmosphere- requires greater understanding of
how the transient acoustic pulses popularly termed sonic booms
are- affectedby atmospheric- turbulence. Two primary-turbulence
effects have been identified: _(1) the thickening of the nominally
abrupt shock at the beginning of the-pulse-waveform and (2) the -

spiking and rounding of the-portion of the -waveform that imme- (L
diately follows:the shock. The turbulence-induced thickening-ef- d) -

fect is typically -larger than (although occasionally much weaker
than) the thickening effect caused by molecular relaxation, which 

-,

involves nonlinear effects. The present paper describes novel
procedures to simulate these effects. -2-0

I. -INTRODUCTION - 0 - -

Sonic boom distortion by turbulence-has been considered * .t .
bymany authors-(1 - 3); precious work-includes attempts (gen- 0 50 1 00 1 50 200
erally regarded-as successful) by Pierce (4) and by Crow-(5, 6)
toexplain the random spiking and rounding of waveforms, al- Time (ms)
though a complete and satisfactory- statistical theory has-not yet Fig. 1. Sonic boom waveform recorded at ground during
been achieved. The effects of turbulence on rise times were con- overflight of an SR-71 at 66,000 ft altitude with
sidered by-Plotkin and George (7), Pierce-(8), and by Ffowcs- speed of Mach 2.6.
Williams and -Howe (9). None of the latter-theories were re-
garded-as -wholly-satisfactory, however, and several authors sug- 80
gested t.,,t tuirbulence played a-minor role in the rise time phe- 701 -,-

nor,,, and that;the dominant mechanism was molecular relax- "u 60 - -

ation. Recently, the author and his colleagues- have discovered I 5
(10), after-a somewhat careful comparison of data with theoreti- -.
cal-predictions based on the molecular relaxation model, that that ) 40 , -0) <
mechanism tends to underestimate actual nse times -by-factors of ,) 30 -

Athe order of three. Thus, the-overall question of -how turbulence I 20-
affects sonic boom waveforms deserves further consideration.

II. -SONIC BOOM WAVEFORMS 0--
0 1 2 3 4 5 6

A typical sonic boom waveform, acoustic portion of pres- Time (ms)
sure versus time, is shown in Fig. 1. Note that the peak pres-
sure is of the order of 70-Pa-and that the waveform duration Fig. 2. Early portion (rise phase) of the waveform shown

in Fig. 1.
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is of the-order of 200 ms. The standard idealization of such-a Here-the amplitude function B(,) continually adjusts to preserve

waveform is that of an N-wave, an-abrupt initial shock followed the Blokhintzev invariant, in accord with the equation

by a linear decrease of pressure through zero, terminated by a d I B2 (s)lv + enl(c + v. n)bA l = 0 (2)
second abrupt shock. This particular waveform has one of the s - e3 pc
aberrations believed (4) to be caused by turbulence, in-that there where tA is ray tube area. The quantity g satisfies the coupled
are small spike features near the leading-and trailing edges of equations
the shock, such that the-jump in overpressure at the shocks is
slightly higher than that of the overall N-shape that fits most _qO9- d.d - o + (Ac)2- -. =0 (3)
of the waveform. Other aberrations commonly observed-are
rounded profiles where the initial shock is-replaced by a much 8g Og
smaller jump followed-by a slower transition of the duration of gy + Tt- = r" ' (4)
typically 10 to 15 ms up to the nominal N-shaped profile. The quantity A B(s) !!My ds (5)

(s) fds( -
Figure 2 shows the-first 6 ms of the waveform of Figure 1.

On the scale with which this portion of-the waveform is plotted, is the age variable for the ray.

it is evident that the sudden increase in pressure corresponding to
the shock is not abrupt and has a duration-whose order of magni- Lets and be two arbitrarily curvilinear coordinatessuch
tude is 4 ms. This portion of the waveform, here termed the rise that in the vicinity of the central ray, the coordinates , , and
phase, is often characterized by a single number called the rise s, deneqan to uilne coorat ys e r the
time, typically taken as that time for the pressure to rise from ric tensor equal to unityalong the central ray. To discover the
10% to 90% of its peak value, diffraction correction to Eq. (3), one notes that for a homoge-

neous medium, in the absence of dissipation, relaxation, and non-

IlI. OUTLINE OF THE THEORY linear effects, and with an ambient fluid velocity in only the +s-

direction, the quantity g-satisfies the wave equation

A-turbulent atmosphere may be characterized by a ambi- I 2g 0 I 82g} 0 O = (6)
ent fluid velocity v and-sound speed c thatvary from point to a 2 - at+ ' s (-)t a =s

point. Techniques for synthesizing particular realizations (drawn
from-an ensemble) of such fields are described in a recent paper For a pulse propagating nearly in the f direction, this would

by Karweit et al. (11). The suggestion is made here that one do simplify to

the synthesis is two stages. In the first stage, one leaves out all { + (v + C)-#g + %-" +-L2 gds = 0 (7)
higher order wavenumber vector components beyond some cut- a as C

off wavenumber I-, to the extent one is certain that geometrical Consequently, the appropriate modification of Eq. (3) becomes
acousics will be very nearly wholly applicable for the propaga- ag (d -Lg 2 2 a-!f gds

tion of-the sonic boom from the aircraft trajectory to the consid- t+ " + d " 2 + -Oq2 J J 0

ered observation point. The resulting medium is here called the +LdA(drc)_ 2gg_ 6f_9 + Z_ (AC)v,-a :0 (8)

background medium. ds ds as as2 Z- a

where f( , il, s) is travel time [with the total turbulence with

Given such a background medium, one identifies a central higher-wavenumbers taken into account) along paths defined by

ray that-propagates according to the ray tracing equations de- the background medium. Readers may discern some similanties

scribed in -the author's book (12) and in a recent paper (13), and in this result with the parabolic equation, especially the formula-

one describes distance along such a ray by a parameter s, and tion of Kriegsmann and Larsen (15), and with the nonlinear-PE

nominal time of arrival (ignoring nonlinear effects) of the lead- formulation of McDonald and Kuperman (16).

ing shock by -(s). The theory originally due to Hayes (14), and Acknowledgements - The research reported here was sup-

described in the author's text (12), applies for nonlinear propaga- ported by NASA Langley Research Center. The author is partic-

tion in the background medium along the central ray. When such ularly grateful to Drs. Gerry McAnim.h and Christine Darden for

a theory is modified to take molecular relaxation into account, their encouragement and interest.

one has (10): References - Space limitations preclude explicit listings of

p = B(s)g(s, t) (1) the references cited in the text.

546



ON THE COMPUTATIONAL FO9MULA OF MODAL
TRAVEL TIME PERTURBATION

B.C. Shang and Y.Y. Wang
CIRES, University of CIRES, University of
Colorado/NOAA/WPL Colorado/NOAA/WPL
Boulder,CO 80303,U.S.A. Boulder,CO 80303,U.S.A.

Abstract-The computational formula of-the The integrand of eq.-(5) can be obtained
adiabatic modal travel time perturbation has from the eigen-value problem. The differential
been derived. The linear constiuent and the eua:ion holding for unperturbed mode is:
nonlinear constituent are decomposed. Numeri-
cal results demonstrate that significant non-. .
linearity of modal travel time perturbation (. . j = ( )
can be caused by strong oceanic mesoscale
eddies.

and the differential equation holding for per-
1. THE EXACT FORMULA turbed mode is:

The exact modal travel time perturbation is ( ..- '..

A

rMultiplying eq.o[61 by m and eq.[] by

where U, and U. are modal group velocities uland subtracting the products gives:
corresponding to the unperturbed sound speed
profile (SSP) c0 (z) and the perturbed SSP co
(z), respectively. In Ref.[1], a rigorous =
formulation- for calculating the modal group
velocity has been given: C,

0

We take the following approximations:

where c, is the modal phase velocity and is '- 0-
the normalized eigenfunction. Substituting eq. C,)
(2): into eq.(1), we get the exact modal travel
time perturbation as follows: c ,-'- .) ,

s =Jdr (a-j4 d 3) Then, we get

Co C Ca) 0 4

2. THE PERTURBATION FORMULA

The modal travel time perturbation can Substituting eq.(//) into eq.(5), the modal
also -be expressed by differential formula- travel time perturbation is expressed in a
tion according to the definition of modal "differential" form:
group velocity:

0
Then, the modal travel time perturbation is
given by
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3-. THE NONLINEARITY ANALYSIS

As we can see, that the nonlinearity is DR-100 Km, DZ=500 m, ZE=1000 m, DC=-6 (cold),
mainly caused by the deformation of eigen- and DC=+15 (warm) respectively. Modal travel
function in terms of . By writting time perturbations are calculated for acoustic

frequency f=10 Hz and mode number m=1,2,3. The
-= V@4 (13) results for weak cold eddy are listed on Tab.1

and the results for strong warm eddy are
listed on Tab.2.

Then, the linear and nonlinear constituent
are decomposed as follows:

Tab.1 Modal travel time perturbation for a
(; ) + IQ )(weak cold eddy.

- _ + gCL)(/4) m ~3
.e .(3) (12) (15) - rS) -

where t.) is the linear constituent: 1f 450.1 448.8 440.5 -9.6 2.1
21 369.4 369.1 341.6 -27.8 -7.5

a13 257.5 257.5 245.3 -12.2 -4.7

0

Tab.2 Modal travel time perturbation for a
and NLis the nonlinear constituent: strong warm eddy.

J1 = r f140 - m eq. (3) (12) (15)
7 (16) 1 -806.3 -810.3 -1101.1 -294.7 -36.5

2 -804.8 -811.0 - 853.9 - 49.1 6.1( ,, ) ~3-581.7 -586.0 - 613.2 - 31.5 5.4

O'v,)usly, the nonlinear term V vanishes CONCLUSIONS

wi2n the deformation of eigenfunction ' is (4).As we can see from Tab.1 and Tab.2 that
not significant. However, there are some the modal travel time perturbation cal-
cases that the nonlinearity is significant culated by differential formula eq.(12)
and for tkese cases the conventional linear is very close to the result ginen by the
inversion scheme will not be appropriate, exact formula eq.(3).
Numerical examples are presented in the (2).The nonlinearity of modal travel time
following section. perturbation caused by a weak cold eddy

(DC=-6 m/s), as illustrated in Tab.1,
is not significant. However, for a warm

4. NUMERICAL EXAMPLES strong eddy (DC=+15 m/s), as illustrated
in Tab.2, is significant.

The ocean model for numerical computation
consists of a canonical Munk profile [] as
background and a Gaussian eddy perturbation Acknowledgement: This work was supported by
as follows: NOAA and ONR.

C6)+ oioos *rel-CIV
REFERENCES- 3-- [1].D.Chapman and D.Ellies,"The group velo-city of normal mode," J. Acoust. Soc. Am.

73, 973-979, 1983.
where° = 2(z-1000)/1000. The parameters of (2] .W.Munk,"Sound channel in an exponentially
a weak-cold eddy and a strong warm eddy are: stratified ocean with application of

SOFAR," J. Acoust. Soc.Am.,55,220,1974.
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ALGORITHMS FOR MAXIMIZING MATCHED FIELD PROCESSING OUTPUT
USED IN ANEW APPROAC TO -OCEAN ACOUSTIC TOMOGRAPHY

A. Tolstoy -L.N. Frazer
Acoustics Division Hlawaii-Institute of Geophysics

-Naval Research Lab University of Hawaii
WashDC~0375USAHonolulu, 111 96822 IUSA

Abstract

A new approach to ocean acoustic tomography uses matched field Tire first phone- will be just-below the surface of thle water arnd thus spsan
processing for narrow band, -low frequency sources distributed around the upper 1000 iii of water- where all the sound-speed variability is found
the region perimeter and d etected-on widely distributed vertical-at- We assumre that the sound-speed profiles at tht~sotuctand array cells have
rays. A key-comuponent, to the sUCCess of this-new approach-! an been mneasured.and their EOF coefficients are known. The cuniplete Values
algorithm to comput "the global inaximunm" of the processor out- of the dominant EOF coefficient arc shown-iii -ig. 2.
puts over the very large set of candidate environments In this paper Finally,- we-needl anl algoritrir to perforn thle inversion,_i-e., to compute

-we discuss-algorithins based-on-the "back-propagation" algorithms
used in medical tomography but mnodified to allow for non-uniform teukonEFcefcet hc rxnz h F oe tteary
values along-each-source-receiver path and Weighted according to the for all (tie source signals.
length of the-path segment of-interest. Computational results to III. THE ALGORITHM
date show-that the algoithmrs can result An extremely accurate and First, we alli initialize our algorithm with a simple test environmient.
efficient tonrographie solutions. Ipatticular, we will assunme that we know the range of possible values for

1. INTRODUCTION the EOF coefficients throughiout-one region and then use their idi-range
Ocean acoustic tomography is a techiiique involving the transmnissioii of values as a first estimiate for all the unkitown-values (see Fig 3) We kiiow

acoustic-fields through air ocen region aird subsequenrtly irferriirg the 3-D tlrat this estiiiate is iiot very good because the MFP power-coirputed at
sound-speed profiles of the region by examiinrg those fields. Over thre last each array for each source is-very low. lii Fig. 4 we sec a plot of the MFP
decade ocean tomsographiy experiments have shiowii that exainiation of tire -power P_. for each receiver-source path for r- = 1. Tire miaxima should be
acoustic initltipatlr arrivals iiiterpreted iii termns of ray theoretic mrodels can about 28 (thle numiber of phones).-tl tl Ibe highly effective (Munk arid Wuinsch, '79; Beirlirger et al., '82; Coiruelle Let 61(ij),0 2(ij) denote thre-true EOF coeff'icienits for-tr ejl ell
et al;, '80). However, such air approach requires "high" frequency signals -Consider thre ijth cell, arid iterate through all possible values of thre EOF
(above 100 liz), arid so results- -illh be degradled by-such factors-as uricer- coeficierit-flu. -Let P;,(i3 ) denote thre mraximnumi power found for thre path
tairities iii the source/receiver locations, internal--waves; arid tides, rough front source s to array r intersecting thre ijtbt cell (all other coefficienits alonrg
surface scattering,-etc. Thre mreasureint process-itself cart be extreimely tire path are fixed), i.e.,
tiime-conrsuiig requiring weeks at sea to navigate thre perimreter arid send rxF,.
signrals through tire regiori. it addition, tire rise of high frequencies which 01(i)= i
attenuate-rapidly as a function of range liirits tile size of thre regions which
cars be sairpled. More generally, -workinrg with data ii tie time doirrarir Let flAi)be tire correspoirdirig-coefhicieirt, arid A,,(ij)-be thre length of
requires-high tinme tesol ioir -receivers -to distinguishr arrivals arid to-detect thre path through tire cell. Then, definre tire hew coefficient estimiate by
changes iii those arrivals wich result from -souird-speed variability. our l01"0)AlUiew-teciniique examIfines initerferenrce patterirs across-vertical arrays of fly- j i(i1) = Li),(j
drophonies for single frequeircy (riot time doinr) low frequency data (10 s,., A,.,(ij)
- 30 H~z) imodeled by highly- accurate nioriial iode ruethrods. Thle sour-rs Next, consider 132 arid repeat the procedure. Their, proceed to tile nextwill be explosive shots dropped fronm air airplane flying around tire periie cell. When all cells-have been processed-(onte sweep), repeat frontr tihe firstter, arid so experimental-tine will decrease front-weeks: to days. The new cell (note tfiat all tihe cells iray have cliangeel-tlreir coefficienrts arid so path
techniiquc -will effectively transfer tire burden fromr intense oceanographic contributions feorni-the non% rjtli cell will -have changed). For-tire resultssurveys to intense-coriputer demranrds. presented here, tire process was stopped-when tire total power P,,,,,

II.APPtOACH _r_ ,, was rio longer increasing.
Tile essence of tire new aphiroacli is to find tire famiily of sound-speed For tire examiple discussed, we obtained excellent results for 31 sweepsprofiles wich mraximiizes tire miatchred field processing (NMFP) psower' corn with a iraxiurn sounir-speed error everywhere of less than 0.2 ill/sec.

puted for each vertical array receiving signals frorm tire known shot sources oertreweotiraaycfgutonfrwic treloitrr
That is, signals received at tire arrays arc cross-correlated with inodeled g staledve, tope efre givi aranguodreats o, wcie alo osiered
irals wich have peopagated through canirdate enrvironmrrents, arid we seek vtar eiatso pe -ea for givsling tiodresults. So winh sol coirried-
to mraximiize throse-correlationis. If tire problemis-j properly posed, i.e., if vaitin of thvoithinbyeor n th l1ii eer w foupld tmatimthee
we imipose sufficienit constraints, then tire riraxirirumr MvFP power will occur varatol sorn"etrre unp7 ro E reults v geertiogial befutdtratethresei
onliy for tire trrte envirnirireiit. natons woeres pro e o esl oeg. riia utsmtie i

Tire first stage of tire process-is to characterize tire elrvirorrrrrerrt -ill as noaCwr as rn oNallingS
few-parairieters as possible. Oceanlographers-have developed a imethrod for Ow oihneta fiiNCLateriztioioS ieerrornrt ~.
deriving efficient basis functions, known as empriirical orthogonal -functions tWroughtire ue o fficdiied) cehrcriaothoon fu nion n, iae.,
(13O1s), front mieasured data-(Davis, '76) Consequently, air oceanl region throurcteary gse oorte nrcalt iithgnl cuaetiites ofu tre-
mighrt be very accurately described iii termis of only 2 or 3 EOFs. Tire ful sound-eed crvgorent ca i reuticlar wehl sawctat 4ertialesarraysl
simiulated "double eddy" enivironmienrt arid threir associated (mrodlified) EOFs 3.)udspagtree penronet -100 iofwte artidplacene saw ti t 4nterio ftirel rgios
used for tire results-ill tis paper are described iii detail iii Tolstoy et al., spainget th hipe-0distibutevry 25nknlacdlong the- pneriorrete reulte

ii iraxirririri erors less than 0.2 ill/sec for out 250 kill per side square re-Thre next stage is-to gri thre ocean-region into cells where each cell 7-ni anurd for tire frequency 20 liz. However, tire algoritiri arid variationscorresponds to one sound-speed profile, i.e., 2 or 3 E3OF coeficienrts. We oil it developed for thre inversion call stall. We arc presently working to findalso riced to consider tire geomietry of our problemi: how rirarry vertical nrrays a remredy for tis dificuilty.
will we use arid where will we deprloy their; how mnry sources will we rise
arid where will wye drop themn? For tire results to be discussed here we will JBibliogralp,,y
use four vertical arrays arid 36 sources distributed as shown iii Fig. 1. Each
array will have 28-phiones spaced at 37.5 ill for processing 20 Ill: signals. 9 13cirringer, D., T. Birdsall, M. Brown, 13. Corrreile, Rt. Ileirniller,

Rt. Knox, K. Metzer, WV. Munik, J. Spiesbergee, I. Sprirdel, D. Webb,
'See Ducker (1070) and Fjr'll (1i 871 for ,ieiailn ait ,% lFl P- Worcester, arid C. Wuniisch, "A demniristration of ocean acoustic

tormographry", Nature 200, 121-125 (1982).
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3.Iitial estimates for EOF coefficient fli(ij) as a function of range and-

cross- range. The coefficients around the perimeter (where the sources

are located) and at the arrays are known; otherwise, 61s constant.
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WAI 4. Initial -estimates for MFP power P_ at array r 1 for each source s

given initial environment of Fig. 3.
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2. Plot of the dominant EOF coefficient1s(rj) as a function of range and 5. Final estimates for EOF coeffic~ent 3&(j) as a functic it of range and

cross-range. The scale has been normalised so that-negative values cross-range. Compare to Fig. 2.

range front -1Ito 0, positive values from 0 to +1.
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A NUHERICAL INVESTIGATION OF CIIEBYSIIEV SPECTRAL ELEMENT METHOD
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Abstract - Seismic forward modelling is one of frequency domain, for- interpolants of
the- foremost tools for investigating nave increasing order.

- propagation in complcx geological structures.
Morebver, due to tile complexity, both

- lithological- and stratigraphical. that can :be :I. CIIEBYSIIEV SPECTRAL ELEHENT MIETIIOD
found in such structures, the Ilse of a
numerical method Hith great accuracy and The Fourier spectral technique is a particular
flexibil-ity is needed for correct results. In case-of the more general spectral methods (SPH)
this- respect, the Spectral Element Method [5], and both spectral and finite element
(SPEM) whioh combines tie accuracy of spectral methods can be seen as particular cases of the
techniques and the flexibility of f 1uinte class of discrete numerical techniques for
element methods is well suited. The method has solving differential equations knoHn as the
been applied- to solve the acoustic Have method of weighted residuals (HWR). With the
equat-ion. Accuracy and-convergence propertLies MWR, -the solution is obtained by minimizing -the
of Chebyshev SPEM1 are discussed in the present residual i.e., tile error in the differential
work. equation produced by using a truncated

expansion instead of the exact solution, with
respect to a suitable norm. To -this end, a set

I. INTRODUCTION of trial functions and a set- of Height
-functions must- be defined. The trial -functions

The- most widespread of the discrete numerical are used as the basis functions for the
methods for modelling seismic Have propagation truncated series expansion of the solut-ion; tLhe
are the fini-te difference (FDM) li],i61, the Height functions are used to ensure that thle
Fourier or pseudo spectral (ESH)- [4j,[7j,L8J, differential equation is satisfied as closely
and the finite element -(FEM) methods [9J,[1-OJ. as possible by the truncated series expansion.
Even though based on different mathemat-ical The choice of trial functions is different for
approaches, all three methods rely- on the space the two methods. In the case of the spectral
discretization of the geological structure to methods, the trial functions are infinitel-y
be modelled. In particular, the pseudo differentiable global functions, while for the
spectral method can be seen as a limiting case finite element -methods, the domain is divided
of the finite difference methods of increasing into small elements, and a trial function is
order and accuracy [3. The main advantage of specif-ied in each element. In the latter case,
the FSM is its great accuracy, allowing for- a the trial functions are with local support, and
lower number of grid points per minimum so Hell suited -for handling complex geometries.
wavelength propagating in the model; a saving Following the Galerkin approach, -tile Height
up to several orders of magnitude in computer functions are tihe same as the trial functions
memory and time can be realized. On the other and are, therefore, smooth functions ithich
hand, the FEM is Hell known for its flexibility individually satisfy the boundary conditions.
in describing problems ith complex geometries; Tihe Chebyslhev SPEll that He present in this
irzegular surfaces between different media call part of the paper is based on tihe idea of
be defined with great accuracy. A method which decomposing the spatial domaini, iHhere the
combines FSM accuracy with FEH flexibility is physical problem must be solved, into
desiderable for seismic wave model l ing. A subdomains, as i i UEl, and then oil each
high-order finite element spectral method subdomain expressing the solution of thc
£12),[13J, seems a good candidate for this. problem He are looking for by a truncated

In the present work, He shortly present the expansion of orlthogonal polynomials, as in SPM.
Chebysliev spect-ral element method and then we More specifically, in the case: of one
discuss the implementation and- tile numerical dimensional problems, Hc decompose the original
results obtained for the one dimensional spatial domain T2 into non overlappi no elemeints
acoustic Have equation. The accuracy and Qe w ihere el , ... n e , and nle is the total
convergence properties of SPEM are investigated number of elements. As approximating functIons
by comparison i -th standard finite element on each element Q. , He chose functiois
method and uith an analytical solution, belonging to PN space i.e., pollnomials of
Estimations are carried out by computintg a degree -.No in x. Then tle global approximating
frequency error index function, -that relates function is build up as a sum of tie elemental
numerical and- analytical resul Is ii the approximating functions and, therefore, is a

colt i nuous fita ion ih i cl is a piecewise

polynomial defined on the decomposition 11 of
* This work Has supported -in part by the original domain il. The coltinuity of tle

the Commission of the European Communi ties derivative at Lite element interfaces is, not
under project EOS-1 (Exploration Oriented satisfied for fixed No, but only as a
Seismic Hodel ing and Inversion), Contract consequence of the convergence proeo2; 1 .O..
N. JOUF-0033, as part of Lite GEOSCIENCE whein all N. tend to infinity.
project within the framework of the JOULE We nef disexuss lhe construction of such
R F D lrogramme (Section 3.1.1.b).
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approximating functions us injg- Chiebyshev in an elastic-rod. The ini-tial Iboundary value
or-thogonal polynomials. A -function f(x), problem for a rod of- length L and with fixed-
defined on tile interval- [-1L, 1], canl be boundaries can be stated as follows:
approximated by a truncated- expansion of
Cltebyshiev polynomials as fol-lows: _given uo and-ito, fi-nd a continlous funct-ion

N D& x COPT] -. R such tha t it satisfies Lte

f(x) - I~f(x) =f(x) = k= GJ~k(x) (2 e Uation I
... L.2L.LL0 on D2x(0,T) , (10)

where Tk are the Chiebyshev -polynomials defined 2  at 2  Ox2

as
wi-t u(O,-t) = u(L, t) 0 V-t e (,T)

Tk( cos 0) =0 co O (2) and u(x,0)=u(x) , ii(x,0)=il0 (x) VXGU

or, equivalently, with thle recurrence relation whiere tile dot ini it injd icateLs partIialI

TkJ~)= 2xTk(x) - Tk..I(x) Vk, 1 (3) differentiation Hith respect to time and ulhere
Tk~l~x~ u(x. t) is thle axial di splIacemen t, c2 li/p is -thle

and TO(x) = , Tj(x) =x. Us ing- the -or LtgonaIi ty chtaracterist-ic velocity (velocity of sound), Ei
property of Tk and thle Gauss-Lobat-to quadrature is Young's modulus, lo is- thle rod densitLy, and
formula, the expansion coefficients OR are C1O, L]
easily computed. It follows that tile If we look for suff-iciently regular solutions
in~torpclant of f can be mr-itten as ut, an equivalent, variatijonal formulation of

equation CIO) is -to f-ind u(x,t) solution of
N

INf(x) = f(xj)(Pj(x) (4) d 2  H(X [ ~,td Ow(x) aO(x, t) x0 ()
d 2 2 i Ox

where qf(x)r=PN are Lagrangian inieorpolanits
satisfying tile relation qi(xk)-5ik withinl thle
interval [-1. 1] and identical~y zero- -outside, for all func ti ons w(x) whtich vanish onl the
The Lagrangian- intorpolants are given -by boundaries and whtich, together wi Lt their -first

derivatives, are square integrable over L2. in
N order -to obtaill thle spectral-lement

jW 2L_1 Tk(x-)Tk(x) a pproximation of the equation (9), He decompose
O k U into ni-over-lapping -elements Dr I and on Lte

k=O
decomposition 91 me define thle fol lolling

wth 2 -fo j 6,14(6 finite-dimensional spaces for lte trial
j=0,Nfunctions u(x,t)

and- where xi are lte Chiebysliev- Gauss-I.obattop
quadrature points SN M CO -~ x0 IoT]) I u;c PN. ui(l, L) = t(I., L) 0

xj = Cos7) for j = 0o.r- N . (7) and -for -thle weight functions H(*)

lin order to apply these interpolants to lte VN = {w e CO(f2) ePN; -H(O) =H = ()01}

spatial decomposition Q2, we define Lte mapp ig
p10)(X).X x- l -4~(0) C_[ -1. .1], between thle point wh15 miere u. and tic denote thle restriction -to De

__________of uand wP respectively, and N denotes
x C [a., a,+IJ of 'thle elIement D, and Lte l ocal1 ( 1 .. No), Us injg p rev ious de fi t i ols (9) for
element coordinate system, by the interpolants onl Do, and according to lte

;(e) (e)(8) Galerkin approach, in -the local coordinate
~- ~ -di()system, iuinction; tic and 'He take thie

fol Iow injg form:
14 i t A, = ae+, - a The Cheblyshecv
Gauss-Lobatto interpolants in -thle U. element He
are thean written as u(a) t) = -u () () (P 1 (12

N0  j=a

qe)~())= Z Tk~e)T(~e) ,(9) No

j=O
where T are -thle causs-Lobat-to point!- in thle
local coordinate system, where uiPkt:)= i,0 (x ), L) and w)wx) are Lte
for thle spaLial discrotzatioii of a1 grid values of Lte unjknowni approximate solution

two-dimensionail problem, the Cartesian products and of Lte weight functions, respectively.
of thle Chebyshiev-1.obatto- points are used onl Using thlese approximating function space!; and
each rectangular element fl. alid Ite Lagrangian tile mapping p(e)(X) to- solve equat ion (9), by
interpolants are represented uising tensor straighitforward computation, IAt call te shojili
products of Chebyshoev polynomials. htteoedmninlnv rncaii

problem becomes as follows:

III- ONE DIIIINSIONAL WAVE EQUATION g iven mzoo and iig1 ,, find ""'5 sc~a thi for

To illustrate SPEll in practice, wec use as model al r VN thle (ohI louil c equ itIIo its arc
problem thle one-dimensional wave equat ion hicho satisfied:
describe lte propagationi of longi tudinat waves
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ee ng -n1(

(xe, -4 ne)N + a(Me, e)N (14) r=is=1
e= dt C i h 1 (e) (B(e))T m(c) D(e), K(e)= (B(e))T k(e) ,(e)

where (B(e))T is 'the transpose matrix of B(e).

5ith ie(xO)=ltoe(X) , e(X,0)=oe(x) Ve * Applying the relations (23-24) to the
var-iational equation (14) and requiring that

where-a(= , *)N and ( ) N are symmetric, it be satisfied for all Mr. tile spectral
bilinear forms given by element approximation of our original equation

Ne Ne finally leads us to solvb
(()e e(e)e)(t) dC) ng()

i=o=o Z rs P Krs S(t) = 0 , (25)

Ne Ne s=1 dt2  s=1

a(go. Z )N = Zk(c) c)Z(e) t) , 1)n

i-Oj=0 jRitl H =7 H( ) " K = K(e) (26)

and m(ie) and kle? are, respectively, the e=- e=1

elemental mass and stiffness matrices where H =[Hrs) and K=t1rs are,

Ne respectively, the mass and stiffness matrices
e) 2Ae .5)i(e( obtained after a global nodal renumbering and

- 2 2 pqTp(Tq ) IqJ pq (17) assembly of tile elemental matrices. The
c2(N0 ) p,q=O Dirichlet boundary conditions u(O,t)'u(Lt)=O

are imposed by matrix condensation i.e., by
Ne eliminating tle rous and columns corresponding

-_ 8 -- p )q( pq° (18) to the two boundary points from the system. In2e( N e ) 2 a iT
Ae(N0 ) p,q=o the case of Neumann boundary conditions, they

would have been taken into account naturally
nitl'ij=1J(-i~j) . Here by the variational principle. Therefore, te

have obtained an algebraic representation of
fpq TTdx the original problem which can be non stated

Eqjp as follows:
0a for p +q odd (19)

- 4 1 for P .1q even given the vectors U0 and 0O , find U such

_(p+q)2  1_(p-q)2  that it satisfies the equations

and H U + K U = -0 , (27)

_ +l drp dTq d with U(O)=U 0  ,U(0)=U 0
kpq =[ dx dx d

- x dx(20) where the unknown vector U contains the values
0 for p +q odd of tle discrete solution i at all Chebysltev

p- for q even points x e) , for j - 0 ... N and for all
{_432 p I(p-I p 0e O I..... e  except for xV)= 6 and x~e)= . .

where The matrices H and K are posi-tive-definit,
symmetric, and band-limited, the bandwidth

r- for 11 = 0 being determined by -the largest N0 . They can
0 n be easily computed for each chosen order of the

in= -o- for ni1 (21) interpolants.
2r=- To solve the system of linear, second order,

ordinary differential equations with constant

Let us define the connectivity matrix B(e) [11] coefficients just derived, He must integrate
as the matrix that topologically connects the over tihe time interval (0, T]. This is done by

approximate solution values in tihe local discretizing the time variable as tn fnAt,

coordinate and numbering system, to the u5  0 ;n :5NT , where At TINT and NT is tile
values, in the global coordinate and numbering total number of time steps. At time tn , the
system, such that solution will be Un=U(tn). From the different

time integration sciemes which are available,
ng se used the Newmark central difference scheme

13e)-- De B US , (22) Hbich is an implicit two-step scheme,
s -- conditionally stable and second order accurate.

shere ng is tile total number of nodes of tihe IV. ANALYSIS AND DISCUSSION OF SPEr
decomposition of the domain T2, and B(P) is a
Boolean matrix. Substituting expres.,ion (22) In order to Jnve.;tzgatc tile accuracy of tile
into (-15-16) leads to method, comparisons sere done between the

analytical and numerical solutions of the oe1g ng dimensional problem expressed by equation (10).

(no' "1e) 1 = H ( -) Zru'is(t) " (23) The general solution of the problem Is given
0 r-Is=_ by
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p0 yioili al orders N -, 2, 3, Is, and SIIM1 iili

uI(xQ= [)- l 0 (x ±ci)1' 0(x-c) orders N - 4, 8. I:2. 15, 20, 30, 40, 60 have
2Jbeen- col Iccted. No orders less thal N-4i Here

X+c t A (28) chosen for SPEl1 because of the fact that -111e
0(-- ds ,CllObYchov 001100 Li oll-po iiiti f or 1oi WIp01Ynoi0- (

2c J dt order are very cl ose tO the ecnittspaced po ints,
JxC -so that noe i f ferenco -betneen ies I Lien

lihere A 0 ad ijdtreteod2.prdi oh tallied iiit lia til Lio Me10thiods call be0 expected

extensions of- -it0  and it to tile eii ire ral I i practLice. Dur ing -the experi(mentIs. -lte
axis E2].J1. number of nodes- Has hlId- conls tant (n119 120), anid

Discrete numerical methods for Solving a I'DE time stops Here chosen for each polynlomill
introduce errors in lte SoughtL soluii on bit I order Such as to) olisure nutmer Ical s Lab I II ty -

they got progressively less as Lte mesh s i 7o Thle first Set of experi(ment s conlsis ted Inl
beomes -filler. Numerical modell-ing for Have simulating tlia Propagation for 2880 grid poinits
propagation actually behmaves, as a Ilos pass of a broad band impulse throughi ilia last-ic
fi I ter -ii thle sense thlatI low f r equeic loas homogenecous rod, 1)0ti HiI li Flu- anld Sl'lIH, but
accurately propagate throughl ilia Mesh iihernas Hi I-I -di fferent polyn~omial orders. By using- a
Iiigh frequencies are undes irabl-Iy modi fled b~road band impulse, He sh~allI see Ii.,t it I 15

[10]. Tile most evident numerical- effects (in possible to identify, for each order of
tile hli gh f requenicy band) are numerical approxima tion, a lou f requency band iere -tile
atteniuatlion, -numerical an isotropy,* di spers;ion analytIical and thie numer icalI so In ioiis agree.
in niumerical- phase anld group veloci ty, anid Tile -maximum extreme. of Ltis ilnterval give:, -tile
numerical -Pojarizatioli. Due to this fact, minimum G for Hhich Ile-solut ioul is good. Tile
frequency analysis is a very siiable approach cGmin(N) correspoilding to lte maximum of this
for ilhe ivestigatioli of numeri-cali model)ling ba1d doie aI iallngl Imi m1i(h) 5X
resultis. It makes it easier to doetermin 110tme Rhi oh is tile minimum HavelonwiLt Llial i te Model

spectral band- in 511(01 Lte equation is solved canl Propagate nithiout appreciab~le errors.
corecty; tha- i to f-ind tit, mnimm In a second set of experiments, noe used an

corrlecty -toratis ao ind tumeria miiiimn impulse uith a spectral -band appropriately
waveengh -or hic a ive nimorica mehod bounded -ill bigh frequency in order to prove

is accurate. Fol loning this approachi, lie thiat- in this case, lte propagation errors are
introduce tkte "frequenicy error=ilidex', a negligible.
complex funct-ion defined as As ali example, figures I aiid 2 Shiow tile

-Uiium(W (29)w frequency error-index in both amplitude aild
11(w) == I1lht) e (29 Phase, respectively, for SPRll mithi polyniomial

Ijan~i)ordoi H-15 mald for a propagation of 960

Where idan(i) mild -13num((W) are, respectively, grid-points. Tile Ion-frequency bonld of thle

lte Fourier trans-forms of lte analyt-ical alid model, whoire analytical ad numerical Spec tra
numerical solutions thlat He unant to compare, ari good agreement, is Hell defined bothl by

The frequency error-index makes -tIte time ampl itiude a11( phiase of lte f rewuelicy

interpretation of the results- effective smnco r-ne x TIe phshnvrs svr
it is not affected by tlile spectrum of Ilia mi instability just after thle va Ilie of

chosen i-ni-tial -impulse but depends only onl Ilie GMill 4  rmti uv i aileiler
numerical model. Bly considering bo~ i te real that in lte lou-frequtency band (thiat is -for

and imgnr ar f tl remel 0< 1I(Gmin Ax) ) no Phase Shift exists. Similar
imagnary part of ile requncy resul-ts moe obtained in -tie othier cases.This

errr-ide, te eca cf aeliac du ioL lily no numerical dispersion is observed for slaves
-to amplIituide var iatLions; Cullen I11()l YI. )# ) but nihi ch hiave a frequency in thic correct range.
also to velocity dispersion (shIill

- In(iw)) '\ 0 ai10lVSLgtd I E#01= ______________

Moreover, !in order to get an idea of lte rMt I 3
of accuracy decay in tine for each p-ulynomia'l 21
order, we call use Lthe frequency error-inidex lE0O____- ---

function. it is clearly impor-tailt that, for 7:____
large scale modelling in particular, not oinly
efficiency (timte nulmbier o f grid-points per2- -

wavelength) but also accuiracy of a numerical
method be -stable in time (after a certain IE-0l - -

reference distance of propagation). s-------------___
lie discuss mow tile numerica er xpe r iments 1, 3 - - -__

performed and -,ie reslt s ob~tainled. I~c I us 2 -

denote lte number of grid- poin ts Per uavelciigth IE-021 1 7
by 0. Tile following relations ho I d - .000 .050 .100 .150 .200 .250 =30 .350 .400 .450 .500

JG = Ax/)., 0 <1113 . 5 . As i 1i tialI condi L in 1/G
for ilea displacements, thlis faunction Has chosen rig. 1. Ampli tude: o ite Ire11,.Cno7 orror indox
Such that for 31 111 i it vnlyiioiioi order Is at mb distiusice

of propnetreion of 960 grid-points.

u()() -A os(2r~o) cx[B~-xo 2 30) Figure 3 contains a Sketch oif the value.- oif
Analytical and numericai solult i on!; Here Glmin(N) for tile trials-. For 5Sp1:1, Since the(

compared at -travel d Is Lances 1ii slit iohl the inticr nodal l ong Ill Is var iablIe ill.side eachI
anal yti cal Solumt ion r eassiimes thia or i q nfl Iform elmcint , tuo dliffereOilt estLimates, oh (, leave bieon
(because of Lthe Periodi ci ty Of tile 30111tloll taken into accouinit by H.- ing tlia meali valuie ("dx
(28)). Resuilt-- of simulations liy VErl 11th mean") and maximum valu of dx C"dx max"). As

lte polynomial order increases, tlhe values of
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Radto the "dx max" estimate. That is, -Lte

3-d theoretical l-imit of the spectral methods,

G;!I 02, -is reached l ocallIy mw it SPIll, Mhich
____ _ ___ _corresponds globally to -M.-3 for the Chebyshiev

I __ _mesh.

IFigures 4 shows thec ampl-itude of the f requtelicy
I error-index for the propagation of a pulse

L__ whose spectrum -is inside the model frequency_ jflband (defined by (o < 1J(G(N)Ax)=( ~)N for order
-1 ______ N-15 (SPEll); for this order, 0

mi(
5 ~- For a

- -propagation of 960 grid-poilits. lte computed
spectrum has inl Practice negligible errors, and

-2 ----- -.- -the out-off frequency is -reached abruptly with
11111almost-no errors in lte high part-of the model

-~ ___ -spectrum band. The wave-forms at lte same
.000 .050 .100 .150 .200 .250 .300 .35 .400 .450 .500 travel distance are shown in figures 5 and 6

1/1 using a broad-band impulse for a 3-order FEll

Fig. 2. Phase of the frequency error-index fo and a 15-order SPHll, and in figure 7 using- thle
SPEll with polynomial order 15 at a di-Itance of band-l-imited impulse, respectively. In thle
Propagation of 960-grid-points, last case, lte errors -are of the order of

10-4'. From a comparison, it is evident that
G SPEll is globally better -performing and almost

3- 1 FEMnon-dispersive, as expected.
.LJI'~E(dxmanhAs a f-inal point, G values were collected at

SPE (d otn)diIfferent time steps and for different
polynomial orders. lit figure 8. curves are

lE,0~~a(dx aildrawn representing thle -variation of G -with
_____________ travel -distance for polynomial orders 1, . .

8'- (FEl), 4 (FEll and SPIll), and 1tS, 30 (SPrll).
6. T or low order FJ-:H -Lthe curvesshwaqlt-hh

sl~ ______rate of increase, thus a large number of grid

4- ~ points per wavelength must be choosen for -long

21 . I,*I.. .0  -An lyticl

16.00 3 45 6 SE#OI 2 3 4 56 0.50-_ Numetical

Fla. 5. Values for the minimun number of 0A 0.- ERRO

_4r!dI-Points Per wavelength (G) versus the I.I LA
polynomial order 00i for FFtI and SPElf, at a 0.20__
distance of propagation of 960 grid-points.A
Estimations of G wero done, taking into account 0.00 1, A.AA A

tho mean value of dx (dx man) nnd the Maximum__________________
of dx (dx max) respectively. 

0.20I

Gmili(N) for botih estimates show a trend t ha tEnr ___--

looks asymptotic. very low4 values of Gm 30 X.

5 )ar rechd fr rders greater than 8; for 30 Z
N-60 a value of G1 51 1 (60h=3.4- was found. The_________________

seodtp fetmt is interestingy because, 0 1 2 3 4 5 6 7 8 9 10 11 12
-for a- wave propagating in a discrete Clyshlev X
mesh, the sampling is minimum in lte middle of Fig. S. Propagation of broad-band impulse for
thle element where the inter-nodal Ilngthi is FEN wit UsPolynomial order 3 at a distance of
maximum. It should be noted that according to 960 grid, points, Wave forms of the nonlyticai

tile11d mea" etimae, ile symtoti vaueand numerical solutionf, and relative error are

is Gz3. but this corresponds to Vy: ? accordingreesnd.Temxu rori0..

0.60 f-Nsr4

jSolutions
_______ ~~0.20- - _ ______

2 - -. 0. , I. 1i_ _ _ _

3 30 Error_

2 O z AAAAV
± ~~~~-301 ----.--- - ~ .. -______

16-02 T l r T
.000 .050 .100 .150 .200 .250 .300 .350 .400 .450 .50

11IG 0 1 2 3 4 5 6 7 8 9 10 1*1 12

Fig. 4. Amplitude of the frequency error-IndeX
for tlhe propagation of a lou-frequency impillso Fig. 6. An in figure S, 1but for SPFll with
for SIMER with polynomial order 15 at a distance Polynomial order 15. The aximum error In
of 960 grid-points. 0.23.
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almost no dispelsi-oi;-

1.00 li~~T1i~i~* te order of lte interpolants canl be changed

0.80 .. J JI $ i ver easily.
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Abstract - We consider CW radiation by a point source-in-the - + Vp = (6(X)1(y)6(Z- z,)
presence of a two-scale randomly-layered medium (a slab of finite ( z(1)
thickness or a random half space). The source can be exterior to K-'1-tp + V -U = 0
or buried within-the random layering. Expressions are obtained -
for the first moment and two-point correlation fuinction of -the
acoustic-pressure. wheref = (Ce,C2,e3) is a constant unit vector. The bulk-modulus

K and density p v-ary with depth as follows:
Introduction.

Abyssal plains-comprise much of the world's ocean bottom K-= !4-/c 2 )J -L <<
and-consist of a sediment layer (nominally one kilometer ihick) -
lying upon arock-basement. The sediment layer is itself of hetero- K', z-< -L (2)
geneous composition and possesses acoustic constitutive parame- (Po, z > 0
ters (density and sound speed) that vary on two length scales [1). -L< z<0
On-the one hand, the formative deposition processes have created p2, , z < 0
a material, layered with clay, silt,_pelagic remains-and the like, '- P2, z < -L
whose constitutive-parameters fluctuate rapidly with depth (on where 11 and v are zero mean stochastic processes. Fourier trans-
the scale of centimeters). On the other hand, compactification formation of the transverse spatial coordinates leads to the fol
due ti. overbearing has imparted a slow scale or macroscopic -an-
ation to the mean value of these parameters; mean sediment sound owing system of stochastic ordinary ditterential equations.
speed, for example, increases with depth at a rate of roughly one
see 1 (2], and thus undergoes an 0(1) change on the scale of a d 143 + : -.
kilometer. In the transverse directions, the acoustic parameters (3)
of the sediment layer-are believed-to remain constant to a degree d -
that makes one-dimensional modeling a, reasopable idealization. d ce

The propagation model, therefore, that proves useful in-the study
of acoustic propagation within the ocean sediments is that of a where us is the -component of (transformed) partie
transversely homogeneous (slightly dissipative) slab whose acous- is the scaled transverse slowness and W2 = &_ . Continuity of
tic constitutive parameters have a rapid fluctuation structure su- pressure and normal particle velocity at interfaces z = -L and
perposed upon a 51o% meai, vanation an the depth darcetion, r - 0 and outgoing radiation conditions as z ± c complete the

problem specification.
A small-parameter c (0 < t << 1) is used to characterize

the scales. The correlation length of the fine scale constitutive Some Res'us,,
parimeter fluctuations is assumed to be 0(c2) while the macro-
scopic mean variations are assumed to be Ol). Ihe wavelength U sing the asymptotic theory derived in [31, we can character-
of the CV source radiation is assumed to have an intermediate ize the first and second moments of the 'reflected and transmitted)
0(oc) spatial extent. This interpolating wavelength regime is the pressure For brevity, we here give results for the simplest con
most interesting. The wavelength spans many correlation lengths figuration, for the pressure reflected from a. lossless random half
and a useful limiting probabilistic description of the field quant -pace (i r f - x) having a constant deterministic background
ties of inteiest. is possible. Yet, wavelength is small relative to the and only random sound speed fluctuations. For this case, the
macroscale and high frequency (WKB) approximations can be ex- coherent reflected pressure is:
ploited. For the ocean sediment environment, with a macroscabe
of one kilometer and a correlation length of ten centimeters, c2 -iE(Prci -Zt) + Y2 -If t
would equal 10- 1 and the corresponding wavdength would there- O4:c 0 R L R j
fore be ten meters (roughly 150 lIz.).IF f;pipi c:j R2- 21 r2-12- -1 -

Results presented here comprise a small portion of a compre- [Pps'z,[crc- 2 a2 - r2[l2 + lJ (4a
hensive theory, developed in collaboration with Mark Asch and
Marie Postel. This- theory, which encompasses pulse as well as where
CW excitation and inverse as well as direct problems, is summa- r = r2 +, c. (Kjfp)'i = - (4b)
rized in (3].

The Problem. Thus the coherent reflected pressure is determined by reflection
from an elrective medium, characterized by p, and c,. When

Consider a-randomly layered slab occupying -L < z < 0. the problem is further simplified by assuming that the medium is
with a CW point acoustic source at height :, above tae origin, matched (ie e t e=#) and the source is placed on te interface
Assuming an e - 4 ! timedependence. the (scaled and dimension- 0, the reflected pressure intensity becomes:

aos ti equations become:zy,.LI 2 
-. j ,dzJ ,T ~
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where the-localization length I-is given by

I = 2c 2 -I.,(crv(0))dcrj (5b)

Note that-when radial distance from the origin is-much greaterr
than a localization length, i.e. when - >> 1, the reflected inten-

sity becomes approximately equal to:

E{Iprcii(X't/,O't)j2) ;_ 1,2 ()
1287rcr 3  (6)

Thus, the-theory predicts that- -" .- ntial amount of acoustic
eneigy is reflected from the-randomly layered ,, d

References.

[1] 13. E. Tncholke, Acoustic Environment of the -iatteras and
Nares Abyssal Plains, western North Atlantic Ocean, Deter-
mined from Velocities and Physical Properties of Sediment
Cores, J. Acoust. Soc. Amer., 68, 1376 - 1390, 1980.

[2] E. Hamilton, Geoacoustic Models of the Sea Floor, in: L.
Hampton, ed., Physics of Sound in Marine Sediments, Plenum,
New York (1974), 181 -221.

[3] M. Asch, V. Kohler, G. -Papanicolaou, M. Postel and B.
White, Frequency Content of Randomly Scattered Signals,
to appear in SIAM Review, 1991.

556

558



ACTIVE TIME DELAY AND PHASIS ESTIMATION IN UNDERWATER ACOUSTICS

0. JOURDAIN

CEPHAG/IEG BP 46,38402 St Martin d'Hres; France.

Abstract Two examples are given below, coming from 2 sea experiments. The

We are interested in active identification of the multipath underwater first (fig.2a) has been obtained in the following conditions: shallow

(u.w) propagation, ic in thcestimation of path parameters (delay;, water; E/R distance = 4 km; Vo - 500 Hz.. The 2nd example is deep
amplitudes and phases). This-completes-the prediction given by the water, and more stable bccause vo -60 Hz, dE'R = 140 km.
wave propagation equation. The classical method ,"or identifying the The mulupath strutture is eviden ot both figure' with diffcrent typhal
u.w channel response is presented, and some examples of u.w time variations of parameters.
multipath channels are given. The problem of path parameter estimation
becomes more difficult when the paths are very close. We hve
proposed some high resolution methods -or joint estimation metioJ3 - a)
which enable to solve close paths, estimate their parameters and follow time
their time variations. Some results applied to u.w data are finally given.

I.- MULTIPATH PROPAGATION IN U.W ACOUSTICS r

It-is now well admitted the u.w channel can be modelled as a linear
filter F between an emitter E and a receiver R, moreover the additive
noise.

t)=F(s(t)) + b(t) (1) delay -, A)1-"  .20 -' delay .. 1

Fig I-: The u.w channel model

This -filter takes account of the energetic aspect (absorption,
diffraction...) but also of temporal andfrequential distorsions, and
particularly multipath effects.
According to the propagation and geophysical conditions (E,-R,
bottom...), to the carrier frequency L'o, and also the time scale of 0
interest, this filter can be modelled either-random, ordeterninisticor- -'d A' delay
time varying-[1] . Anayway-the description of F, and its time or Fig. 2: Examples of u.w responses H(t)
stochastic variations, is a main complement to the prediction given by
the solution of-sound propagation equation in u.w acoustics (ray or
mode theory, Or hyperbolic equation...) which only gives an From many sea experiments [1] one can considcr the positions i k are
approximate and static solution. always stable-enough ; tne amplitudes Ock are often rapidly varying (as

As the emitted and received signals are always band pass around )o, soon as Vo > 100 Hz) , the phases 4ii. are not seen here, they are
we use the complex amplitudes relative toi'o, denoted c(t) for emission, always slowly varying, and very often the path phases differences
y(t) for reception, n(t) for noise, and H(t) the corresponding channel 4k. 4j are very stable.
band pass impulse response (i.r). The multipath propagation is For a precise estimation of paramettib the problem is no longer to
traduced by estimate H(t), but the set ofparacneters (ct-, 41k, tk) of the model (3).

p
Y(O I ak ei4 k C(t-k) + n(t) (2) 1I- PARAMTER FSTIMATION OFTHIE MODEl. (3)

k = 1

p Il1-l. One path case : In this case (p = 1), and if n(t) is white,

H(t) = L (k eik 5(t-rk) (3) gaussian, with psd yo, the above mentioned cross correlation (CCOR)
_k 1 leads to the Maximum Likelihood (M.L) estimates of T,ocA, denoted

by th, p e . t • n is the delay for which this CCOR is maximum,
where the parameters ck, 4k, 'k are assumed here constant, but they & and are the modulus and phasis of the maximum of CCOR. It is
can be random, time varying...ctk traduces the cncrgctiL, level well known these estimates are asymptoutally unbiaised and their

transmitted over the delay tk, the phasis 4Pk includes the phasis relanve variance is bounded by Cramer Rao bound (the performance is directly
connected to SNR and c(t) effective signal bandwith - see 13]).

to-the path k plus a delay term (-2 rtvoTk) plus an eventual As soon as p -2, the cak.ulus of ic structure of joint ML estimate of
demodulation phasis. the parameter set become.v complex, and the performance calculus too,

particularly when the paths are very close (closer than l/W), ie-when
they are no longer distinguished by the CCOR processing. (Let us note

-NOFTE IR EXPERIMENTAL EXAMPLES the cases of 2 and 3 joint paths have been treated [41). So in the
examples of fig 2, some of the paths are well separated, whereas bume

The problem of interest in this paper is the estimation of the u.w other are undistinguishable.
channel. Let us note we perform here active identification, and not 111-2. Close paths estimaton .Dillernt slutions have been proposed
passive time delay estimation (see for ex [2]). It has been shown [3] in order to solve and estimate close paths after the CCOR step. this
the minimum output error solution for the channel identification is to tirst step is important because SNR is improved and some paths are
emit large WTproduct (W bandwith, T duration) signals, and to cross already solved. A first kind of methods tsee [51 and references)
correlate the channel output with a copy of emission In baseband consists in transposing the hugh resolution (HR) methods well known
notation this leads to in spatial or frequencial filtering (Music methods...). We have used the

P Tufts Kumaresan method for the case of fig 2b [5]. Without detailing
Fyc(t) = k ik 0h rc(t-Tk) + b'(t) (4) this method, let us say i) it needs a deconvolution step, ii) the

k= 1 estimation of the amplitudes ockeidi k is uncoupled of rk
where re is c(l) auto correlation function and b'(t) = 'yn. cstimation,which is not optimal.
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In any case the number p of paths must be first estimated. C) d)Let us see now a second kind of method which directly joint estimates 0-0d)the set of parameters of the model (3). 20. ..... *

0 5 to IS 20
IV - JOINT ESTIMATION OF DELAYS. PHASES AND 1

-IPJoflo ',o°, ,.,.. o

IV 1The methd : By time sampling the equation (4), the following o 1 20
matrix/vector equatio is obtained .

50 °

£= M ,.F . a~h(5) '
0 5 10 ts 20

where M (.,.) -is the-model matrix (where _ is unknowni but Fc is too
known) and a is the unknown complex amplitude vector of akceik . -01..........
The minimization of- 20 30 40 50 0 0 5 0 5 20

delaytimeJ lE- M 11II 2 (6) delaY
Fig 3: Joint estimation of a couple of I .. and 4

versus the wl'le-'t and a parameters is the optimal-least squaresolution (or ML solution if Db is gaussian) In this case too, the The results are given in fig 3b g 0 corresponds to the minimizationnumber p must be first estimated by a detection criterion for example; T a n m fipractically one -cantalso test several values of p. These optimal of J (6) ,-and-infig 3c . A = 0.05 corresponds to the minimization ofestimates are [4): Jn (8). Now two paths are well exhibited and identified, and their time
Arg min II P .1 y 12 variations are followed. Their modulus and phasis are given in fig 3d.

= Arg minJ where P I-M(MtM-I)Mt

The principle and some results of the estimation of the u.w channel i.r
The mzniMilatlon of-J is performed by a gradient descent algorithm have been givn , particularly for the multipath case, the estimation ofjudiciously initialized [4]. delays, amplitudes and phases has been studied. The CCOR stepimproves- SNR and gives a first path separation. The improvementIV 2 Sequential estmatiQo-: The above minimization of J is applied to given by the second step (minimization of J and; better, Jn) enables to

solve andcharacterize close paths. The method performs even wheneach receiVid data i te each CCOR ry'c(t). In our u w case,-as the number of triple parameters is not small (for ex-. 6 paths).
shown in fig-2, one always disposes of several successive ryc(t). We
have recently-proposed [4) to improve the procedure by -taking account This estimation is important in two kinds of objectives
of successive intercorrelations. The above non linear estimation methodenables to easy introduce this as a priori information This ic equivalent q the knoledge of the u.w propagation - and there is now a largeinterest in-it, for ex. in the international u.w-Acoustic Tomographyof adding a constraint equation on some parameter 0. in (6) Project [6].), which is based on the precise time-delays estimation.
("regularization").So now one tries to minimize for each record rycn ii) the elaboration ofefficient detection or communication u.w

systems : it is important to know the structure-and variations ofJn = IIrn- M- (In, 1e),a ni2 + l - ll (8) multipath to compensate them.
This work has been partly supported by French DCN, and also an

In the u.w case, as the delay positions '(k are stable enough from one Ifremer contract.

record to another, we use only I as constraint parameter f. in (8).

IV 3 Results : In the fig 2b, there are 3 "main paths" but there are VI - REFERENr'PS
perhaps-some unsolve paths inside them and the ray tracing predicts 2close paths inside the second "path". First a zoom is made of this [11 0. Jourdain, Advanced methods for the investigation of thesecond "path" (fig 3a). One tres to identify a model like (5) in it. underwater channel - Underwater Acoustic Data Processing -Ed. by

YT. CHAN, Nato ASI series, Vol. 161, 1989.

[2] AH. Quazi, An overview on the time delayestimate in active and
passive systems for target localization - IEEE ASSP -29 no 3, pp 527-a)-: b) 2 533,Juin 1981

i [3] G. Jourdain, MA. Pallas, Multiple time delay estimation in u.w

acoustic propagation. Stochastic Processes in u.w acoustics - CR
Baker Ed Springer Verlag, 1986

"-"[41 V. Nimier, Contribution A l'estimation des param trescaractdrisant la propagition par trajet multiples, These de doctorat de
I'INPG, 7 novembre 1990.
"51 M.A. Pallas, G. Jourdain, Active high resolution time delay

, - .,estimation for large WT signals, IEEE ASSP 1991 (h paraitre)

delay delay (61 RC. Spindel, Signal proccssiag in ocean tomography, adaptativemethods in u.w acoustic, HG Utbon, Ed Dordreclit/Boston Reidel
1985.
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APPLICATION OF COMPUTATIONAL FLUID-DYNAMICS IN HIGH SPEED AEROPROPULSION

Louis A. Povinelli*

Internal Fluid Mechanics Division
NASA Lewis Research Center
Cleveland, Ohio 44135USA

Abstract - This paper describes the application of In this session, we shall concentrate on the hyper-
computational fluid-dynimics to a hypersonic pro- sonic propulsion system and our progress is devel-
pulsion system, and serveb as- an introduction for oping reliable CFD Codes for analysis and design of
this session. An overview of the problems associa- the propulsion components. In particular, we shall
ted with-a propulsion system-of this type is pre- look at the speed range corresponding to scramjet
sented, highlighting the special role that CFD operation.
plays in the-design.

I. INTRODUCTION II. AIR CAPTURE

It should be noted at the outset that the-air
CFD -has demonstrated some rather significant reaching the inlet face has experienced a rather

and spectacular achievements for aeronautical vehi- trying time from the moment it traverses the shock
cles and their flowfields over the last 15 years. wave at the aircraft nose. Depending on flight
More recently some of these gains have been brought Mach number, the air may be-dissociated and ionized
to bear on propulsion systems for aircraft; namely as it moves-along the underside of the aircraft.
in the complex, wall bounded-internal flows with This air may undergo catalytic effects at the
energy addition inside of engines. An extensive vehicle wall as well. Chemical and thermal non-
activity has-been-pursued in-attempting-to validate equilibrium effects need to be modeled as-well as
numerical- methods using data-obtained from compo- catalicity. At the inlet plane, a substantial
nent (inlet, ducts, -nozzles, combustors) testing. boundary layer has been developed on the ramp side
The computer codes developed-have incorporated of the inlet. It may be laminar or turbulent, or
extensive physical and chemical modeling or clo-
sures, as well as utilizing-multi-dimensions and possibly transitional in nature. Shock waves from

the cowl leading edge and the inlet sidewalls
sophisticated grid-generation and adaptation meth- introduce additional complexities, such as shock-
ods. Due to the extremely complex nature of inter- boundary layer interaction, which need to be
nal flow of engines, including rotating machinery, modeled in the CFD codes. An example of such
the validation and calibration of propulsion codes interactions is shown in a videotape. The compu-
has proceeded slowly but steadily. With-the resur- tations, which are the result of the work of Benson
gence of interest in a hypersonic air-breathing and Reddy, at NASA Lewis Research Center (LeRO)
aircraft, i.e., the-National Aerospace Plane, GFD illustrates a further trial for the captured air-
efforts have been focused strongly on its proposed flow. The particle tracing shows that the inter-
engine cycle. That cycle as envisioned currently section of the cowl and ramp shocks with the
relies on a supersonic combustion ramjet (Mach 6 sidewall boundary layers causes a movement of the
to 15) used in conjunction with an accelerator up lower energy wall flow towards a narrow region.

to Mach 6 and a rocket engine from approximately Cross-sectional inspection of the computed flow
Mach 15 to-orbital speed. The challenge to the field reveals a vortex-like feature. At the
scientific community is to develop accurate numer- throat, this flow behavior extends over a suffi-
ical simulations for this type of aircraft and cient portion so as to cause concern regarding
propulsion system. Since scramjets have not been performance and stability of the inlet. Other
demonstrated on a-ay propulsion system,-the cycle rectangular inlets, such as the sidewall compres-
must yet-be proven feasible. In the absence of any sion type, also experience similar effects. In
flight data and the meager prospect of obtaining this session we shall hear further discussion on
any data-above flight Mach numbers of 8 in the near inlets. Additional information is provided by this
future, CFD becomes the tool of necessity for author in AGARD proceedings. Comparison of the
design of the engine and vehicle. It is worthwhile computer inlet flow field and experimental data
to point out, that the highly blended-propulsion have shown good general aerodynamic agreement.
system-makes it impossible to consider the engine However, in the regions where strong viscous
without considering the influence of the airframe. effects are present, the agreement is marginal.

Both transition and turbulence modeling improve-
ments are required. Compressibility effects on
turbulence modeling is currently being pursued as

*Deputy Chief. well as second moment closure by Shih and his
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cohorts at the ICOMP Center for Modeling of Turbu- IV. EXHAUSTING-THE-AIR
lence and Transition-at LeRC. Comparisons of heat
transfer dataon the inlet malls with computed The nozzle, like the inlet, blends into-the
results show-significant differences that need to aerodynamic lines of the vehicle. Here, the under-
be reconciled if CFD-is going to affect scramjet side-of the aft portion of the airplane forms a
thermal heating-design. one-sided nozzle surface. On the opposite -wall, a

short cowl allows the flow to form a free shear

III. MIXING AND BURNING layerwith the external flow field. Hence, the
nozzle dynamics and the shear layer physics and

Mixing and combustion of hydrogen in super- chemistry are-radically different than those within
sonic flow (Mach 1.5 to 7) is the critical issue to our experience. Vehicle speed affects the -effec-
be solved for-the success-of scramjets. A seminal tive back pressure on the nozzle and causes it to
contribution-to supersonic~mixing was put forward be-over- or under-expanded. Shock-shear layer
by this author regarding the generation of stream- structure is dramatically affected, and can vary
wise vorticity for-mixing enhancement. Current from shock impingement on the vehicle to no effect.
generic engine-combustors rely on the concept of The-composition of the species entering the nozzle
vorticity generation. The method of generation and-the exit conditions influence the completeness
differs only -in detail from that of this author, of chemical reaction in the plume. A typical com-
but not in-principle. It employs swept leading putation by Lai at LeRC using a Reynolds-averaged,
edges-at angle of attack to the supersonic stream three-dimensional Navier-Stokes codes is shown in
to promote vorticity. Shock vortex interaction was the video. This computation relies on a Baldwin-
also proposed as a-means of mixing enhancement, but Lomax turbulence model. One can see the develop-
it is less influential than vorticity generation. ment of sidewall shear layers at the nozzle exit as
The-basic issue revolves about the fact that jet well as the corresponding features on the cowl sur-
penetration into-supersonic flows is limited to face and shear layer. The nature of the exhaust
about 10 jet diameters; an amount that is insuffi- plume-is highly affected by three dimensionality.
cient for a combustion chamber. Struts protruding Only limited data exist for flow1field comparison
into th' streamcproduce the anticipated and predic- at the present time. There is no doubt, however,

table drag, must-be cooled, and must be retracted that significant-closure issues remain to be-
over a portion-of the flight range. Some current addressed.
research centers-on the vorticity generation con-
cept mentioned above-using swept wall injectors V. CONCLUDING REMARKS
with fuel injection-from the-back face. CFD devel-
opment of three-dimensional viscous computer codes On an overall basis, one can observe that a
with finite rate chemistry are used to compute the significant amount of progress has been made on the
mixing and reaction-for these devices. Shown in a application of CFD for high-speed airbreathing.pro-
video is also an-unswept configuration for compar- pulsion systems. Excellent qualitative-agreement
-ison. The computations performed by Moon at LeRC is-the usual picture, with significant discrepan-
illustrate the extent of the reacting zone for the cies only in those near wall regions dominated-by
two configurations. It should be noted that the strong viscous flows. Nonequilibrium air effects
CFD developed for -the combustor does not truly rep- and finite rate chemistry are extensively modeled
resent the turbulence-chemistry interaction. The and-computed. However, proper turbulence chemis-
chemistry is modeled-using a number of chemical try interaction requires a significant amount of
steps (12) and a number of species (9). Mean val- attention. Improvements in turbulence and tran-
ues of temperature-and pressure are used to deter- sition-models are also critically needed. I look
mine the reaction rates. Current research is forward to hearing the presentations in this ses-
devoted toward formulating a probability density sion on these important issues; I hope you share my
function model for the chemical reactions. Such a enthusiasm.
scheme would rely on local instantaneous values of
temperature-and pressure for the chemical reaction
calculations. Again, we shall hear in this ses-
sion, some further discussion on the mixing and
combustion issue.
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NUMERICAL SIMULATION OF FLOW THROUGH OPPOSITE AND SIMILAR SWEEP SCRAMJET INLETS

D. J. Singh Ajay Kumar
Analytical Services & Materials, Inc. and NASA Langley Research-Center

-107 Research Drive, M.S. 156
Hampton, VA 23666 U.S.A. Hampton, VA 23665 U.S.A.

Abstract results are shown here; the detailed results are avail-

A comparative numerical-study of performance able in Ref. [3].
parameters of-a similar and an opposite sweep side- Figure 2 shows-the pressure plots in three Ion-
wall compression inlet is made. A three-dimensional gitudinal planes forthe two configurations with uni-
Navier-Stokes code is used -to calculate the flow form flow entering the inlet. It shows the shock and
through these- inlets. Results of these calculations expansion waves and their interactions. This fig-
are used to compare the two designs for their-perfor- ure shows an advantage of the opposite sweep over
mance and -flow quality. Effects of boundary-layer the-similar sweep. The sidewall shocks in the op-
ingestion on the performance-and overall flow fea- posite sweep inlet do not intersect-with the sidewall
tures are also investigated, boundary layer in,a given swept, constant-area cross-

Introduction section. Therefore, any blockage created by the

For over two decades, NASA Langley Research shock-induced separation of the boundary layer is not
-Center has been conducting research in developing as damaging to the inlet performance as in the case of
a viable air-breathing propulsion system for hyper- similar sweep inlet-where the shock/boundary layer
sonic flight application. In this flight regime, a super- interaction and associated separation takes place in
sonic combustion ramjet (scramijet) engine b&-omes a swept, constant-area cross-section.
attractive. The inlet of the engine module corn- Figure 3 shows plots of Mach number, stagna-
presses the-flow with the swept, wedge-shaped side- tion pressure, and static pressure in a cross plane near
walls. The sweep of these sidewalls, in combination the throat for the two configurations with 20% thick
with the aft placement of the- cowl on the -under- boundary layer entering the inlets. -Itshows approx
side of the engine, allows for efficient spillage and imately half of the cross-section -is now filled with
for good inletstarting characteristics over a range of the -viscous, nonuniform flow because the 20% thick
operating Mach numbers with-fixed geometry [1]- entering boundary layer near the top wall is being
[2]. In order to systematically investigate -the ef- squeezed into the throat region which is four times
fects of sweep-on the performance of a scramjet in- smaller in width than the entering cross-section.
let, a numerical study is conducted on two equivalent Using the flow field results, ,alculations were also
scramijet inlets. These inlets have been designed in rr :de for inlet performance quantities such as the
such a way that both have the same wetted area [3] average throat Mach number, total pressure reco. -

but in one inlet design, all of-the compression sur- ery, axial thrust, and mass capture. The calculations
faces are swept backward (Fig. 1-a); whereas, in showed that there was little difference in the average
the other design, alternate surfaces are swept back- throat Mach number and total pressure recovery of
ward and forward (Fig. 1-b). A three-dimensional the two inlets. However, the mass capture signifi-
Navier-Stokes code, SCRAMIN [21, is used: to an- cantly increased for the opposite sweep inlet. Thus,
alyze the inlet configurations. The code solves the the detailed flowfield results suggest that the overall
Reynolds-averaged Navier-Stokes equations in con- impact of the opposite sweep is quite favorable on
servation form using the MacCormack method. the inlet performance.

Results and Discussion References
The numerical simulation of the flow through the

two inlet configurations described earlier is made for 1. Trexler, Carl A, "Inlet Starting Predictions for
the following freestream conditions Sidewall Compression Scramjet Inlets," AIAA

Paper No. 88-3257, July 1988.
M 0 = 4.5, &0 = 200*K, poo = 3376.86 N/M 2  2. Kumar, Ajay, "Numerical Simulation of Scram-

jet Inlet Flow Fields," NASA TP-2517, May
The calculations were made for uniform flow enter- 1986.
ing the inlet configurations and with a 10% (of inlet 3. Kumar, Ajay, Singh, D. J., and Trexler, C. A.,
height) and a 20% thick entering boundary layer to "A Numerical Study of the Effects of Reverse
determine the effect of boundary-layer ingestion on Sweep on a Scramjet Inlet," AIAA Paper No.
the performance of the similar and opposite sweep 90-2218, July 1990.
inlet. Due to space limitation, only representative
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Figure 1: Generic-inlet configuration for-the study of sweep effects.

-Similar sweep Opposite sweep

" near-top -near-top.
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Figure 2: Static pressure contours at three height locations with uniform entering-flow.
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Mach number pressure Pressure Mach number pressure Pressure
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Figure 3. Plots of inlet performance parameters near throat with 20% ti~i k entering boum.ar ia. er.
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NUMERICAL STUDY ON SUPERSONIC CHEMICALLY REACTING FLOWS

SATORU OGAWA, YASULIIRO WADA AND TOMIKO ISHIGURO

Computational Sciences Division, National Aerospace Laboratory, Chofu, Tokyo, Japan

Abstract This paper describes -the numerical internal energy e is given by e = D 7Y, S CpdT +

techniques to solve the supersonic chemically AHFI - P. Y., (a = 1,---n), are the mass fraction

reacting flows. The higer-order upwind scheme based of a-speicies, and the Arrhenius type chemical

on a generalized approximate Roe's Riemann-solver is reaction models are used for the source terms of

used, and a fully- implicit time integration method speices conservation equations.

is used to accelerate convergence rates. As the

numerical examples, the hypersonic flow around space

vehicle, and the supersonic combustion in SCRAM jet III. NUMERICAL SCHEME

engine are presented.
In recent years, upstream difference schemes

have yielded a great success in flow computation.

I. INTRODUCTION Most of these schemes make use of the exact or

approximated solution of the Riemann problem as a

The basic research and development is driven building block. Among them, Roe's approximated

forward in the NAL for the space plane which are Riemann solver is one of the most promising method,

capable to go into the space and return with ease. and in this paper, a generalized Roe's approximate

The -most important subjects in this development Riemann solver for nonequilibrium flows is used.

would- be. the precise evaluation of aerodynamic and Chakravarthy Osher postprocessing TVD scheme is used

aerothermodynamic characteristics in hypersonic to make the higher-order scheme. It is more

region where the real gas effect is dominant, and efficient than MUSCL scheme for a nonequilibrium

the development of the supersonic combustion RAM flow problem, because the latter method needs Newton

(SCRAM) jet engine. No ground-based experimental iterations at each cell interface to calculate the

facilities can fully duplicate the conditions that value of temperature from conservative variables in

these vehicles will encounter in the upper the case of chemically reacting flows.

atmosphere, hence the numerical simulation is Generally -nonequilibrium flow is very stiff

expected to be one of the most promising method in problem, so that it is desirable to treat every term

the study of hypersonic chemically reacting flows, implicitly. In this paper each convective block

In this study, chemical nonequilibrium flows are operator is diagonalized so that the block matrix

solved by the use of higher-order upwind scheme. operation is reduced to the scalar one. Further, in

This schemefil is based on a generalized Roe's order to enhance robustness, near by shock waves

approximated Riemann solver, and arbitrary only chemical source terms are implicitly treated

nonequilibrium effects are treated in a unified and the rest explicitly. This patched method[2] is

formulation. A fully implicit tLime integration easily constructed by replacing tri-diagonal scalr

method is used to accelerate convergence. As operators by a unit matrix.

numerical examples, chemically reacting hypersonic

flows around the Space Shuttle, and the supersonic

combustion in the SCRAM jet engine are solved. IV. EXAMPLES OF NUMERICAL COMPUTATIONS

A. hlypersonic flow of real gas

II. BASIC EQUATIONS Since the space plane flies more than ten

times as fast as the sonic speed, the extremely

The basic equations of compressive chemically strong shock wave appears ahead. The strong

reacting flow are written in the weak conservation compression behind the strong shock wave causes the

form: high temperature more than ten thousand degree near

8q,/0't 4 8F',(q)/Ixk = s,, the plane. Thus the nitrogen and oxigen in the

where q, is a conservative quantities per unit mass, atmosphere dissociate, consequently the usual

and s, is its corresponding source term. assumption of perfect gas no longer holds good and

q = [DDu, v,pw,E, oY,,pYp,---,pY,]T it becomes necessary to include the effect for the

where E is the total enrgy, E e + 1/2pV, and the real gas. In this example the elemental reactions
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for 7 components of N,, 0,, N, 0, NO, NO', e are in the combustor where the hydrogen blows up have

considered as the dissociation in order to include been numerically solved using the TVD scheme for the

this real gas effect. In the -case of the space governing equation system above stated. An example

plane, when the shock wave strikes the wing, the is shown in Fig.2 , where iso-Mach contours are

plane suffers the very severe aerodynamic heating. shown. Thus by the CFD it is possible to see the

Therefore the prediction for the situation of shock floi. details such as the Mach disk formed by the

wave is very important and the correct evaluation blow, which is difficult to measure by experiments.

for the real gas effect is necessary. In Fig.] are Since the problem of turbulence in reacting flows

shown the-numerical solution for the hypersonic flow remains almost unsolved, however, the reacting ratio

of Mach number 15.7 around the Space Shuttle with does not show a good agreement between the numerical

the real gas effect included. The distribution for solution and the experiments. The reason is that

the mole fraction of the atomic oxigen produced by the reacting ratio greatly depends on the mixing of

the dissociation is displayed in the figure. The hydrogen and oxigen, which the turbulent diffusion

atomic oxigen near the nose of the plane is governs. The problem of turbulence in reacting flows

transported-with fluid to gather to the center parts would be a important researching theme in the

on both the upper and lower surfaces separately. future.

Further on the upper surface it is transproted with

the separated fluid to spread over the plane again.

V. CONCLUDING REMARKS

B. Chemically-reacting flow in a combustor By the development of CFD till now, it has been

As the computation of chemically reacting flow possible to obtain the numerical solutions which

has been possible with the progress of computers, hold good to some extent for a large variety of

the computational condition of this example is problems. The problems for not only chemical

almost adapted to the actual experimental one for reaction but also radiation and electro magnetic

the SCRAM jet engine. The foundation of physical fluid dynamics can- be numerically solved without

phenomenon in the SCRAM engine is that the hydrogen difficulty if costing much time. It may fairly be

blows up into the high temperature gas and burns. said that the final problem still remained is the

For the combustion it is necessary to introduce the turbulence that is a remarkable characteristics of

reacting model. In the Westbrook reacing model 9 the non-linear fluid motions.

chemical species of N,, H,, 02, OH, 1120, H, 0, HO,

and HO, are considered and 17 elementary reaction

steps are contained. The chemically reacting flows References

[11 Wada,Y, et al., AIAA Paper 88-3596Cp, 1988.
[21 Wada,Y, et al., AIAA Paper 89-0202, 1989.

Mach Numberl5.7
Angle of Attack=4ZWO Max
Altitude=60.6 km
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RAPID PHASE CHANGES IN Iso-OCrANE IN THE GENERAL VICINITY OF THE

CRITICAL POINT

S. C. Gulen, H. J. Cho, A. Hirsa, P. A. Thompson, M. Moran

Department of Mechanical & Aerospace Engineering
Rensselaer Polytechnic Institute

Troy, NY, U. S. A.

Abstract singular point of infinite- isothermal compressibility and constant

Stationary states at high temperatures and pressures in Iso-Octane (2- volume spccific-heat (hence, in principle, zero soundspeed.) A

2-4 Trimethylpentane) were achieved-behind a compression shock ecent study of-nonequilibrium, near-critical states-in shock tube

wave reflected from the shock-tube end wall. The end states cover a experiments revealed a minimum in the soundspeed-(about 10 mls)

broad region including- vapor, liquid, and mixture phases and disappearance of two distinct phases at a pressure ca. 25% above
the critical value [6].

Measurements-of shock velocity, pressure, and-temperature were

performed together with extensive photographic observation of the

final states through a sapphire window mounted-at the end of-the Theory & Results

shock-tube observation chamber. -In general, phase changes Thex- diagram of the reflected shock system is shown in Figure 1.

resulting from the shock compression of a retrograde substance are Figure 2 shows a detailed reflected shock adiabat on a P-v surface.

predicted -reasonably well=with the-equilibrium Rankine-Hugomot The adiabat crosses the phase boundary but the process is so fast that

the condensation is delayed until the limit of supersaturation, Wilsonm o d e l. P h o to g rap h ic o b se rv a tio n s o f th e e n d sta te s sh o w a ric h l n - s r a h d w e e p n a s o t n o s c l a s

variety of two-phase vortex rings, depending on initial conditions line; is reached whereupon a spontaneous collapse of the metastable

and shock strength. state occurs. If the shock strength is such that the end state lies

below point 2 (triple point) two distinct discontinuities are observed:

Introduction a forerunner, "dry" shock and a condensation discontinuity [3]. In

Adiabatic, pressure driven, finite amplitude waves resulting in phase our experiments the shock Mach numbers are high enough that the

end states lie above the triple point and a single liquefaction shockchanges - from vapor to °liquid or liquid to vapor - have -been

observed in retrograde fluids. Unlike thermally driven phase front exists.

transitions in regular fluids such as water, these waves result from a P 2"

jump in pressure. Recent work on the subject includes complete and p0  2 0',

partial liquefaction shocks [1], rarefaction shock from a critical state

[2], shock splitting [3], and mixture-evaporation rarefaction shock

[4]. In this work rapid phase change phenomena in the general 2' R

vicinity of the critical point are investigated. Thermodynamic, vapor- EA X
liquid critical -point as described- by modern power laws [5) -is a A

!~~ 00lv

0 VIVO0  1

Figure 2. Pressure-volume diagram of the reflected shock.
EA=equilibrium adiabat (liquefaction shock); DA=dry adiabat (non-

. equilibrium, metastable, supersaturated vapor); R=Rayleigh line;
/'~//~ o0a=saturated vapor boundary; W=Wilson line (line of critical

supersaturation); 2=triple point (see [3) for details.)

0. In the calculations Rankine-Hugoniot equation is used together with a

D virial-type, corresponding states equation of state which is modified

to represent the near-critical region more accurately. Figure 3

shows experimental data for a reflected shock system which passes

Figure 1. -t diagram of the shock-tube flow. The closed end of the through the theuretial ,.frtical point. The agreement with the

test section is at right. Arabic numerals designate test fluid states. _.ak.ulations ib quite gvud. Nonetheless, there is a systematic

I--incident shock, R=reflccted shock, CS=Contact surface, D=Dnver deviation in tcmperhurcs measured by very thin (5x "10 4 in

gas initial state. Not to scale, diameter), fast response thermocouples. They are lower than

calculated values by ca. 5 to 101C depending on the shock strength.
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In addition to the measurement of temperature and pressure, -growth take place. The,.umpression rate across the frozen part of the
photographic, observatiuns-are made for different imident shu.k shock is so high that the nu,.leation process lags. There are mainly
Mach numbers. Four-different initial ,onditons are chosen-WIth three relaxation pro .ces, inertial re'axatiun (there is a ,velocity slip
resulting reflected shotk- adiabats shown in Figure 4. Particula between dwupl.Lb and suddenly decelerated vapor), droplet

so - - temperature relaxation, and vapor thermal relaxation. To give a

ShockAdiabat Staes behind the Dcscripoonof'phschange
40 ROltOCted shock adiabat

Lquid Saa6n Well defind two- phase vorex ingsA Boundary: SLI in Liquidor dense gas
Vapor sis Edon Cdnsadon in a nonn.. fashion{Boundary SVl in vapor30 
LiquidSaurasoon WcU derind m-o - phase vortex rings
BBn~* S j in Liquid ordense gas0 cp. ViporSat "

a on  
Condensation in a nonal flashon0_p._Boundary. SV2 _ invapor

Compressed rquid 0 0 Ncal Feathay, mrc difflse and turbern20 
C Region : NC two.phasevotexrings

VapotSasuxiad ntaeas g ray stucos in°°°____ Boundary : SV3 odensa=ton in vapor

0aorVaoSatasn I Ray stucture. two- phase vortex1 0 D Bourdizy: SVs nogs in vaporVapor Saawao Ray struenioc two - phase vorexBoundary: SV4 rings in vapor

0 Table 1. Summary of phase-changes on the vapor and liquid-
so 100 IS o 200 250 3o00 aso saturation boundaries.

numerical example, an incident shock (MO=2.46) produces a two-Figure 3. Pressure and temperature behind reflec-ted shock. T0-135 phase mixture kquaity x-O.33) after reflection from the end wall."C, P0=0.445 bars. a= vapor pressure line, c.p. = critical point. The width of the frozen discontinuity is computed to be
emphasis was given to the end states where the shock adiabat crosses approximately 0.05 pm (ca. 5 mean free paths) with a resulting
saturated vapor and-liquid-boundaries. Designation of these regions supersaturation of S=2.3.
are as shown in Figure 4 and a description of the nature of the Approximate calculations showed droplet temperature relaxation (ca.
associated phase change phenomena is given in Table 1. Except 4x10-15 sec.) to be much faster than inertial relaxation which is itself
from the region on the saturated vapor boundary far from the critical approximately one order of-magnitude faster than vapor thermal
point (Figure 5 a), two-phase vortex rings are consistently observed relaxation ( 7x10- 10 and x10"9 sec., respectively.) Numerical
both on saturated vapor and liquid boundaries. The vortex rings are integration of the equations of motion coupled with a suitable
thought to be a direct result of steep pressure and density gradients nucleation and droplet growth model will yield more accurate
across the shock wave acting upon the nucleation clusters. In description of the liquefaction shock structure.
regions SLI or SL2 (Figure 5 b&c, respectively), a group of large,
turbulent vortex rings amongst thousands of tiny, small-scale, newly
born vortex rings have been observed. Vortex rings which are P/Pc \-.qnium
formed become turbulent within a few tens of microseconds and Vapor
turbulent vortex rings grow linearly with time (Figure 6.) Vortical SL ,
structures near the critical point (Figure 5 d&e) are even more
turbulent and diffuse. It is important to note that the critical point we SLi
are referring to is the one calculated by the equation of state. The
proximity of the observed states to the actual , non-equilibrium B A . 4

critical point is open to discussion.

Unique and fascinating-structures are observed in region SV3 (Figure sV
5 f.) These are circular, two-phase structures with apparent rays
radially emanating from the center. As the end states approach the

I=- 2 "On Mixturecritical point, i.e. regions SV4 and SVs (Figure 5 g&h, a 2;
respectively), these ray structures still can be seen. V/VC
The structure of the liquefaction shock front can be divided into two Figure 4. Four reflected shock adiabats A, 8, C, and D along which
parts. A frozen discoanutt dominated by the 'Vi.scoity and thcrmat cxpcrimcnt.. ae done with increasing shuck Mac.h numbers. SLI,

SL2, SVI, SV2, StIL S114, SVS, and NC designate regions whereconductivity, typically a few mean free paths wide, followed by a extensive photographic observations are made (see also Table I.)
considerably longer relaxation zone where nucleation and droplet Drawing is not in scale.
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Conclusion

Photographic observations show a variety of new and rich

phenomena associated with rapid phase changes across the

liquefaction shock front. Two-phase vortex rings are formed by the

pressure gradient across-the shock-front-acting upon the-nucleation

sites which are denser than the surrounding gas. Vortex rings

quickly -become turbulent upon formation and grow linearly

thereafter. Measured downstream pressures agree well with

equilibrium calculations, whereas temperature measurements are b
lower than computed-values. The results are mainly qualitative and

current-efforts focus on quantitative description of the vortex

formation and liquefaction shock structure.

12

10 E
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4 c d
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Figure 6. Average vortex ring diameter versus time. Vortex rings are

produced in Region NC. TO=130*C, P0=0.445 bars.
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TRANSONIC-FLOWS OF BZT FLUIDS

M. S. CRAMER
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University

-Blacksburg, VA 24061-0219 U.S.A.

-Abstract - We examine steady transonic flows of Betht-.Zecldovich-
Thompson (BZT) fluids. An extension of the transonic small disturbance 250

equation,valid in the neighborhood of one of the zeros of-the fundamental
derivative, is presented. Numerical solutions reveal that- the natural [Duoiss OF STAu
dynamics of these fluids may result in a significant increase-in the critical 240 -ClOH2

Mach number. We also report transonic flows involving both expansion
and compression shocks in the same flowfield.

234

I. INTRODUCTION

Transonic-flows are inherently nonlinear and-are typically 224 iol 2

accompanied by shock formation in the hyperbolic portions of the flow. \ ;M77

Because of the strong adverse pressure gradients associated-with p(b) C
compression shocks, shock-winduced separation is a major-concern in the 210-

design of transonic turbomachinery. Such separation-is a major loss and
vibration mechanism. The process of shock formation is due to the
intrinsic nonlinearity of the fluid. As a result, it has been assumed that 200
allflows behave generally the same as predicted-by the-perfect gas theory
and most work has addressed blade design to minimize these effects.

-o,?lucto curve
The appropriate measure of the intrinsic nonlinearity of the fluid

is the thermodynamic parameter

V3  92 p()7
2a OV 5 1.0 1.5 1.7

where-V, p and s are the fluid specific volume, pressure and-entropy. The V(-6.
quantity-

a = -V I ' (2)
Figure 1. Computed isentropes for n-deane. Gas model is the

is the thermodynamic sound speed. Here we follow Thompson [1] in IIBMS (4] equation of state.
referring to (1) as the fundamental derivative of gasdynamics. Inspection
of (1) indicates that r is a measure of the curvature of-the-isentropes.

Recent studies have shown that the gasdynamics of fluids having
relatively large specific heats may be qualitatively different than that of
ughter substances such as air and water. The main objective of the Thus, there is Ikely to be advantages ;n the use of BZT fluids even :n
prcscue study is to examine the behavior of these fluids ne-the transonic super itCal flows. For further details of the remarkable dynamics of BZT
regime. In particular, it will be shown that use of these fluids resuits in 1..ds, we refer the reader to the surveys found in References [8]-19].
significant increases in the critical Mach number, thereby-decreasing the
range flow speeds at which the undesirable transonic flow effects are H. THE TRANSONIC SMALL DISTURBANCE EQUATION
observed.

We consider small two--dimensional disturbances to a near-sonic
The fluids of interest here are those for which -<0 for a finite fow of a BZT. The usual assumptions of the transonic small disturbance

range of pressures and temperatures. The conditions under-which r -0 heory will be supplemented by the , nd:t*on that the thermodynamic
where first given by I. A. Bethe [2] and Ya. B. Zel'dovich [3], who state of the freestream is in the vicinity of one of the zeros of the
demonstrated that fluids having relatively large specific, heats wni have a ,-ndamentat derivative. Such seros furm the boundary between the
region of negative r in tmie fluid's dense gas regime. The generai region ius;t;.c and negative r regions and arc recognized as the inflecton points
where r < 0 is depicted in Figure - where the isentropes of normal decan, of the ;sentropes in Figure 1. With th;s frecstream state the srnal
have been computed and plotted on a p--V diagram. The regions of pert.rbatons caused the thin blade can take the flow from regions of
downward curvature correspond to -L < 0. Further examples of common;, positi've to negative r and v:ce versa. In this sense, the flow w*ll be
encountered fluids having r <. 0 have bcn provided by Thompson and qualtativel simi:ar to those ;nvovi,.g I.rgcz amp;tudes. F.rthermore,
co-workers [51, [6], and Cramer [7j. Because of the contribution of the .. most complex and ;nteresting feat.is occ .r when the nonl;nearlty ;s
early workers in this area, we refer to fiuids possessing a region of r <. o .,xd. When these asumptions art .n.rporated, Cramer [8] has shown
in the single-phase regime as Bethe-Ze dov.h-Thompson kBZ.I1 f(us. .'at .he extensioa of the cassita& trunun.r s=a4. dist.rbance cu.aton s

The significzrnce of BZT fluids is that the well-known M2 1+2r~ O- A~Sl (3)
compression shocks of the perfect gas theory violate the entropy inequality W xy
and disintegrate into centered fans if r < 0. Expansion shocks, normally
forbidden in the perfect gas theory, not only form from smooth waves but with the usual boundary conditions at the blade and at :nrn;.v. Here
are seen to satisfy the entropy inequality in flows having j <. 0 s a nond.mensonal veloc.ty potent;a:, L ;s the scaled distance In the
everywhere. It therefore appears that the natural dynamics of BI fiuis ficestream drcction and y is the sLalcd Jlstantce normal to the freestream.
may lead to a reduction or even elimination of shock-induced separation.
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The Mach number and fundamental derivative in the freestream are the Mach numbers indicates that the flow remains entirely subsonic That

denoted by M and i, respectively. The parameter is, the use of a BZT fluid in the neighborhood of one of its zeros have
driven the critical Mach number to values above 0.9. Physically, the

increase is due to the fact that toe expansions over the top of the blade

A =p (4) has shifted the flow into the r < 0 regime before the sonic state is
ups reached. As pointed out in References [1], [8], and [10] acceleration

through the sonic condition is then difficult, if not impossible. In order to

where p _= V -1 is the fluid density, is a second nonlinearity parameter. save space, we refer the reader to hese previous studies for a detailed

This is usually evaluated at the state corresponding to the zero in the account.
local value of r,-without los of accuracy to-the overall approximation.
Near the large density zero of-F, typical values of A are estimated to be The increase in the critical Mach number is by no means an

1.5-2.5. This second nonlinearity parameter is negative near the low isolated case. Further detailed studies suggest that blade configurations

density zero of . giving rise to a critical Mach number of 0.69 in air may correspond to a
critical Mach number over 0.98 in many of the BZT fluids described in

Ill. RESULTS Reference (6] or (7].

Numerical solutions to (3) have been generated through use of an As a final example, we have retained the same upstream
extension of the Murman-Cole scheme. The boundary conditions were thermodynamic state as used in Figures 2-3. but have raised the Mach

those of a circular airfoil. The results of these calculations are depicted in number to 0.93, approximately. In this case, the flow is able to achieve
Figures 2-4. In order to check the scheme, calculations for a classical sonic conditions before the-r = 0 point is reached. The result is plotted

(AO) case were carried out. -Here io= 0.4, Ms - 0.9 and the in Figure 4. In this supercritical flow, two shocks appear. The frst
(leftmost) is an expansion shock which is fol'owed by a compression shock.

half-thicknes of the circular arc airfoil was taken to be 0.06 of the chord Tis is i marked contrast to classical theory where no more than one
The flow is from left to right. Scaled-values of the pressure coefficient are shock can occur.
plotted in Figure 2. Here it is wen that the-given Mach-number is
considerably above the critical value with the shock well-back on the

wing. 'I

045 -_ -?. *4

Figure 4. Scaled pressure coefficient c over the circular ar airfoil of
hoe .0 on The Figures 2 and 3. r. = 0.4, A = 1.0 and Ma = 0.93.

Figure 2. Scaled -ressurc coefflicient c over a circular arc airfoil.

r. --- 0.4, A--- 0,.f M.- 0.9 and the thicknes is 0.06 of

the chord. The preceding has introduced a modified form of the transonic
*1 small disturbance equation valid when the freestream is in the vicinity on

one of the zeros of the fundamental derivative of a BZT fluid. The
numerical results demonstrate that the natural dynamics of BZT fluids
can give rise to significant inercases in the critical Mach number as well as
qualitative differences in the detals of supercritical flows.

The author would like to thank G. M. Tarkenton for-providing
the plots of Section 3, an d Dr. H. A. McGee and students for providing

Y . the code for the generation of Figure 1. This work was supported by theNational Science Foundation under grant #CTS-8913198.
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A NEW HIGhK'skSOLUTI0N GLOBAL SPE3CRAL MODEL

FOR MEDIUM-RANGE NUMERICAL WEATHER-PREDICTION

CLIVE TEMPERTON

European-Centre for Meditrn.Rangc W'eather Forecasts
Shinficld Park, Reading, Berkshire RG2 9AX, U.K.

Abstract. A newv high- resolution spcctral model has been developed foi hie brnplifituun -,mpared with Rit..hje' scheme- kfinaiteent vert.cal.
production of me diumn range forecasts at ECMVVT. Considerable effiienty dis,,nnuizatiOll and partly anaytit. ehmn.aatiof). The opportunity was also
gains-wcrc required to make this rodtlpitoill ncie these "aien to reuc Eie number of transforms between bptienuLd harmlonlic.spcC,
wcre realized principally by-the introdictiun of a reduced Lompuitional ad the-model grid (Temipertun,1991). At resolution T213, tie Legendic
grid and a-semi-Lagrangian integration scheme. transforms accoutit for only about 10% of the CPU time of the new model.

Tests have .shown thn-tthe Eulerian version of the T213 31-level
model rzquires a 3-minute timestep to maintain stability, while the semi-

Current plans for the operational ECMWF spectral model Lagrangian version remains stable anid accurate with a 20-winute. umestep.
(Simit-:ns et al.,1989) include a doubling of the horizontal resolution from In addition to thu; gains already obtaintd froun the ube of-the reduced grid,
T106 (a triangular truncation at wavenumber 106) to 121, with a the semi-Legrangian scheme -yields a further factor of about 5 in the
corresponding Increase in the number of verftial levels from 19 to 31. efficiency of tie model. To demonstrate that the semi-Lagrngian version

of the 1213 31-level model gives essentially the same forecat as its
Two new ingredients of the-numerical integration procedure arc Eulcnan counterpart, Figs. 1 and 2 show the corresponding 3-day forcasts

essential-in- order to produce timely operational forecasts with this h.gh- of the 500 hPa height field-starting, from the operationalECMWF analysis
resolution-model, given the constraints of the present computer system, at 12Z on 15th April 1990.

The first is the use of a-reduced Gaussian grid (Hortal and
Simmons,1991) for the computation of nonlinear terms; in this grid, the REFERENCES
number of points per latitude row is decreased towards the poles so that thc
east-wcst gridlength remAIns approximately constant. The wimputation per Jortal, M., and A ' Simmonts, 1991. Use of reduced Gausbian gnids in
tirnestep is thereby-reduced by around 25%, with veiy little impact on the spectral mode's.. ii. Wea. Rev. 119. in press.
resulting forcast.

Ritchie, H., 1991: Application of :he semi-Lagrangian method to a
The second ingretlicnL is the introdu..tion of a semni-Lagraingian multilevel spectral primitive equations model. Quart. J. Roy. Meteor. Sox.

scmi-impl~cit- time-integration scheme, which overcomes the stability 117, in press.
criterion of the conventional Eulerian treatment of advection (spectral in
die horizontal, finite difference in the vertical). The scmi-Lagrangian Simmoits, A.J., D.M. IBumrdge, M. Jarraud, C. Girard-and W. Wergen,
formulation is basically similar to the fully three -di acnisionalixterpulatirig 1989. The ECMVVT medium -range prediction models - Development of the
version of -Ritchie lO) !here are however additional wirmphtattris fnumericld formulations and ihe-impakt of increased resolution. Meteoiol.
resulting from the use of a hybrid vertical coordinate rather than the sigma- Atinos. Phys. 40. 2-60.
coordinate of Ritchie's model. On the other hand, the vertical discretization
by finite differences and the purclIy algebrai,. climindat between Variables Temperton, C., 1991. O1, scalar and vector transform methods for global
in the soluoion of the semi-implicit equations both lead to some spectral medels. Mon. Wea. Rev. 119 in press.
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INTEGRATION OF A GLOBAL MULTILEVEL MODEL USING A VECTOR SEMI-LAGRANGIAN SCHEME WITH A MULTIGRID SOLVER

J. R. Bates, S. Moorthix and R. W. Higginsx

Global Modeling and Simulation Branch
Code 911

NASA/Goddard Space Flight Center

Greenbelt, MD 20771

Abstract

A three-dimensional semi-Lagrangian semi-implicit
two-time-level finite-difference integration

scheme for the primitive equations of atmospheric
motion on the sphere is presented. A trajectory-
centered discretization of the governing equations
is used, the momentum equation being discretized
in vector form before being resolved into

components. For the horizontal differencing

a C-grid is used, while a Lorenz-grid in[ -co6rdinates is used in the vertical. The
discretized equations, which involve a coupling

between all levels, are decoupled by means of a
linear transformation, resulting in a set of K
(- number of levels) two-dimensional elliptic
equations to be solved. With an appropriate

formulation of the discretized governing equa-
tions, these elliptic equations have a form
identical to that encountered in an earlier
shallow water-model (Bates et al., 1990). The
two-dimensional multi-grid solver used in the
shallow water case can thus be-used to provide
an efficient solution for the multilevel case.

A linear stability analysis of the scheme on an
f-plane in the absence of a mean flow shows that
the scheme is unconditionally stable.

Numerical integrations are performed using an
adiabatic version of the model,, both with and
without orography and divergence damping. The

results of these integrations with varying time
steps and with both idealized and observed
initial conditions will be presented.

Reference

Bates, J. R., F. H. M. Semazzi, R. W. Higgins and
S. R. M. Barros, 1990: Integration of the
shallow water equations on the sphere using

a vector semi-Lagrangian scheme with a multi-

gr~d solver. Mon. Wea. Rev., 118, 1615-1627.
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A CLASS OF MONOTONE INTERPOLATION SCHEMES'

PIOTR K. SMOLARKIEWIOZ and GEORG A. GRELL

Nationals Center for Atmospheric-Research
2

Boulder, Colorado 80307

Among a variety of available advection schemes,
ABSTRACT the dissipative (forward-in-time)- algoritlns are- the niost

suitable for practical applications. Since the effective
The-raciceof cmpuatinal lui dyamic -otenvelocity field is constant for every point of interest

requires accurate as well as nonoscillatory interpolation tot ierpolation p or eve tion schemes
procedures. Such- procedures, often referred- to as- slape- to the interpolation procedure, these advection schemes

preserving -inrterpolation, may -be employed to design letain theirformal accuracy of the constant coeffcientslimit.h~ interplation ayth efeciv velooyed to-a arbirary
monotone -advection transport algorithms. This -paper dmniona oe aofotigtforwar arbitrary-
poses an:inverse problem. A variety of monotone advection
scliemes-vitli- attractive properties has-been developed over direction- -iinlementation of one-dimensional advection

sheeast- two decades abstracting fo an a ents-that schemes without introducing errors characteristic of-the4.heasttwodecdesabsracing romanyargmens t~attime-split advection procedures in variable flows.
-Invoke -explicit interpolation procedure. Our goal is to
provide a -formalism allowing the exploitation of these Insofar as the linear dissipative advection schemes are
advection algorithms as shape preserving interpolators. concerned, there is no particular gain from such an excercise
The central theoretical issue concerns a formal equivalence as the resulting interpolators may-be alternatively derived
of the advection and interpolafion operators on discrete with the help of more tradtional-arguments invoking eithe,
meshes. Through elementary arguments exploiting either the truncated Taylor formula or Lagrangian polynomial
the Stokes theorem or the untruncatcd Taylor formula- at fitting. However, when the preservation of monotonicity
Oth order--of expansion, one may show that the solution and/or sign of the interpolated variable is essential, then the
to an- interpolation -problem can be expressed as a formal approachsadopted becomes useful. For instance, a variety
integral of the advection equation. As a consequence, of monotone (and sign-preserving) interpolation schemes
the interpolating operator on a discrete mesh may be of different overall accuracy and complexity -levels may be
represented- by an advection scheme, in which the local generated using Flux-Corrected:Trasport, (FCT) versions
Courant number vector is replaced by the normalized of high-order-accurate dissipative schemes. The utility of
displacement between a grid point and a- point of interest such monotone interpolators is illustrated with -examples

to the interpolation procedure. The accuracy of tihe of applications to selected problems of atmospheric fluid
resulting interpolation scheme is that of the advection dynamics.
scheme employed.

- An article of tl bamne title hias been submitted to J. Comp. Phjs., the preprints art available from

the authiors upon request.
2 The Nationd -(-enter for Atmospheric Research is spoiisored by the National Sciemc Foundation.
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Terrain-following vs. a blocking system for the representation of
mountains in atmospheric models

-Fedor-Mesinger and- Thomas L. Black
UCAR Visitor Research Program National Meteorological Center
National Meteorological Center Washington, DC 20233, U.S.A.
Washington, DC 20233, U.S.A.

),mulations, pressure gradient force errors might be still
Asract Issmes-of the-numerical representation of mountaims in greater than In finite-difference models. Only the
atmospheric models are reviewed. An exmple is given-illustrating the terrain-following formulation appears to be practical for
origin of the most frequently considered type of errors resulting from spectral models at-present however,
terrain-followig coordinates. FiDly,a forecast obtained with- the
model using a-so-called step-mountai coordinate is -compared with that II. AN ASYMPTOTIC LIMIT OF THE ERROR
obtained when-the same model is run:with a standard terram-following An example which lends Itself to analytic treatment and
(sigma) coordinate. Is useful for assessing errors of various-schemes is that of

a resting hydrostatic atmosphere In which the pressure
I. INTRODUCTION gradient force mustbe zero. Given a numerical scheme, an

Since its introductlon by Phillips in late fifties the assumed temperature profile, and the-mountain slope, the
terrain-following vertical coordinate has been by far the pressure gradient force can typically be-calculated-In a
most-predominant in atmospheric mode,ing. /hile a number straightforward way which hopefully indicates the
of Its problems were recognized relatively early, the magnitude of the error.
simplicity-it offered for the representation of mountains A recent calculation of this type for three schemes and
seemed to be more than a sufficient compensation for the three temperature profiles has been reported by Nesinger
problems. Furthermore, for longer than a decade, var-ous and JanjIC (1987). Of the three schemes, the latest Is the
methods were being devised to minimize the errors. These "O-conserving" scheme-of Arakawa and Suarez (1983)
techniques-were addressing the-finite-difference methods e~panded to include horizontal-differencing. Rather-large
almost exclusively-usedat that- time, errors were otalned, at some of the levels and

In the early eighties, however, it became-increasingly temperature profiles, for all three of the schemes. In
doubtful that the errors associated with-terrain-follow inq particular, a convergence problem was Identified Inall
coordinates could indeed be adequately minimized. It was three of the schemes-in the sense that no tendency-was
shown that the accuracy of the calculation-of the pressure visible for the general magnitude of the error to decrease
gradient force-over steep mountain slopes is likely-to with Increasing vertical resolution.
deteriorate rather than improve with an increase in The three schemes considered are identical for the case
vertical resolution. On the other hand, a different of an isentropic atmosphere where the potential
technique using step-like representation-of mountains with Lemperature 0 = E = const. Considering the cast of zero
approximately horizontal coordinate surfaces was proposed pressure at the top of -the model atmosphere (PT = 0) the
and appeared to be an attractive alternative. For a asymptotic value of-the error as thicknesses of the layers
comprehensive review of these various techniques proposed L'O tend to zero is
up to the mid-elghtles as well as a description of the ax
step-mountain system the reader Is referred to Mesinor R8 AxpSK P K

and Jan It (1985). Pxo p) -- 1: xPsJ ()
Efforts aimed at reducing or eliminating the pressure

gradient force errors continued (e.g., Zheng and Liou 1986, Here ", and _ are-the centered two-point difference and
Carroll et al. 1987). At the same time, new examples of averaging operators, respectiely, apphed along the
potentially large errors were reported with regard to the avrection op the x axis; s geopotental; i as the verticaltirectlion-oothewlnaxisoorslgnatotntiae;eKIisthelvertica
terrain- following coordinate scheme In spite of a index, increasing downward, Identifying quantities defined
sophisicated design (Mesinger and JanJiC 1987). A for the sigma layers; R is the gas constant; Po is the
comprehensive step-mountain ("eta") coordinate model was reference-pressure used to define the potential
developed and In extensive tests has been shown to be temperature; , is R/c, where c is the specific heat at
competitive with an operational state-of-the-art terrain t
following coordinate model. While evidence was presented constant pressure, and pS is the surface pressure
indicating that the numerics of the model were primardy Fur thermore, denoting the par ual derivative and Its
responsible for the improved results (Mesinger et al. 1990), centered two-point difference analog by ax and 8,,
no assessment was made of the extent to which the respectively, note that in the limit as Ax also approaches
Improvement came from the vertical coordinate as opposed zero
to other numerical features of the model. -x

A recent-study by Janjit (1989) shows that In spectral ls: = tpsK - P --
models, now dominant In global weather and climate
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Thus, In that limit, there willbe-no pressure gradient force
error. However, for finite 6x, the right hand side of (I)
will be different from zero, in spite of the exact finite-
difference-hydrostatic equation of the three schemes in the K

considered]isentropIc atmosphere case.
Attempting to reduce the problem by Increasing-the

horlzontal-resolution actually tends to worsen the
sltuationsince the accompanying incorporation of-more
realiistic-mountains simply Introduces more-sloping terrain.
Thus, representation of mountains seems to be-an issue of a
steadily increasing p, iorlty to atmospheric modelers.

-III. A FORECAST EXAMPLE -".
It is not-obvious to what extent pressure gradient force /Y

errors of a:specif Ic Idealized-example are relevant in IL,
actual atmospheric simulations. In addition, other SE ,EL;-ESUC IM 36-H-SI 0EST ISMO)

problems are associated with terrain following vn~io-i2z 2 rE6 89 S EGR1O

coordinates. A potentially serious problem is-that of 105 2
horizonta-advection with slopingcoordinate-surfaces such
that the vertical velocity relative to these surfaces Is
required-to-compensate for their slope.

A study-of model performance-in actual weather 102

situations-thus seems to be the ultimate answer. It is our
intertion-to-complete such a study, an example will be
shown here. A comprehensive (eta) prediction model was
employed which can be used-either with a terrain-following

10 20or with the step-mountain coordinate, the code and the
scheres being the same. The case to be shown-was the
first case-we looked-at from-the point of view of
sensitivity to the vertical coordinate after an extended
period of model development, It-involves a maior-cold air
outbreak along the eastern slopes-of the Rockies.

The U.S. National Meteorological Center surface analysis
SEA LEVEL-PRfESSUM~ (MB) 38-H ETA rcs7 tSIoRO

for 1200 UTC 2 February 1989 is shown In the upper panel I VAIo 12z 2 rcE a9 ONK E-GRo

of Fig. 1. The 36-h sea -level pressure forecast valid at the 1052 -

same time-and obtained with the model using the terrai- /104
following ("sigma") formulation is shown in the middle w
panel. Finally, the 36-h forecast valid at the same time
obtained using the steo-mountain, (eta) coordin~ate is showrn 0
in the lower panel. * 0

One feature favoring the eta result is the reduced
noisiness of the eta integration with 21 centers printed as 2

compared.to 27 centers of the sigma map Note that these A.
maps are printed without the-usual smoothing prior to 1 20

output so that unrealistic centers are obtained as thi,
result of model noise. Another feature is the more 0 o 018

accurate simulation of the southward extention of the cold
air east of-Rockies. For example, note that the sea level
pressure over North Dakota in the eta integration is about
4 mb higher than it is in the sigma integration. Still higher
sea level-pressures are seen in-the analyzed map. We ru., aled.upper Dpne!; and 36-h forecast . sigmasystem, middle

iane. steo-nouritain systec. lower parel) sea level oressure (rob) at
intend to analyze such differences further and to report on 1200 UC 2 Februapr 1989
our results more extensively at a later occasion

Mesinger, F, T. L Black D. W. Plummer and J. H. Ward. 1990, Wea.
Forecasting. 5. 483-493.
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NUMERICAL METI!ODS FOR A UNIFIED roRECAST/CLIMAIC MODEL

H.J.P.CULLEN
Meteorological Office.

London Road,
BRACKNELL, Berks. RGI2 2SZ, U.K.

Abstract Finite difference methods which combine the treatment of planetary scale flows. However, the

efficiency required for forecast models with the details depend critically on the vertical coordinate,

conservation properties required for long-term climate and are therefore written out for the hybrid

integrations are described. Methods of using coordinate actually used in the model. The coordinate

non-oscillatory advection schemes within this is a mixture of pressure and normalised pressure as

framework are discussed. described by Simmons and Burridge (1981).
Start with data at time t for velocity components u

I. INTRODUCTION and v, surface pressure p, and potential temperature
0. Then a series of short timesteps St is taken,

Numerical methods for forecast models are usually solving first
selected on the basis of efficiency and accuracy, t++t t r[V
Finite difference methods within this category are the u =u + 3tf(vt+at+ vt) -

semi-implicit and split-expliclt methods, with further
improvements available from using semi-Lagrangian ____x
advection. In climate change experiments global _X
conservation properties must be enforced, and measures CPO Hk- p
taken to ensure satisfactory long-term behaviour. _ 3 +k- 1 Pk-[
Correct treatment of the energetics is one necessary Ax ' Xxc+1) 2 2 k

requirement.
This paper extends the split-explicit scheme of Gadd APk
(1978) to meet the climate modelling requirement. In at each level k, with a similar equation for v. f is
order to enforce conservation and balance the energy the Coriolis parameter, cp the specific heat of air at
conversion terms it is necessary to advect all the

fields with a three-dimensional velocity field constant pressure, K = R/c where R is the gas

consistent with the continuity equation. In the constant, 0 is the geopotential, and TI is the Exner
original split-explicit method this was not satisfied
because the vertical advection is carried out in the function (p/p0 ) with p0 a reference pressure. The

short timesteps and the horizontal advection in the standard finite difference averaging notation is used.
long timestep. The requirements can be satisfied by The hydrostatic equation Is approximated by
instead including the advection of a basic state k = . I(f - f ) +
potential temperature in the short timestep, and all k=c ""2/2 P- /2
the rest of the advection in a long timestep, using as
the advecting velocity the average mass-weighted CpA[ lik_1/24 -1/2 P k-1/2 I /kPk-1/2
velocity from -the short timesteps. This makes the
structure of a scheme similar to a standard (K4-1 P

semi-implicit scheme. In particular, the basic state
potential temperature must be chosen according to the he 9~ecla1 form of te last term is chosen to cnsure
criteria established in Simmons, Uoskins and Bur-idge angular momentum conservation.
(1978). The second half of theforward-backward step solves
Practical implementation of the scheme in a global t 5t t 6t To;, t'-t

model requires choices of numerical filtering and P. = p. - M Dm
smoothing methods consistent with the requirements. a7
Fourier filtering in high latitudes is applied to
mass-weighted velocity fields, and to mass-weighted at6t= 0t I/2[ ,8p~t-)6t (0 a }t
potential temperature and moisture increments, 

so that k-I/2 11k.1 nk

conservation properties are retained and the fields
are not distorted. Numerical noise is removed with nO 1 /7 (a- a k j
conservative high order filters. The order used ' ' (°
depends on the resolution of the model. h 0 ( a basic state profile of a calculated
There has been much recent interest in the use of W
advection schemes which prevent the development of from an Isothermal basic state with temperature 3OO"K
spurious oscillations, e.g. Williamson and Rasch and surface pressure 100000 pa. as used in standard
(1988). The most suitable way of constructing such semi-ImplicIt models [he theory behind the choice is
schemes within the split-explicit framework is that exactly that In Simmon', Hoskins, and Burridge (1978).
introduced by Roe (1983), where advective increments TypIcaIly, three .hoi t steps are performed,
calculated on the boundaries of contr I volumes are follwed by a long advection timestep. The length of
distributed upwind or downwind according to a suitable this step Is written as tLt Tile lieun two-step
limiting criterion. The implementation of one of these advectlIon scheme Is used. A second order version is
is described. written out, but a fourth order version is actually

used for some of the applications of the model. The
II. A CONSERVATIVE SPLIT EXPICIT SCHEME same order of accuracy must be used In both slep- of

the l1-un scheme. The key to conservation Is hat Lthe

For the purposes of this paper, the scheme is written rIvv'cIoio, must he with Lhe mass-welghted velocity
in Cartesian coordinates. The extension to spherical Uield averaged over the three adjustment steps. iDeilne
geometry is straightforward. The equations required to
treat moisture are omitted, as are additional small
terms included in the model to allow more accurate
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St+5tt+4t t+5t ,
AP tS 0 A~p 0-

k k k k"

I At LAp kr " t+At./Apt)!.V0,t + U.0 VO#]

2

This form is chosen to ensure conservation under time
differencing.

III. OSCILLATION-FREE ADVECTION SCHEMES

The most natural way of incorporating oscillation

free- adve tion schemes into this structure, while

retaining -conservation is that of Roe (1983). The
standard advection scheme set out above can be
considered as two stages. First calculate advective
increments of the form

-Y

at grid box boundaries. The second step is to apply

these increments to adjacent grid points. This is done
in the standard scheme by applying half the increment
to the point on either side of the boundary.
Upwind schemes can be generated by
applying the whole increment to the point downwind of
the boundary. Accurate oscillation free schemes are
obtained by using a more accurate redistribution
algorithm, several of which are set out in Roe's
paper. The resulting schemes are algebraically
equivalent to those obtained by starting from the
conservation law form of the equations and applying a
flux limiter. However, the use of short timesteps for
the continuity equation and long timesteps for the
advection makes It harder to set out the schemes in

that form.
The schemes can then be applied to a three
dimensional model on the sphere by combining three
one-dimensional schemes. Thus the redistribution is
calculated separately for each coordinate direction.
Fourier filtering destroys the oscillation-free
property. At high latitudes, the east west sweep must
be repeated several times to avoid compromising the

model timestep.

578



COMPUTATIONAL DISPERSION PROPERTIES- OF VERTICAL-GRIDS FOR ATMOSPHERIC MODELS

Michael S. Fox-Rabinovitz
Laboratory for Atmospheres

NASA/Goddard Space Flight Center
Greenbelt, MD 20771, USA

ABSTRAC _- v=B ; HGVC =a= 2B"c C2 K r-2 > 0;

Computational dispersion properties of different
vertical grids,- namely for regular, Lorenz, Charney- ",
Phillips, and: a new class of time-staggered grids have been VGVC = =-2 1 c2 k2 r-3 <0; (3)
studied using a linear baroclinic hydrostatic atmospheric
model and intercompared in terms of frequency, phase and 2

)11
2

group velocity characteristics. It is shown that the widely where a-(f+ r)
used Lorenz grid, and also the Charney-Phillips grid as These characteristics are used for icomparisons of different
well as the new time-staggered versions of these grids grid dispersion properties. Note that the most -important
have dispersion properties corresponding to a regular grid tharactcristic is the appropriate sign of group velocity
with twice the vertical resolution. They are components, namely HGVC should be positive and VGVC
computationally efficient due to enhanced effective negative for all resolved scales.
vertical resolution. The scale ranges for which group
velocities have the wrong sign are pointed out. The- II. VERTICALLY AND TIME-VERTICALLY STAGGERED
influence of higher (4th) order vertical approximation GRIDS
has been investigated and found to be relatively
insignificant. The practical applicability of time- The same dispersion- characteristics are obtained for
staggered vertical grids has been tested and proven the system (1) approximated with a central difference
effective Within full time-space staggered grids for an scheme (CDS) for different vertically and time-vertically
experimental PE baroclinic model. staggered grids, and compared with each other, and

against- the differential case (3). For simplicity a regular,
I. INT ODUCTION or Arakawa A grid is used- for horizontal approximations.

The vertical grids considered are presented in Figs. 1-5.
The most widely used vertical grid is the Lorenz We considered first- what may be achieved by

(1960) type staggercd (or L-grid) which carries horizontal introducing 4th order CDS in the vertical instead of the 2nd
velocities and temperatures at the same levels, and- vertical order CDS-. The sign of both VGVC and HGVC are wrong for
velocities at the intermediate levels. The advantage -of the both schemes in certain scale ranges, although- for the 4th
Lorenz grid is in its easy maintenance of conservation order CDS they are slightly smaller. Namely, for the 2nd
laws. The Chamey-Phillips (1953) type staggered grid, or order CDS the aforementioned signs are wrong for scales
CP-grid carries vertical velocities and temperatures at the smaller-than L < 4A , whereas for the 4th order-CDS the
same levels- and horizontal velocities at the intermediate signs are wrong for scales L < -3.5 A which is-quite
levels. The advantage of this grid is its easy maintenance
of integral constraints for a quasi-geostrophic flow, comparable -to the 2nd orders result. Therefore, -the

New time-staggered versions of these vertically dispersion properties cannot be significantly improved by
staggered grids, namely the time staggered L grid or- the using the higher (4th) order approximation in the vertical
LTS grid, and time staggered CP grid or the CPTS grid are with a regular (unstaggered) grid. The most significant
introduced, All ntaggered grids are computationally feature of all vertically and time-vertically staggered grids
efficient due --enhanced effective vertical resolution considered is that they have definitely better dispersion
compared to that of a regular (unstaggercd)- grid. Their characteristics than that of a regular (unstaggered)dispersion properties are intercompared both with each vertical grid. Both HGVC and VGVC have an appropriatedisprsin poperiesareintecomare bot wih- ach sign for all- resolvable scales L < 2A due to the higher
other and against that of an analytical case in a manner effective vertical resolution. In general all staggered
similar to -that used by Mesinger and Arakawa (1976) and effective veri ro tion i general al s rFox-Rabinovitz (1991) for horizontal grids, grids have dispersion properties which correspond to or

(are very close to those of a- regular grid with twice the
If. THE DIFFERENTIAL CASE vertical resolution.

Note that semi-implicit or economical explicit
Let us consider a linear baioclinic PE hydrostatic Nte at emi-mplicitecoica exicit

schemes may be complemented with- tiire-vertically
atmospheric model in =enp coordinate system. staggered grids and the dispersion properties for the case

au .DO fv V .+ fuare identical with those for a regular grid with doubled
= t Oy2- fu=0 resolution. The examples of VGVCs for different vertical

D2d 2 au Ov a' Note also that the upper and lower levels for time-ax ax + I , vertically staggered grids may be the same for the adjacent
ata TX a 5 time steps which is convenient for orography

incorporation and upper boundary condition.
where u ,v,f2=-t are velocity components, C 2 const., IV. EXPERIMENTS WITH TIME.VERTICALLYSTAGGERED

geopotential, f constant Coriolis parameter. The solution GRIDS
has the form:

The time-vertically staggered grids have been
F=F .exp[i(kx+my+r -vt)], (2) combined with time-horizontally staggered grids within a

where k, m, r are wave numbers, v frequency. The full 4-D staggered grid approach. The experimental PE
dispersion relationship and hori,.ontal and vertical group baruilini( model with the grid is tested and found to be
velocity components (HGVC and VGVC) are as follows ,.omputationally efficient. The results of regional and
(for k = in): storm forecasts are encouraging.
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Fig. 1. A regular (unstaggered) vertical- grid. -F stands negative
for model variables.
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Fig. 2. The vertically staggered Charney-Phillips grid negative negative
(1953). or CP grid.
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Fig. 3. The vertically staggered Lorenz grid (1960), or Fig. 6. Vertical group velocity components for the
L grid. differential ease (a); a regular vertical grid with the

nd order CDS (b); vertically staggered IL and CP
grids (c); and time-vertically staggered LTS and CPTS

for u'v KIX ux K2,T U' grids (d).

n-I n ni-I
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n-I n n+1

Fig. 4. The time-vertically staggered CP grid, or CPTS grid.
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ERRORS ASSOCIATED WITH HORIZONTAL TRUNCATION
!N GLOBAL ATMOSPHERIC MODELS

FERDINAND BAER and J!ANJUN ZHANG
Department of Meteorology Department of Meteorology
-University of Maryland University of Maryland
College Park, MD 20742 USA College Park, MD 20742 USA

I. INTRODUCTION

-One aspect of weather and/or-climate prediction whiclh limits our Should one c.nsidcr a differcrt mod.l, or cvci ihe bafic one whhi
capabiliiies is associated with computational errors ansing from the was nut valid globally, the cxAct svlutiuns would iiut be. apparcit. Thus
numerical representation of die relevant differental equations describing an alternate prou dure. i, needcd to di tinguiAh di. true nmde from the
the prediction system. Of the represenational methods currently favored, false ones. Ae have dune this by itraoducirg the. Jitllling method.
global-funcion expansion (spectral), finite diffcrencing in.,pa,.c or- ftc Simply dncribed, thib aicdiud ukAu.s dlt, (;'1civiu, fvrt 4 givuii
element functions, each has its own limitations, but the iitcrriclatvnship numcn,.al cigelnslutun oh thi, dis,..rct; equations, Atn., at unc bounidiry
amongst them has not been carefully discussed. Issues such as aliasing and integrates the equation puint by point to tit. othel boundary. If the,
errors-and computing speed compete when a represcntational choicc is to other boundar ondition iu thebe friet, the dc1gin, alu and i aL-,sciated
be made. Whereas the spetral method is preferred for global ,.alctu vector satisfy the equation. If the boundary condiion Is not met, an
lations, it is not suitable for regional calculations with complcx boundary adjustment to di, CIgUialo. Is miade arid ti, prucl i repeated. If the
conditions, solution converges to the boundary condition with minor adjustments of

It is the intent of this report to present a procedure whih, when applid he cigenvalue, the numicnrcd sulutilon I probably true. If It divCrg'b,, the.
in the spatial domain,-could yield results which arce-Cquivalent to thub,. Solution is false, i.e., no ouch Vctur satbifics thI original equation. Vic
derived from the spectral domain. If the equivalenc can Ix-, demonstrated compared the true and false suoutionN so idcitificd to the Hough modes,
in application to general models, the ,huie of nuten,,ij neprncscntauuni which are by dcfiniun the true modes. By thiz prou"dure, we can
would-be one of preference or convemence rather than one assocViatcd identify the equivalence of a disrcte model to a spc,tral model.
with forecast quality. We shall lean-heavily on lincar theory to prcent Finally, we have projet.ted observatiuona data fields onto a set of
ourcase. Hough functions and on the corresponding sets of eigenvcctors derived

from the discrete systems. Since the projections are done independently,
11. PROCEDURE some measure of amplitude loss which comes from discarding false

modes is made apparent and is available to assess the applicability of the
We choose for our analysis the model developed by Kalney, et. al. procedure.

(1977). This model is representative of the models in current use as
prediction systems and is furthermore available in 4th order difference 11I. EXPERIMENTS
form at GSFC/GLA, if and when we need a comprehensive model to test
our results. Since the model is global, it would also be pussible to The model equations discuscd adbov, czsentially the shallow water
compare a spectral version with the existing finite-differcnrce fum. T equations, were translormebcd to dicrteytsm by as.uming ka) 4th Urder
understand the structure of the prediction e'quatior, w hincasi,.. its. differencin ig over an cquahiy spa.ed latitudial grid and t)b scond urdtcr
model-without forcing about a state of rest. finite element representation on the same grid. In both cases, te gnds

The resulting system yields to aseparation in vanablessuch that the used-were 5^ lattud, and 2.5 latiude. Th corrspo nding longitude
horizontal dependence may be solved for independently of tie vertical representation was fur a urtuniuuub fuuncr -snes and a fuurtl order
dependence, the separation constants are derived from the solution to tile Jiffereneing with the appropnat,, gnd i).ncrrncrit to aliow Ion a maximum
equations in the vertical dimension and are denoted as equivalent depths of 20 planetary waves.
with corresponding eigenve"tors which have been arefully studiel by The equations represcnting wcah diffcrncing s hcmc were suled
Baer and Ji (1989). if Fourier senes arc substituted for tie longitudinai a matnx problem and yicldcd ci.nvctur and cigcwvalus, thdia number
dependence, the shallow water cquations, dependent only on latitude, appropriate to the nuiber of grid points used. f r examplc, if die grid
result and have analytic solutions. Tnese solutions are known aislough inrcmciit was 5, 105 veetors evuvcd. These veutour.st werecalculated
functions and depend on the equivalent depth and die planetary wavt, for each planctary, wave,i -2G. arid for diL ainuus cquivdIcnedcpths.
number. There are an unlimited number of these functions which satisfy Assuming nine vcrticl lecels, wr, evaluatcd fur each of tile Rine
the equations, arid a finite set would reflet modal truncation. equivalcnt dcpd. The minimum numblr of lVugai aiicdes apprupnate

To understand how afintc-differenceor finiteelement representation to a given truncation t..C) was csidbhhcd by i dailying that set of
of the shallow water equations relates to the spectral tHough) solutiuns, Hough mudes which wcr, icludcd amongAt the cign;.vccti set of the
we have evaluated the latitudinally dependent equations on an equally discrete system, no more or no less.
spaced gnd of points in latitude, and using both the 4th order differencing The shouting mctlivd *as apph to cach Set oh cmgcnvclturs of tIl.
scheme and a second order finite-element scheme applied to the gerierai discrete rcpr-.ntation fvr a h choici ol paramnitcrs and fur cach
model, we have developed two discrete systems, each of which yield a numerical tchriiquc. Thus a act of trut arid fala iriodcb was Jtcrminrld
set ofcigcnvectors and cigeivalues, then number and character de;pending for eth expemCnt arid wds a,,u,.abi or urripanwri w*ith the at.ssoated
on the number of grid points selected. Since the true solutions are known Hough mode solutions.
(Hough functions), these cigenvectors can be compared to the Hough Finally. seCeral data fidJd wrce pro 'cd onto the cIgcerivctors
solutions and identified as true solutions kthlosc whicl cumpare, of as derived from the ,anuus expner .ieta, a, w i s onto the uorspidIRg
false solutions (those which do not compare and ons.equently represernt Hough mode, and dl. rclatuv amplitude o1 the- data in tile irtce modes
computational errors). If a one-to-one comparison exists and only the as contrasted to the false modes was assesed.
true-cigenmodes are used to solve the linear system on the grid, then the
results of the discrete representation would yield the exact solutions.
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IV. RESULTS V. CONCLUSIONS

Tile expenments outlincd above have resulted in the following The results of our calculations indicate that a correspondence can be
observations, made between spectral and grid truncation, and based on our analysis

(a) Scnsmvity to truncation in longitude results in vanations with a relatively simple model, it is highly scale dependent. Whereas for
observed only on the shortest planetary scales, which represcnt a 2L X the longest planetary waves and thc cxtcmal vertical mode the conven
increment. This confirms many previous observations. tional concept that one wave for each two grid points applies, very few

(b) The distnbution of modes between Rossby and gravity evolving spectral components represent many grid points for short planetary waves
from-the solutions to the discrete (truncated) systems conforms to the and internal vertical modes.
expectations for the true (Hough) solutions; i.e., two-thirds of the Truncation decisions can be made by considering die distribution of
solutions are gravitational and one-third are Rossby. However, some o1 observed variables in terms of die appropriate cigcnvcctors of the system
the Rossby modes calculated are false because tiey propagate to tie cast. to be predicted. Once a decision on the number of false modes which
Almost half of the Rossby modes calculated for the 4th order system tall can be tolerated is made, the appropriate truncation can be chosen and a
into this category, whereas considerably fewer have this property for the grid or spectral truncation can be selected. Aliasing errors during
-flnite-clement-system. nonlinear integrations can be reduced by filtering the initial data of the

(c) The shooting method works well and as expected. The modes unwanted false modes. Because those modes exist in the prediction
which are defined as true by the shooting method are also Hough modes system, their amplitude will grow in time due to nonlinear interactions
whereas the false modes are not found anongst the Hough mode To maintain control of these unwanted modes, they may be filtered
solutions. periodically during the integration cycle. This procedure is clearly not

d) A direct relationship has been found between the finite- needed in a spectral model.
difference increment selected and spectral truncation. Based on item (c) Tests with a shallow water nonlinear model have been made and
above, this correspondence can be calculated from either the number o indicate how fast false modes grow with time during integration. Such
true modes found by-shooting or the number of relevant Hough modes calculations provide a time scale for filtering of the false modes and also
determined. The results are sensitive both to die planetary wave number give an indication of how successfully a filtered model can provide
and-to the vertical mode. Moreover, the response of the Rossby and successful forecasts.
gravity modes differ. Wc have tested these results for both ,s = 5" and
A0 = 2.5. and the results are consistent. Consider the experiment for AO REFERENCES

- 50 with 4th order differencing. For the external vertical mode and the
longest planetary wave (m=l), almost one-half of the Rossby modes are Baer, F.. and Ming Ji, 1989: Optimal vertical discretization for
true and 45 percent of the gravity modes are true. This translates roughly atmospheric models. Mon. Wea. Rev., 17, 39' -406.
to 16 Hough modes for each set (Rossby, gravity-east and gravity-west).
However, for die longest planetary wave and the sixth internal mode, Kalnay, E., ct. al., 1977: The 4th order GISS model of the global
only twelve Rossby Hough modes are true and only nvo gravity modes atmosphere. Beit. Phys. Armi., 50, 299-311.
are true. For the external mode at planetary wave twenty, twelve Rossby
modes-are truec but only five gravity modes are true. The implications
here are clearly that spectral truncation and the corresponding finite-
difference truncation are highly scale dependent.

(e) The impact of false modes on the integration of a nonlinear
system-may be assessed by considering their involvement in the energy
exchange process. We have investigated the impact by projection of
several data fields onto all the modes of a discrete system. As an
exampla. consider the rotational kinetic energy of the external mode
expressed by the modes of the 4th order differencing system. If we
compute the ratio of energy in die true modes to the energy in all modes,
we note that for the Rossby modes, this ratio decays from near 95 percent
for the largest planetary wave to near 80 percent at wave number twenty.
By contrast the ratio is near 40 percent for the largest planetary wave for
gravity waves, and gradually increases to near 50 percent by wave
twenty. Since the energy in both groups decays rapidly with wave
number, and furthermore since the Rossby energy is an order of
magnitude larger, ite total energy in this vertical mode is described to
better than 90 percent by the true modes. This result is similarly noted
for the larger internal vertical modes.
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POLYNOMIALS AS A SUBSTITUTE
FOR LEGENDRE FUNCTIONS IN SPECTRAL MODELS

Isidore H. Halberstam
ST Systems Corporation
109 assachusetts Ave.

Lexington, HA 02173 U.S.A.

A A method:-for expanding dependent The coefficients a0j1 need be derived only once
variables in numerical models of the global 3 m
atmosphere is discussed. The method is shown to be and stored for future use. Because Pn is even for
compatible with spectral methods and a procedure for n-m even and odd when n-m is odd, only of the order
converting spectral coefficients to polynomial of (N-H) /4 coefficients need be saved for each m
coefficients is demonstrated. The polynomial method under rhomboidal truncation, where N represents the
proves more efficient on a scalar computer and has largest meridional wave number of the expression.
potential to be-more-efficient than traditional n m
spectral algorithms. There are various ways to derive the aj , but there

is no-space-here to expound upon them. Once they
I. INTRODUCTION are known it is possible to substitute into (1) to

derive the Fourier coefficients, Am(o) of A(•A),

During the development of spectral models of given as
the atmosphere in the 1970s, most researchers
realized that a major difficulty with spectral ImI+N
models is the evaluation of Legendre functions. _2 m/2 m nnm"
Although swift and accurate methods exist for the Am() (1- ) Z A n
computation of Legendre functions, it was not n=Im A 0n
feasible to store- all the -necessary values of the
functions and to access them frequently during
numerical integration-because of the drag 10 Rearranging terms gives
normally imparts on computer processing. N

A(~ (1 _I2)m/. 1 1m~~I+~ (2)
Several researchers have, therefore, looked mM r(E0= p Er A,

into the possibility of expressing the Legendre
functions in terms of -Fourier expansions divided by I n

some power of (1- 2)1/2 , i.e., coso where p = sine, E Cn IL
and 0 is latitude. -Herilees (1973) suggested that n=O
the Legendre function-be expressed as Fm(I.)/(l-
A2)m/2, where Fm is an expansion of sin ko, where k
ranges from 0 to m, m-being the zonal wave number. In TmI+p,.
Orszag (1974) suggested that the function be where Cm- E rl mp a- r

represented as Gm(5)/(l-
2)s/

2 where G,(p) is also p-r -

an expansion of sin ko while s can be either 1 or 0 Am n,m,
depending on whether m is even or odd. Yee (1980) Thus, givenA and the coefficients ,
extended the -argument so that the Legendre function we can determine the coefficients Cr and evaluate
could be expressed completely as a Fourier series, t
where cosine term& are kept for even functions and the variable in ters of powers of p. The summation
sine terms are kept -for odd functions. leading to CP is a-very swift process, especially on

vector computers and, of course, the summation of
In this study, we offer an alternative more powers of p in (2) is much quicker than the

compatible with Legendre functions and hence -wth evaluation of Legendre functions.
spectral models. It involves shifting from
expansions in terms of Legendre functions to III. INVERSE TRANSFORMS
expansions in-polynomials of p, while keeping the
representation of the fields spectral. In the course of most spectral model

processing, it is necessary-to obtain the spectral
II. SPECTRAL EXPANSIONS coefficients from the values of the parameters,

e.g., for non-linear terms this is normally
To evaluate a given-variable, A, which is a performed at every time step. The polynomial

function of latitude, 0, and longitude, A, from its approach can also furnish the same spectral
m coefficients but without explicitly calculating the

spectral coefficients, A;, we execute the sum Lagendre functions and performing the related

Gaussian integration. As with the spectral method,
the function A(0,7} is decomposed by Fourier

H IMinI+ transform to obtain the Fourier coefficients at N+A ( , ;A ) - E E A n M a# ( I ) b y ( 1 -p ) m==-M n-Zml n n latitudes. We then divide A (O) by - /

cos'o, provided 0 9 ± /2. We now solve the systemof 14+1 linear equations given by (2) to obtain th,:
where Pn(O) are the associated Legendre functions.nhr coefficients (C } J-0, ..., it. By invoking the

The Legendre functions themselves are defined as jn g
relationship between the known 1 and an,

r1p)/2 n-m mjm
P " 1 ) Z a 'Aj and the unknown Am one can easily solve for the

J-0 r
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spectral coefficients recursively by

AIm=I+N = C 1/a1l+l ',m

AlIm+m
A aia 

,

CX If-k - l ip jmm l+r 'm
n-k z I I+r'ti-k

A'-r-g-kl (3A, = (1k -lrml mr)(

for each m. Inverting an upper triangular matrix
would be the equivalent operation and may prove
swifter.

IV. CONCLUSIONS
In experiments executed on a COC Cyber 750 (an

older, scalar machine), the expansion of temperature

from spectral coefficients-with rhomboidal
truncation of 30 using the standard Legendre
functicn approach over 60 latitudes took 1.472s of
CP*' time as opposed to .525s for the polynomial
Mi.nod. The inverse transform when-performed by
-Lee 'ndre functions and Gaussian integration took
33u.- t-evaluate the spectral coefficients for
temparature, moisture, and velocity at 12 levels but
only 84s with the polynomial method. Tests on
faster vector processing machines have not been
performed to date, but savings in time may be
expected there as well. It must be remembered, as
well, that the proposed method here is completely
spectral and is therefore completely compatible with
other spectral models.

There are some drawbacks to the method,
however, which must enter in its evaluation. First,
expressing the Laplacian is much simpler with
Legendre functions than with polynomials, but the
polynomial expression is still tenable. Second, it
is necessary to store the coefficients of the
powers of the sines that generate the Legendre
functions, but this, again, may-not prove too
difficult especially with large mainframes. Third,
accuracy near the poles may present a problem, but
this affects Legendre functions as well. All in
all, the polynomial approach-ay serve as a
beneficial substitute for conventional spectral
methods.
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A Dr,-PESOLUTIowSmI-IHpLICIT mIw FOR-AmfOSPHERIC mOmLS

SAMUEZ Y.K. YEE
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I. Introduction
equilibrium. The one-dimensional equations governing

'There are principally two types of waves repre- the velocities u and v and the depth h in a viscous

sented in current operational atmospheric models: "shallow" fluid on an f-plane can be written
Rossby-w-aves and gravity waves. The former typically (Seitter, 1986)
propagate at speeds of about 30m/s and the latter at
speeds up to 300 n/s. In the early days of numerical (hu), -- {hu). + f(hv} - 90h/2}. + v(hu),, (1)
weather prediction (MWP), because of their diverged
wavelengths and high speeds, gravity waves were (hv) - (uhv)x - f(hu) + v(hv). (2)

treated with respect but also with awe. The con
wisdom-was to filter out the shorter ones and treat (h)t _ (hu). (3)

the longer ones gingerly. Thus, Robert (1969) pro-
posed a so-called semi-implicit method in which the where g is the acceleration of gravity, f is tht

model terms responsible for the fast-moving gravity Coriolis parameter, and v is an eddy viscosity- The

waves wire treated by an unconditionally stable but heintwreighted velocities, .i- and- v, are analogous

computationally more costly implicit time-scheme, and to the pressure-weighted velocities used as prognos-

the remaining terms were treated by a much s2rpler tic variables in (any mesoscaie hydrostatic models
explicit time-scheme. This approach enabled us to "se and the continuity equation, (3), is analogous to the

larger time-steps without sacrificing accuracy and pressure tendencv equation in-a hydrostatic model-

was considerd to be -a comtational milestone in We nondimensionalize the equations using the%'as €onidered e be a c - -tati nal miletone in undisturbed height, H, as a sa e h s e t n

Mr-P. Increasing-enphasis in recent years on smaller- cale. Thus, letting

scale (the co-called msoscale) dynamics and physics primes denote the nondimensional quantities we have

means that W _zust now solve model equations at
higher resolutions. Hower, the current practice of h H -h'
discretizaticn in which gravity waves are represented u ((gi) v'
at the same spatial and temporal resolutions as v
Rossby-vaves also means that, &de to constraints in t - z((J/) t" (4)

computing resources, we can -have high resolution X - H x'
models only for pre-designated small geographical f£ - Ag) f'
areas. Examles of such localized-models are the USAF V K'.
Global WeaLhr Central's "elocatable Winda-Model"
and the #.S. National eteorological Center's Then the ns) dimensional equations are (dropping

"Nested-Gria:lFdel." primes)
We progkisi-here a new approach in which different ( W - (i /2) + K(hu) (5)

resolutions -are adopted for different terms in the ( tu) - - (1
MLu)X ))

model equations. For example, sirce gravity wves
typically not only propagate ten times faster than (hv) - - h - f(hu) + KhV)x (6)
longer nosshy-waves, but also change =ch faster as
functions of space and time, %e may, therefore, dis- (h2!2)t = - {h-H){hu) -H(hu) . (7)
cretize the model equations on a dual grid, both Note that K my now be regarded as an inverse
spatially and temporally, evaluate the terms resa- nol that we hanewseprgared he
sible for the gravity waves on a finer grid, and eYneolds nu diber and that e have separated the
evaluate the remaining terms on a coarser grid. The height ighted divergencets. Folling (7)the choicesrrbedf
distinction between the local refinement method and arg
this new aproach, which we shall tentatively call Seitter, w let K = 0.0iY8, t = IO- s', - H
the dual grid method, can be state d simly as ~m (approximately the density scale height)- This

follows: In the former, we start with a coarse grid yields an external gravity wave se of /(gi) 280
and evaluate at increasingly finer resolutions for
decreasingly-smaller portions of the model domiar. At
a given level of retinement, all the terms in the III. The Dual Grid method
model equations, h-ever, are eialuated at the same
resolution. In the latter, we evaluate for the entie The twom key izsues in im.lementing the dual
dom,.in each term in the model equations at a L - resolution method sre; ja the identi ication of the
tion aj~~pp' riate for the scales of the rAhencne-n model fociaig te-rms -. ch contrlbute to shofter
represents. gravity waves and thus warrant higher resolutions,

%hile it may not be ienediately apparent. U-t. (bi the design of an tntezgEid information ttra-fer
underlyifig principles of this method are akin - procedure bet-en the finer grid di6x,t, arn the
those of the =ultigrid method {.-(Cormick, lI9 3. coarser grid DI!zxt 1, where a and 6 denote
shorter waves are treated on a finer grid, and lCner incre-ents in jL-i, d and D, cepenctively- .1-n
ones on a coarser grid. in the examle above, we identificaticn a:oblem is .fot 3lwa;yP cosy. in --Ax
have, h wver, taken advantage of prior infcrmation c.--, huwmever, it. is kre. n that. the r a- been
on the scales of the modeled waves, the pressure gradient arn ti- linear diverge e ter

are largely reponsible for the gcavity Wves.
II. A Shalow Water Model Althj-h the role of the virscous te-S is t,3 si--late

damming, we also discretize the at a higher
To validate the dual grid concept outlined in reslut.io fn the qgrc -d that they sepe.en-t saller

Section I, we shall use a simple but illustaL 'e s.cale phenomena a!d that in more tealistic ModelS. K
"shallow" water model in which. the wavelength of the is a funtztixi of the fl w field itself. Fo, int r

shortest waves is much longer than the depth of the transfets, ke ,-- -- dis.--ete F,JLCL _ s thaf3

fluid so that the fluid is largely in hydrostatic ani inter=olatinn.
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Thus given initial conditions on d, we
-- T 0 HRS

(1) -smooth values of dependent variables on d to --- = T 4 HRS
get smoothed values on D; E) = T 8 HRS

(2) compute longwave tendencies R(6) on D; = T 16 HRS.
(3) interpolate R() toget R(S) on~d; = T 24 HRS
(4) compute gravity wave tendencies-g(S) on d; 2
(5) time-integrate on-d, using R(S) from (3) and': '

g(S) from (4) above;
(6) repeat steps (4) and (5) for (At/St) times; '
(7) repeat steps (1) through (6). -,-- -- "

The main point here is that time integration is 4
done on the finer grid at time intervals St, but with W E E.

the longwave tendencies computed only-on the D grid.
Another way of looking at it is that while longwave Whi
tendencies are computed less -frequently on a coarser >
grid, they are interpolated onto the finer grid and .
then fed into the total tendencies at the smaller St ... "....-'"'"""....
interval through step (5). It should be noted that
step (1) ensures finer grid/coarser grid interactions
and that this selective adaptation of grid resolu-
tions according to the characteristic scales of the
modeled- phenomena should be done both spatially and
temporally. Although our multi-resolution approach,
in which the sizes of the time-steps are tailored to
wavelengths and wave-speeds, enables us to use the 0 - I I I
computationally much simpler explicit time-scheme, 0 24 48 72 96 120
for the studies reported here we have incorporated DISTANCE (UNIT=160 KM)
Robert's semi-implicit time scheme for pedagogical Fig. 1 Time-evolution of surface waves
purposes. 7

IV Preliminary Results - = INITIPL

The procedure given in- Section III has been 6 - DUAL
tested&-with the shallow water model. For compariscn = CONVENT IONL
purposes, model equations were solved in two dif- 11
ferent ways. In one, we simply used a centered-
difference, explicit time scheme with a weak time i,:.

filter (filtering coefficient a = 0.02) to couple 0
even/odd time steps in the conventional manner. In Z:Wthe other, we solved a set of equations derived from % I
(5), (6) and (7) using the dual-grid semi-implicit ,- : .
method. -Periodic boundary conditions were used for a ) . :
38,400 km domain which contains 240 finer mesh points - I
(Sx = 160 km), but contains 15, 30, 60, and 240 mesh CE " :
points, respectively, for various coarser grids. .:
Time-step St was set at 60 seconds, with the coarser U
grid At = 26t. A small 6t was used deliberately w "
although a 300 second St has been used in some test Q :
cases for time-integrations up to 5 days. U"

Initially the fluid was assumed to be at rest. A " -
sudden disturbance one-tenth the size of the domain- :
was then imposed on-h at the center of the domain, as : I"

shown schematically by the upper solid curve in Fig. %
1. (only half of the domain is shown.) The other
curves in Fig. 1 show the height distributions of the *"

free surface at model times 4, 8, 16, and 24 hours. 00 8 "" "'0 a 6 24
(We have displaced the curves vertically for clarity WAVE NUMBER
in the display.) We see that the free surface waves Fig 2 Spectra of surface waves at t -0 and 24 hours
propagate both up and down stream with diminishing
amplitudes during the first 24 hours in the model. In
fact, the primary waves shown for hour-24 are Acknowledgements: This research is partially
retrograde waves originating at the center of the supported by the Office of Scientific Research of the
domain. In 24 hours, they have propagated slightly U.S. Air Force under Project 2304G1.
more than half of the domain. Fig. 2 shows the energy
spectra of the height fields for the longest 25 waves References
at t = 0, and, at 24 hours as given by the two McCormick, S.F., 1989: Multilevel Adaptive Methods
methods of solution. Initially, the energy spectrum for Partial Differential Equations. Society for
is relatively smooth, with a single peak at wave Industrial and Applied Mathematics, Philadelphia.
numbers 15 and 16. At 24 hours, a bimodal distribu- Robert, A.J., 1969: The Integration of a Spectral
tion has developed in both model solutions, Model of the Atmosphere by the Implicit Method.
apparently due to the rapid removal of energy at the Proceedings of the WVMO/IUGG Symposium on Numerical
initial spectral peak. Furthermore, even in the cases Weather Prediction. Japan Meteorological Agency,
shown (dual grid solution with ax = 166x), where the Tokyo.
solutions diverge the most and where the energy Seitter, K.L., 1986: The Specification of Lateral
spectra seem to be off-set by one or two wavenumbers, Boundary Conditions in ThEee-Dimensional Mesosale
on the whole the two solutions possess remarkably Numerical Models. AFGL-TR-86-0005, AF Geophysics
similar spectral characteristics. Laboratory, Hanscom AFB, Massachusetts.
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Optimal Instability of Shear Flows
in the Initial Value Problem

Enda- O'Brien The instantaneous energy growth rate GE is now defined as
University of Miami E- 1 dE/dt.
Division of Meteorology and Physical Oceanography An equation for-the perturbation potential enstrophy H is
4600:Rickenbacker Causeway obtained by multiplying (1) by q-and proceeding as-for the en-

L 9 ergy equation. The potential enstrophy growth rate-aH is de-
-fined as H- 1 dH/dt. ror an arbitrary perturbation l there is no

Tel. (305) 361-4032 reason to expect aE and a to be equal.

Abstract A variational principle is-used to find those per-
turbation structures which have the fastest divergence -from a 3 Constraints
basic state in linearized shear flows, and for finding the initial
rate of divergence. The technique requires the existence of a Consider first the inviscid case (ie., r 0). Where=Q, f 0, we
positive-definite quantity (e g, energy or potential enstrophy) ca- multiply (1) by-q, averae horizontally, divide across -by
whose growth rate can be expressed as a-function of the in- and integrate vertically to o tain
stantaneous perturbation structure. The problem reduces to
a fourth-order nonlinear ordinary differential equation for the dA .1
structure function, which can be solved- using various iterative dT = - 1odZ 0, (8)
numerical techniques. Green's model of baroclinic instability [1]
is presented as an illustration of the r.ethod. where the wave action(or pseudomomentum )A is defined (for-mally) by

I Introduction A = 0.5 o(q-/Q)dz. (9)

A large class of waves in-shear flows have instantaneous-growth Where-Q, vanisles the definition of A in (9) can be-modified
rates significantly larger--han normal mode growth rates [2]. A strightforwardly. Eq. C8 implies that A is a constant. We setconsequence of this is that error growth in nume:ical forecast A -- since this is the only vlue for-,hich A is independent of
models can be faster than predicted by calculations of the frst the perturbation amplitude, which is arbitrary.
Lyapunov exponent (or growth rate of the most unstable normal When surface friction is included, the appropriate constraint
mode). Questions which then arise are. is there a bound on the becomes aA ax, where ax is the:growth rate in:some norm
instability of these non-modal disturbances? If so, what is ii (e.g., the energy or potential enstrophy norm), anr-dthe wave-
and-what is the structure which attains-this bound? action growth rate aA is defined as A-'dA/dt.

In order to define a measure of instability, we seek-a norm
such that the perturbation growth rate in that normn=can be
expressed entirely as afunction of the perturbation structure 4-  The variational principle
and the-basic state flow. The perturbaticu structure can then
be varied in order to maximize the growhth rate. The problem now is to maximize GE (or air) subject-to-the con-

straints derived above. In the inviscid case, we render stationary
2 Green's model the functional £, where

Consider a basic state wind U(z), in a Boussinesq fluid with GE - AA. (10)
constant-stratification ona fl-plane, confined between rigid sur- In the case with friction, (10) is replaced by
faces-at z = 0 and z - 1. The governing equations are the
linearized nondimensional quasi-geostrophic potential vorticity = GE - A(aE - GA). (11)
equation, along with the boundary conditions For optimal potential enstrophy growth rates, aE is replaced by

qL = - - , 0 < z <1 (1) a-in (10) and-(1). Now let (x,y,z,t) - (z, t)exk+1i) + cc.
,=-Uq- vQ, 0 1 () IFrom here on the method is exactly analogous to the derivation

0-t =  -V, + vU, Z = 1 of Lagrange's equations from a variational principle [3].
Ui= - + vU - rV2b, z = 0. (3) The same procedure is followed for all cases. For optimal

energy growth in the inviscid case, we obtain a fourth orderHere lowercase letters represent perturbaton quantities, while nonlinear ordinary differential equation as a structure equationuppercase letters refer to basic state quantitties. The basic state
potential vorticity gradient is Q, defined by: for O(z) (henceforth dropping the "hat"). For U' = const (the

classical Green's model) this equation reduces to:
Q = - UZZ, (4) ...- (2K 2 +GaE)..+2i-ykU.,.+(K 4 +yaGEK 2

)0_= 0, (12)

The dimensionless parameter r represents Ekman pumping at where - Q /(AE) and K2 = k2 + 12
the ground. The perturbation streamfunction 0(x, z, t)is re- w
lated to the wind components by u = -7, v = ib, and- to the Boundary conditions may be obtained for (12) in-exactly the
potential vorticity q by same way that the boundary conditions (2) and (3) are obtained

for (1). This yields:
q = V2a + 1p. (5) tPZ = (ikU-/o' )b, z = 0; z = 1. (13)

An energy equation is obtained by multiplying (1) by Since growth rate is independent of the wave's amplitude and
and proceeding in the usual way. We obtain, phase, these quantities may be arbitrarily fixed at one level to

dE provide a third condition on (12). A fourth condition is the
= -It qUdz - r(Vf)l(.=o). (6) integral constraint A = 0, which is necessary to determine the

dt value of the multiplier A.
Overbars represent a horizontal domain average. The total en- Assuming that a consistent value of GE exists, the general
ergy E is defined by: solution to (12) has the form

4

_ 10 .5f/(VO)2 + ( -)2Jdz. (7) = , A~e"'' , (14)
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where rn, are-the rootsof a quartic equation and A, are (corn Fig. 2a shows the structure of the most unstable normal
plex) constants determined by the boundary conditions and con- mode (at k = 2.3) in the inviscid case. The phase tilt is concen-
straints. trated near the bottom of the domain. The structure which has

One approach to solving the problem (12) with its boundary optimal energy growth rate at the same-wavenumber is shown
and integral conditions-is to fix A, E and aB initially at some in Fig. 2b, it has a phase tilt almost uniform with depth. This
arbitrary values. The "constants' A, in (14) can then be deter- difference between normal mudes and optimal structures-seems

mined. This solution can be used to update as and £ in (12). to be quite general.
Proceeding iteratively in-this way, the values of a. and E used Fig. 3 shows the time-evolution of energy and potential en-
in (12)-may or may not converge to values consistent with their strophy growth rates from an initial conditin of optimal oa at
definitions. Convergence only occurs for-isolated values of-A k - 2.3, for both the inviscid and viscid cases. All Lases show a

The-approach outlined above ,as used in solving the-Eady siaiilat, smooth evolution pattern, with the normal mode struc-
problem (d -0). For the general problem, however, the opti- tures essentially established by t - 10. However, the waves have
mal structure for 4i was- obtained by discretizing in z, thereby lost their character as optimal structures by t - 2.
reducing (12) to an algebraic problem which was solved using Normal modes in the vertically disci: Aized model have also
standard routines, been obtained using the variational principle by imposing the

extra constraints that energy and potential enstrophy growth
rates in each layer all be equal. The phase speed c also emerges

5 Results from this analysis. An N-layer model produces a nonlinear alge-
braic system of 4N -2 equations in 4N -2 unknowns - clearly

In the results presented here, P = 0.5 and the optimization an inefficient way to find normal modes. However, the exercise
and egenvalue problems are both solvedin a 20-layer domai. serves-to demonstrate the generality of the optimization theory,
Where-friction is included, a value of r = 2 is used. and in practise provides a check on our other results.

Fig. I shows aE, all, and the growth rate for quadratic func-
tions of the most unstable normal mode-(referred to as a0N as Energy and potential en,troplhy growth rates
functions of zonal wavenumber k, when-aE is optimized. The
normal-mode growth rates (aN) show the well-known separa-
tion between the so-called Charney modes (for k > 1.75) and
the Green modes (k < 1.75). The curves for optimal aE, and .
the corresponding UH all decrease monotonically as k increases '2)
and do not have a short-wave cutoff, at least in the inviscid case. Co .6

Energy growth rate optimized 'o .
2.5 . ' .

r O .2

2.0 0 . . . . .

0 2 4 6 8 10
• Time

1.5 NNX Figure 3. Time evolution of energy (solid)and potential enstro-
0 phy (dashed) from an initial optimal a structure at k = 2.3.

. " - heUpper two curves are from the inviscid case; lower curves from

. 6 Conclusions

0 By the measure of growth rate in the energy or potential en-
0 4 - strophy norms, optimal structures have been found which are

2 3 5 significantly more unstable than normal modes, because of their
Wavenumber k freedom to grow at different rates in different places. Normal

Fig. 1. Growth rate as a function of zonal wavenumber .c (1 0) modes, which grow at the same rate everywhere, appear in this
for the most unstable normal modes (quadratic growth rate aN), perspective as severely- constrained optimal structures Indeed,
the optimal energy growth rate (aB), and the corresponding optimal perturbations can grow (at least initially) even where
potential enstrophy growth rate (al). Solid curves are from the there is no normal mode instability at all.
inviscid case, dashed curves from the case with friction. An intuitively appealing feature of the optimally unstable

structures is that they vary only slightly in N-layer models as
N is changed. Normal mode growth rates and structures, on the
other hand, can be very sensitive to the value of N in N-layer

At MI -bit cho k .i 3 op-- , models 14, 51 because of resolved levels falling near critical levels.
,o1 \ . "  '; \ ,, , In our work the concepts of phase speed and critical levels only

cuss \\\. ,arise in the specially constrained case of normal modes.
.01' A.The mathematical approach employed in this study can be

'/', "applied-to a wide range of instability problems, including the
,, ,instability of initial conditions in forecast models.

"~~ n' ,,,' ,, eferences
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Fig. 2. Streamfunction structures at k- 2.3 (r 0). (a) the J51 Bell, M.J., and A.A. White, 1988, J. Almos. Sci., 45, 1731-
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PREDICTING TIME SERIES USING A NEURAL NETWORK AS A METHOD OF
DISTINGUISHING CHAOS FROM NOISE

J. B. Eisner
Department of Meteorology, Florida State University

Tallahassee, FL 32306, USA

Abstract A neural network approach is presented for making effe.tivenebs of usng a neural network for making prediLtionb on
short-term predictions on time series. The neural network does time-series data. In general neural netwurks work by-iteratively
better-at shcrt term predictions-of a chautit. signal than does an solving for a weight matrix whL .h is used for the inner produLt
optimum autoregressive model. Also the neural network is that takes inputs to outputs. For time-senes prediction, the
clearly capable of distinguishing between chaos and additive inputs are taken as lagged ,alueb of the disLrete time sequeni.e.
noise. More details concerning neural networks are given in-Rumelhart

etal. (5] and Owens and Filkin (6].
I. INTRODUCTION The neural network architecture we employ consists of three

One of the basic tenets of science is making predictions. If layers, one input, one hidden, and one output layer (fig. 1).
we know previous behavior, how can we predict the future
behavior. The approach in many sciences requires two steps; , .
construct a model:based on theoretical considerations and use
measured data as initial input. Since in many cases the
underlying theoretical principles are known, model construction
has been and continues to be a primary area of interesting
research.

One class of alternative approaches is to build models
directly from the available data. For these methods the data, Eigure1. Architecture of the neural network used in the

given as a time series, is usually considered a single realization study.
of a continuous random process. This is appropriate when-the Learning is achieved using back-propagation of errors resulting
randomness is a result of complex inteiactions involving many from the difference between predicted and the actual values
independent and ultimately irreducib'- degrees of freedom. during training [6]. Both of the time series used in this study
Along these lines, linear models hive had some success consists of 1000 data points. Training is performed on the first
especially in regards to relating cause and effect to physical 500 values with subsequent predictions made on the remaining
phenomena, however, their predictive power is limited. The 500 values. The number of input nodes is set at eight,-the
limitation is perhaps related to the inability to model the number of hidden nodes is set at three and the number of ouput
evolutionary dynamics of the system [1]. nodes is set at one. Some trial runs indicated that the-accuracy

In the last decade advances in the theory of dynamical of prediction was not sensitive to small changes in the number of
systems have demonstrated the-existence ofdissipative input or hidden nodes. The single ouput node represents some
systems whose trajectories that depict their asymptotic final future value of the time series we wish to predict. Each training
states are not confined on limit cycles (periodic evolutions) or pattern consists-of successive time-delayed values ofithe series
tori (quasi-periodic evolution) but in submanifolds of the total similar to the method used by Perrett and van Stekelenborg [71
available phase space which are-not topological. These to predict annual sunspot numbers. For example, if we
submanifolds are fractal sets and are often called strange represent the series as x(t) where t=l, 2, ... , 1000, then the
attractors. The corresponding dynamical systems are called first training pattern is (x(l), x(2),. . . , x(8)) and the ouput we
chaotic systems and their trajectories never repeat. Thus, their are trying to predict is (x(9)). Similarly, the second training
evolution is aperiodic but completely deterministic. Because the pattern is (x(2),_x(3), . .. , x(9)) and the ouput we are trying to
evolution is aperiodic any "signal" measured from a chaotic predict is (x(10)). Training continues over all input patterns for
dynamical system "looks" quite irregular and exhibits frequency several thousand iterations.
spectra with energy at all wavelengths (broadband spectra) For the first example a time series is taken from numerically
similar to those of random "signals". Another important integrating the Lorenz system [8] consisting of three ordinary
property of chaotic dynamical systems and their strange differential equations describing convection of a fluid warmed
attractors is the divergence of initially nearby trajectories. Due from below in time. The time series of convective motion after
to the action of the attractor the evolution of the system from all transients have diminished is shown in fig. 2a. Posiuve
two (or more) nearby initial conditions will soon become quite values indicate upward motion in the fluid. We take 1000 values
different. Since the measurement of any initial condition is from the time series, train the network on the first 500 values
subjected to some error such a property imposes limits on long- and make predictions on the last 500 values. Results of the
term prediction. Nevertheless, for a short time nearby neural network at predicting one step into the future (points)
trajectories may not diverge significantly and-thus even thonigh compared with the actual values (connected line) are given in fig.
each individual evolution might be quite complex, the knowledge 2b. The normalized root-mean-square error (RMSE) between
of the dynamics and especially of the structure of the attractor the actual and predicted values is 0.072 where zero implies a
(dimensions, Lyapunov exponents, etc.) may prove beneficial to perfect forecast. Clearly the network is capable of capturing the
the art of short-term prediction. underlying chaotic dynamics of the system.

Motivated by the abot'e ideas, very recently a number of To assess the predictive ability of the neural network against
techniques for making predictions have been developed to that of a standard statistical model we fit the first half of the time
exploit the underlying determinism in complex systems [2,3,4j. series using an optimum autoregressive process and then
The purpose of this paper is to show that neural networks are compare predictions on the second half of the series from both
capabable of making short-term predictions on time-series data models. For the autoregressive model the time senes is viewed
that are better than an optimum autoregressive model and-to as a single realization of a stochastic process which is taken to
show that such a methodology is capable of distinguishing chaos be stationary and having a Gaussian distribution. Employing the
from noise. method of Katz [9] the optimum autoregressive model for the

time series was found to be of 12th order.
II. EXAMPLES Comparisons between the models are made by quantifying

In this section we present two examples showing the how the prediction accuracy (skill) decreases as predictions are
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" i 3 a. Correlati*n coefficients computed between

,, ,, , HE actual values and predicted values as a: functio. of prediction

-tc t~ ln tI II, I Ii

Figury-2a. Time-series of convective motions generated b~y time for the-convective motions using a-neural..tworknumerically integrating the Lorenz systema b. Comparison model (dashed line) and using a optimum autort oredssive

of the-actual time series (continuous line) with a neural model (solid line). b. Correlation coefficients cimtputed
network prediction(dots). between actual values and neural-network predicted- vahlis

as a function of prediction time for the convective inoti,.._
made further into the-future. To do this we make a prediction one (dashed line) and for the wave plus noise (solid line).
step into the future and then use this-predicted value as one of
the lagged inputs for-the next prediction two time steps into the III. CONCLUSIONS
future. Similarly, theprediction at this second time step as well In applying chaos theory n the analysis of time-series data
as the previous time step are used as lagged inputs for the next one usually begins by estimating the dimension of the underlying
prediction three time steps into the future. Doing this attractor [10, 11, 12, 13]. This is done by constructing a state-
successively allows us to compute the correlation coefficient space embedding from the time series and then applying some
between actual and predicted values as a function of prediction variant of the correlation algorithm [14]. The dimension, which
time where prediction time is given as discrete time steps into is given by the power-law (scaling) behavior of the correlation
the future. The corelation coefficient between actual and integral, gives a measure ofthe effective number ofdegrees of
predicted values is defined in the standard statistical way and is freedom of the system. Because the scaling regions used-to
widely-used as a measure of predictive skill. Ibis procedure is estimate the dimension involve only a small number of distances
followed for both the neural network model and for the optimum between points i the state space much of the i'..ormation in the
autoregressive model. Results are shown in .1g.3a. For the time series is lost which for relatively short series can cause
first few steps into the future predictions from both models are serious problems. In addition, such methods cannot in general
good and the difference between the two models in terms of distinguish output from a random process front output as a result
predictive skill is small. However, the neural network makes of a chaotic dynaical process [15]. In this paper we show the
significantly better forecasts than does the autoregressive model ability of neural networks in making time-senes predictions and
as prediction time increases. The neural network model demonstrate-that surh methodology is capable of distinguishing
maintains greater predictive skill compared with the between additive noise and chaos.
autoregressive model throughout the entire forecast period. The
autoregressive model is esset.-ally a linear model and therefore Thanks are extended to Jay Perrett ana John van
incapable of capturing the inherent nonlinear nature of such a Stekelenborg for introducing me to the bat.k-propagatuon neural
record. Since the signal is, in fact, chaotic we cannot hope to network and to A. A. Tsoms for stimulating discussions dunng
make accurate predictions with any model too far into the future the course of this research.
and we see the predictive sliil of the-neural neLwork also drops
to near zero after a relativcly short time. REFERENCES
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Spurious high frequency oscillations occur in
forecasts-made with the primitive equations if
the initial fields of mass and wind are not in
an appropriate state of balance with each oth-
er. These oscillations are due to gravity-
inertia -waves of unrealistically large ampli-
tude; the primary purpose of initialization is
the removal or reduction of this high frequen-
cy noise by a delicate adjustment of' the
analysed data. in -this paper a simple method
of eliminating spurious oscillations is
presented. The method uses a digital filter
applied to time-series of the model variables
generated by short-range forward and backward
integrations from the initial time.

The digital filtering technique is applied to
initialize data for the HIRLAM model. The
method is shown to have the three characteris-
tics essential to any satisfactory initializa-
tion scheme: (a) high frequency noise is ef-
fectively removed from the forecast; (b)
changes made to the analysed fields are ac-
ceptably small; (c) the -forecast is not de-
graded by application of the initialization.

The digital filtaring initialization (DFI)
technique is compared to the standard non-
linear normal mode initialization (NMI) used
with the HIRLAM model. Both methods yield com-
parable results, though the filtering appears
more effective in suppressing noise in the
early forecast hours. The computation time re-
quired for initialization is about the same
for DFI and NMI. The outstanding appeal of
the digital filtering technique is its great
simplicity in conception and application.
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GRID SIZE INDEPENDENT CONVERGENCE OF THE MULTIGRID
METHOD APPLIED TO FIRST ORDER PDES.

Per Utstedt
Saab Aircraft Division, SAAB-SCANIA, S-581- 88-Linkbping, Sweden,

and
Dept. of Scientific Computing, Uppsala University, Sturegatan 4B, S-752 23 Uppsala, Sweden.

Abstract. where L+1 is the number of grids. This was proved in liJ for L=I,
The multigrid method fox nuner%.al solution of first order partial one spa.e dimension and a ala equatiun. It is shown in [4,5] that
differential equations is anal)zed. The smoothing itazations are of the behaVAour of thrn soothpan of the error is governed by theditffe-
polynomial type and are used on all grids, alo the .oarbest. It is rentidlcequation. Let-us keep the -.,arm.et grid fixed and add finer

shown that the convergea.e is, independent of the grid under -.ertain gnds by hahing the step ize. Then the smouth part, which ib well
conditions. This is a result of a propagatiun of smooth erruo waes represented on all grnd, -is tan vrted out through the ,omputational
out of the 4.omputationa: domain and a darpm of osbillator) error boundaries at a iate hiv1h_ s determned by the differential equation
mdes. Numerikal experiment. illustate the theuretical results. and the a-.umulated tine-step. A lower bound on this rate is given

by the rate on the coarsest grid. Furthermore, the damping of the
Introducion. oscillatory error modes can be made independent of the finest grid.

ItdconIn [4] an upper bound independent of the finest grid size is derived
Whenthemultigridmethodisused forthsnumericalsolutionofsys- for the numberof V--cycles needed for a two-dimensional scalar,
tems of first-order partial differential equations such as the Euler constant-coeffieient f-irst order pde to converge with the multigrid
equations of fluid flow, it is not necessary to solve the equations ex- method. The results can be generalized to one and three space di-
actly on the coarsest grid to obtain good convergence characteristics, rensions and to theW--ycle.
see e g [3]. For elliptic equations all proofs of grid independent con-

,ergence assume that the solution is determined exactly on the coar-
sest grid [2]. Here we explain why the behaviour of the multigrid Numerical experiments.

-A central difference approximation of the space derivative with ad-rotthud is different for the two types of equations and prove that un-

der certain sufficient conditions the convergence rate is independent dd artificial viscosity and a Runge-Kutta time-stepping procedure

of the grid also for first order equations, as in [3] are used in the first two examples. The coarse grid with 24
points is the same in the grid sequences in the examples and the step

Wave propagation and damping. size is doubled between agrid and the next coarser grid. Thereis one
The multigrid strategy adopted here is a V -ryle with a few pre and presmoothing step m the V--yle. In fig. I a simple one-dinen-
postsmoothing steps before going to and after returning from the sional-example is displayed. The equation s
next coarser grid. Also on the coarsest grid a few smoothing steps are If, =- 0.

taken. Let the discretization of our partial differential equation be
S=fand the initicl error moves to the left through the boundary as the

iterations proceed. The smooth errorpulse is plotted every 5:th itera-
For the -.onv ergence of lineau problems ;t ;s sufficient to stud) the tion.-It i-Ldamped and propagated at approximately the same rate
case f--O, which is equh alent to looking at the on-ergen.e to 0 of with-1, 2, 3-and 4 gnds. In [4] similar results are obtained with the
the initial error. The relaxation s,.heme S on grid 1 i assumed for Chebyhes method. The Eulet equations of fluid flow aresolved in a
smooth functions to be such that two-dimensional channel with a bump using thegrids40xl2, 80x24

I %- l :. , t Oand 160x48 in fig. 2.Theupperand lower walls aresolidand theleft
and right boundaries are open. The Mach number of the flow from

where a hat denotes the rourii itansforn ..U 2'. is a small para the left is 0.5. The steady state solution on the intermediate gnd is
at eter like a time step. It,.at;,c aicthods of th;s 2nd are Range shown and therate of .onvegen.e i measured by the residual of the
Katt, time stepping [3] aud the Cheb) shc% method [7]. rot system. % , minjuity equation tcf. [3)). No attempt has been made to optimize
of partial differential equations with onstant .ocfficients in two the perfurmance of the method. Finaihy, in fig. 3 three steps ot the
space dimensions it is shown in [_. -y means of Fourier analysis thal GMRES method [6] are usd as iterative smoother in the multignd
oscillatory parts of the error on the finest grid arc damped efficientl) method. The equation and the discretization are the same as in fig. I
but the smooth parts of the error ac not damped ' cry well The diffe nd the .olutrun ib plotted in every step. The results with the initial
rence betwvee' frst order and elliptic ides is that in the first case the bell shaped error pulse aresim ilax to those in fig. I with a convergen-
smooth ,art of 'hr error is prop. .ated out through open boundaries #_e almost independent of the gnd ize even if GMRIES does not sati-
This propagation is achieved with a time step fy the conditions on the relaxation dcteme with a constant time-step.
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Fig. 1. The initial bell shaped error moves to the left as the multigrid iterations with Runge-IZutta time-
2,0, stepping proceed (above). Eventually it disappears through the 'eft boundary. The number of grids is

from left to right. 1, 2,3 and 4. The coarse grid is the same.The logarithm ofthe Euclidean norm of u as a"toI  \ function of the number of V-.ycles is present ed showing the grid ineeer ence-(left).

.4\2,3,4
... .. .. ..... ..

-1 2

Fig. 2. Ile mntermediatwgnd and isobars of the Eulet solution ,'re displayed to the left. The convergence history for
the multignd method with Runge-Ki, ta time--stepp.ig for 1, 2 and 3 grids is shown to the ight "'he coarse _'id is the
same in all cases. The logarihm of the Euclidean norm of the residual is plotted vs the number of V-cyclk's.

! \.@,. t IFig 3. Te initial bell shaped error moves to te left a the muhigrid iterations a th GMRES proceed
- ,1 --,._x- (above) Eventually it disappears through the left boundary. The number of grids L from left to right. , 2,

% _ ~3 andi4. The coarse grid is the same. The logarithm of the Faiclidcan noml of u asa funetion of the number

**2,3,4 ".- of V--cycles is presented showing the grid independence (left).
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Abstract: We solve- -iumetrcsly a asstem -of partial differential-equa-
tions describing the motion-ofa gas in which a chemical reactioa occurs. AWe
investigate detonation wa-v solitions in-two-pace diriensions. Poor-resolu- Initially a Chapman-JogueL waVe w-AS 4arted ateng a slightly curved
tion of the- reaction layer will lead to prW-ti's due to stiffness of low,-; order front. -Figure -1 shows-a-solution comnputeeicc a 1Vox5O grid,-using a ell
terms. We demonst.ate such-a failure and suggest a remedy for it. numb-r of 0.4 The solution u4 displayed 4Usvdiffeient, til-es, te.-shoiv how

thetilie oins mve aekn-forth. This behavior lead t tlHclula

-1. oblrnto Solve pattern observed-in experituents (5].
We-here consider-the equations

02

mnpn/jp + p 0 " _

eC+p)/,p ri(e +P)IP) JAT.I

describing-a fluid in which-& one step irreversible chemical reaction is tat-
ing plac. p( .tmxptnx .t,~~,L)are-the density, x- and y-
momentum and energy of the-gas. :z ,,t) is-faction unreacted-gas. The -lix .doiycsorhe
pressure is given by

-Yigue 2 shows the samne solution- computett wvith a twice larger time
1 ~ -qrpr)step, i*e. -cl 0.8. Tor this time step the method is stable according-tolincnar
2' + ~stability analysis. At a-certain-timne the triple-poointz, cease to-move and a

pattern with -a -triangular- shape extending-from-wave fiont, emerges. The-
and the-temnperatureis defined-as T= P/P. soluticrn tl-en stay~ that way for all times. No, movemfent, of the triple points

We restrict- ourselves-to-,two space dimensions and we have neglected i h ieto sosre hsi o elsi ouin
iteat transfer and viscos effects. We-will focus-on discountinuous solutions, i h ieto sosre hsi o elsi ouin

-- detonation waves. For these ives tbae scosity-is not as important as for the
slower deflagraiteri wave solutunis. Thle solutions computed have qualitative Al 'J "
features agreeing with experimnn-ldata.

perature, cp to c. ratio, and equilibrium co~nstant respectively.

2. Numerical Methiod
The solution-to () is-in general discsontinuoug. Nume.rical-mnethod

specifically designed for such-solutions have been developed-in recent-years
(1,2]. -W; use a TVD method of second order eccuracy to approxicukte re 2. dinyrcintcur Lu
the convective- fluxes [3,4],-the right band side is solved implicitly by the
ttapezoidal rule. it is well known that difficulties due to stillness is encountered for At

In one space dimension, we introduce the grid points xj = - -2, large, even when using an implicit method fo.- the right-hand side. See [6,71
2-1... , and- the time levels tit 2 The grid spacing-is Az= for discussions-of ile one dimensional problem.

xj -?J.jad the time step A( f ,, . -i,..For the equa-ion We-can understand-this difllculty-by-considering th, last-equation in

Ui~- ~u) gu) -co <-o (2) (1). The approximatio-a described above Will lead to the expression

the method then tAkes the farm () 1  I- +~4 A -T-I,. 1 1  (3)

u+' =7 - Ah. 2 2+Mjgi~i u) here-we simplify, by negiecting the dependency ofT onP:, (this simplifi-
cation is not done in the compu~otions.) If-the ternperatu-e increas.es-near

1.1e. = t/A an hj,12= hUJ+1 u+,,ul 1)is the numeical flux j, and if KAt is large, (p.-)4 waill immediately drop to zero. A small
runcior saisfyng he onssteny cndiionchange iii !emperaltire triggers a large clange in:z which in its turn effects

the temperature through the third equation in (1), the result can become a
h(U. U, u. u) = f(u) wave traveling-at the unphysical speed one grid point-per time step.

tr'khe- approximation tortlie solution-at, the-point (zj.Q~. The-spatial 4. An Lnprovcd Mothod
WIfercrie -operator is defined as A+aj =aj-- aj We solve the implicit A detonation wave consists of &--ron reacting shock wrve which first

equiation for uj+ using Newton's method. increases the temperanure of the fuel in-.Atre, so that ignition occurs behind
The approximation in two space dimensions is similar. but for-the usage the shock -wave. No chezn-cal reacte iAs start before the shock- wave hat

of a two-dimensional grid (xj, yk).J -,-.0 .. k= -,2 passed through. We try to emulate this behavior in the numerical method
01...... Numerically, there are always a few Srid points in tVic shock. We wiant, tc

make sure that none of the points ihiside-the shock triggers tile chemistry.
3. Some -Results and Failures The siplest way of ensuring this is to evaluat.- the right hand side a few

The following values of the parameters wrere used sit the computations. grid points ahead of the shock. This method has becrn succesful in one space
r,=50, K -10000., =~ 50,7 1 2. L1The computational domain wa I x - dimensio,. The main point of this paper is that thr method also remedies

in size and a grid was moved along with the detonation wave. the error in our two dimensional computatian above.
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_Fiurc 3 shows -the. saeecomputation- as-figure 2,-wilhthhexcptionIIefrnc
tliatrtha right hairlside is eviuatcd( one gri4.3itLmt from the wityc front. nJAHrtn 1 g esltoceefrlycbi CnratoLw"

TU direcdion iZ' which to go is determined as the -directior of smalest tern- Il A Ilrtn 9lg (a 8) pp.luio 3cemsfo y-393. Cnsrato Lw

Pertur. ie. n oe sace meni~n~e valate(2] A. B[atten, S. Osher, B.Fngquist, S.Chakravarthy 'Some Results on
Unifrmly Aigh-Order Accurate Essentially Nonoscillatory Schiemes"7,

- -2/2 - ~~LI~z)~e'~+4 Applied I umnerical Mathematics 2(96,p.4-7

-ju* [3] P L Roe, "App.oximate Rierrarn solvers, parameter vectors, and dif-
w~ithd h~le value ofk that n irimr 73+j~ o.ver- k -1,0,1. The, two ferenre scbemes", J_ Comput. Phys., 43 (1931), pp. 357-372.

-dimensional case is th:! straigitforwtv, generalization of this procedure. 4]P.Sweby. "iigb-Resolutiozi Schemes Using Flux Limiters for Hyperbolic
________Conservation Laws", SIAM, .1. Numer.-Anal. 21 (1984), pp.995-I610.

y [5] D.C Bull, J C,2ls-orth,_P.3.ShuE, E.-Metcalte "Detonation Cell Struc-
tures in Fuel/Air Mixtures" Oopibust. Flame 45, (1982), pp.7-22.

56) M.Ben-Artzj, "Tlie Generalized Riemann Problem for Rective Flows",

lit J.Comp.Phys., 81, (109), pp.70-1OI.
.N~17) PColella, A.Majda, V.Roy~burd "Theoretical and Numerical Struc-

turds for- Reacting Slior-k-Waves", SIAM -J.Sci.Stat.Comput. 7, (1986),

figuxC Z' dcnjity cont,ezr lines .

Werplo'. .lensity- con~tours of the solutic,.-on-a domain t!,tcrmined by

the-time- and Ikaxis. The same c-ellulzir pattern -as seen on-sooted rplate
V'cordings in experiments (5) appears. Figure 4, S-and 6 shew these plots for
Ith cases discussed-above. Figure 4 is cbmputted -with the small time step,
figtrn 5 with the tiyice~lar~er titnC st-p and finally figure 6 is obtained using
the larger time tscp and lie M04ifcatiol.

fiuze 4,- the y4.- plmne

tAgise S. the y-t plane

tigmie 6. M.-j 21Pk'Ae

Both the -un wvith small timec step, and the modified mr od with larger
time step predicts approximately the same size for the detonation cells.
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A BLACKBOARD SOFTWARE-DESIGN FOR CF-D SOFTWARE

M. Petridis,B. Wnight, D. Edwards
Centre far Numerical Modelling and Proccss Analysis
Thlames Polytchnic
Wcllington St
Woolwich, London SE18 6PF. UK

Abstract- This paperprscnts asofiware design approach for CFD software. software-structure. Th1c corbcptual schema can be wonstni~tcd u'ting the
Thc-approach is based on-the Data Structure design methd~ology and Lntity -Relationship appruachkChers'.Knighe; and 4 .an-be thown that a
results -to an architecture -built around the Blackboard stnicturc. An useful parijuun can be made titu-pzublm ad sol.un spaccs(Petridis er
expenmental prototype implementation of this approach is described al'). Using this schehma wi. can desbign A fi,.%blc. twel! Jc1.nej jatabase B)
particularly- with reference to the Blackboard-strucure. as IAll as the reference to this, a bcncs uf u.hubiic arid uncupled stiftpare modules =an
intcgrauion of an Intelligent -Knowledge Based System in the turin ;[-a be built, leading to an w-crail softwan%. Jtsbgp base in the informatior
rulebase and a set of qualitative data entries. hiding principle.

-1. INTRODUCTION (b) Integtration -into a software architecture- Once- the- database and the
software modules have been properly designed and deined, there is a need

Computational Fluid Dynamics tL -1) software is a continuously for an overall-anchitccture that -mn prov.ide the operational framework-of
developing area incenginenng software, which is parn.ularty known fut its she software package.. This architctzure must be defined in terms of
highly algorithmic nature as well as the diversity of its application-fields 1. Thc control structure
within science and cngincenng. -Different-areias uth as aerudynanicb. 2. Themdl'cmuiain tutr n ehns
meteorology, thermodynamics and chemical reactions modelling are among 3. The human interface
those prov -iding a long queue-of new mathematical-models for solution by
a CFD software package. (c) The' -le of the humantuser) interface. The human interface must be

The need for integration of all phases anid aspcts of the able to respond to the user in a natur.4 and friendly way. It should
tnathcmatical modelling process, frum problem set-up to the final results - Communiate to the user using-. a se or terms anid cineepts in a
validation and interpretation as wel as the quest for mote reliable-and form that is naturaisy perceived by him.
accurate solutions have increased the demands on CFD softwa, in terms - Give a flexblo anld layered "fcer t the diffecrent uscrs(in terms
of com~plexity and efficiency. The increasing ava.lability and a".cssi~bil.iy of background anid z_%pcrtise.* that may use the suftware.
of more powerful computer nardware in terms of memory and processing Integrate. oxpert know Ldgc and ;nfcrcng n-proCeCdures into the
speed has not managed to quench the thirst forincreased nowerot the, CR) softwvare

= modelling community but on-the-contrary it has increasedl Jke appetite fui - Givt, the ultimate uontrul wid dc,;sion making to the, user.
solutions- to even more complex modeiling problems. Ant other aspc:is One way of tackling these poin~ts is by intcgrating an Intelligent
that thenumber and the unpedalctabiiity ot dxc~ngsi pciiain Knowledge Based £Sticn JlKBS) into the _wftware- Typically IKBS
and _requirements that are usuai4 e-xpected during-tic, long huk .ie Jfa systems are capable-uf &eii.cring manj or the requiremnrts of such a
CFD softwate product make the maintainability of tdr. softwar. inipurauve.. design. They allowv thentcgratron of muci, of die L.%pertis ,zeded in such

Fii~l ly, the interactive nature of modemn LI iodeciiing softwari. a design, in a panicularly ft..xiaie. and incretabic way r£xpertis-c exists
and the diversity ol the end users o1 the software pruqruct ranging from do- in many different areas. rot coxample, in, the soltion rrethod itsef, in terms
mathemaatician. the- numeneal- anialy- and the softA are ar~ayst to the of speed and aucura..y and -in terms of the user requirements or the
spctairse scientist arid engineer, alk with difit~cr degree-s of e:.penrti in software.. wha)- sort of solun udoes tet wmant? These requirements
the use ot the software, make the human interlac- a dcisive' factor in the; constitute %what is aftc. referred to as ItelligentL rront rxds(Risslandl') to
overall performance of the: software, software. However it is argued here-that this reference.-gives the wrong

All these call for a fresh iapproach to inm dez,.gnk of CrD software, view of the architecture for intellifence. since ;t implies , .t it can be
using ant overall strategy whtch has to be foninaiiy deiewt pcfc bolted on tu existing souftwA.. packages. 7Te iewi we take here is that the
mecth-ods, t loots anid goals which can be- ruferred to and Used (VI validation architecture for the systcei must allow tot a more integral IKBS
of the final software. product componentl. Expertise exists at every level of CFD. from-solution method

to physical processing requirements. to user interface.
A Software design aproach for CFD software The integration of the software into the overall software

architecture which was discussed in point (b) above, is the design decision
-For the construction o! an overall dcsiign approach lut CrD that will affe..tmost the. resulting sofi.*are quiliq mainly in tenms ot

software. it is necessary to- identity the. most importank stagos 0 f tht. mainiainabiltv an (Jffiicicy. One. sud ar,.hi,,turc wihich has shown
softwar developmntn jiec-ccl, %hcre %itai deeisionb %4gi be, takc.i corrsideratne, advantages fi building CF D softwkae packages ;s presented
influencing and determining the final quality off the software product. in the following sections.

Wle could highlight the following:
(al The choice of a formal softw-are design sirlitev- The common strategy The Blackboard architecture
used for -CR) software design is the Data I-low design approac-h
kYourdori )which views the overall software stru,ltir. as bawed on the. The Blackboird arcniecitir. is a suftwar. framewohrk that has its

flow- of -data between a ser.cs of software moduics that triasfoi thy. dJ-1 routs in Aitifi..i ine..igcn"~ ~ra, Ii is builtarutiJdi he17ackbuard
in a continuous fashion ultimately (frm Input to outpuL data. This *ie.. tb.b, construct which is used as &the.mn ic.IanMsm fot passng
%which has a taste of the. old batch-job days,. n~re'Jiuss tcdnraec.i iiraio n otu betee sot mre moudoiu As its tam, -ikatcs'.
algonthms and processesovei the ajtuai structure. of the. data. Nvihes. thme blaijibhard is Nuasiy a mechanism that strs several pieces of
duning the life-c-ycle of a LI) package, ft aigunle-im. tiE, vanous sotuuti Informnationi and on which a numbu oi software modulos have restrid
techiniques and processes are. much more iikijit to change., thant th, stn&%Au. acess to wnite and read. As Ahwn in rsgurc t, modules A And B bave both,
of the-database which represents the problem isci f. access to parts of the R B arnd so ,anscleacti-ly share. information they

The highly physical and espimaiy gizureatw natut., of thec need lor their funcuon. This is a fie"ibh way of Passing, djA firom one
underlying mathematical model creates% the. need lot an .actiate arid module to an other, hiding if necessar infumiaiwi Aon u a k th ature of
flexible representation of the real physical irvoiem. that is. tae %pecifi" these data, as each module knows wherei to firnd the infurmativA it ncAx_
portion of reality relevant to the- problem. This leads to a Uata Stnaure.l The D avangnc SystmiBMS, i.an be used as A 1 l4cs oh such
design approach (iacksuonj, which is b;ased on the conceptnuai database information pruov;,.n& J~fcitnt mudutc A ith tim. 0hK) req s an irn
schema. This is the static. time-invariant and solution independent view of the form they rced them.
the problem. which can be the sound design foundation for the resulting
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The B-B architecture for CFD softw-,e consults the Intelligent Knowledge Based System (IKBS) as dcfl as :ooks

at the B-B system to have an overview of the solution state at any time.

The Blackboard DBMS Combining the above, the control module uses its built in inference engine

architecture was -implemented J juiecict-a:-e to decide what the next task(s) to L, performed js(ar),outouts E the uscr

in an eexperimental -prototype the reasoning of this decision and puts the task(s) in the tasks buffer (B-B)

CFD application which was
built to demonstrate this Discussion of the resultine archi!ccture-Conclusions

approach to CFD software
design. This is a working CFD I"This architec ur has shown to possess a number of advatages
package developed to dcal with A it provides a flexible ty of intEcrmodular information and control passing.

a characteristic family of CFD t gives a natural separa. Dn and data uncoupling of the control and user

modelling applications. It is __- interface modules from t number crunching modules which enhances

essentially a two dimensional Figure I The Blatboard flexibility and allows for at..casicr raintcnanx of the software bemuse of

transient scalar multiphase the hiding of important decisi.rts mainly with respect to the data structure.

finite difference code -It contains an abstract represcrit.-ion of knowledge about the problem and

contaimng amongodrs a number of rm ., uhers and gcmiaiur, it- solution at an)point as a subs .. . of the huge amouIL of Las data

that-can-be used to taikle a class of appiation prublems. is usuall) associated *jh CUD .sftar. .- _ ,sifurmaun is in a form J.1.iu

implemented in the 'IC programming language and runs undci vanuus to the natural pereption of the, u, and - iay that "pcn rule's ar

operating systems. The database tnd-Lhc sftw.are mvdule, arc dsignd formulated. Thib makc4 di tak f iitwgrating -v'BS into dhi, sfti an

using a Data Structureoricnted approach and the whole software structure easier.

is built around the Blackboard architecture as shuin in Figurt 2. An IKBS has been integatd in the cxpenmcmal CUD software

The, information stored U.se- prototype comprising a Data- Dictionan and a Rulebase which are accessed

on the Blackboard is an by the control module (CN) (Figure 2) anu interpreted by the Inference

abstraction of the information K Engirm which is built in the module.

stored in the working database, The Data Dictionary is a collection oi cntes describing qulitative

as theBlackboardn pmvides an L -- ' data formally defining and quantif)ing them. Concepts such as "inegnd"

abstract overyiew of the or 'slow convergence which can be useful for the-naturl description of

problem and the solution for a state and the formulation of expert rules arc defined in the Data
Dictionary. The Rulcbasc is a collection of expert rules that are formulated

together with the state of- the as Prolog clauses a d describe in a heuristic or production manmner the

modelling process ateany given knowledge that can be used to infer actions to be taken by the softuare

point in time as well as the.../' during the various stages of the modelling proccss. So there are rules to

dynmic ofdiepromumanddezide the decretisatior tchnitac or the- Solver to be used and to monitur
tasks that ar currently - and accelerate the successful modelling process changing settings and

executing or are %,aiting to be paramnte Two examples follow.4 - Setting up the solver
executed. As shown in Figure V . Iingup lef

2, the Blackboard system WI odd,"Laplace) if I imedependency,"steadv state) and

comprises of the blackboard as ( hasesl) and
database around which a Solver("rectangular","lineSOR").

database management system is Blahit. Derermining the sucossful conclusion of the solution procedure

builtto allow a flexible and Fieu2The Blackboardarchittu End solver if Is(Convergence,"acCeptable").

polymorphic view of the for the CFD prototype - Thc truth of predicates in the rules is determined in a usually

Blackboard data from the recursive fashion looking up entries from the Data Dictionary and

accessng software module.& The Bia--k.bard xiws is nmap.cmenteo as A omparing them t, qtziit.c J.dta M..d from a %urking datbaP.- A
he t'archicdarcturiiningfomarzonao,:uuidicpiubcmn.Osw-.oiuto St of tools has beer. intgrated t, d piuttype omprig of Dni

settings ard stat at any point and a tasks buflfe onmaning a iiuntxi ot Di.tonary and Rui..s c.to and a v ompi.j . atsr- dthe a cas..

tasks that have been dccded to -firc- bt did not haisc h r opivnunaq to and the rules rcspcic,. no -C u aau t,"d at C rcusive Str.n ,ur 50

do so )eL A task i implemented as a pio.c of data cn%cipoiAUng a that different Rulc suts And Data enn4 scts ian b. embedded in the

function and a number of data paramectrs or othr funr-tions that aren acxdd softyarc te Jca %ith iff,nt areas of CID mod-hing.

for the realisation of the pariula t "k. The upeianon of di,. Bla.kbad Ther s c5aou", a hie .ominmunaauums ucdxad assciated

syst m is controlled b) the main moduJ. M l,-.ck ioukis at dr sihutam %,ith the us of dt. B B iymr m t due J .u i. x CPL innicrm i i t nbcz

state and the tasks buffer and i f required sera& a messagetra ppiupriat ..frlifi& nature of CTD suftwAeth I" Jcs not a.eisubmaanly 016e

module to come to t B-B system aid ha.'. ak. psli..a taa .sa. ,a, 1o . crall c f ri c .) .f e xoft ,% wAr t e.pen,.e has sho, An t hat td- r are

IL A scries of modules (0-3) ar urking on t datbae axi o Ix4olt to g ncd b L J sppro-.ch to CrD soft% 44 .rig although re
o Otk ... t.tag S.-4 stndlng th. c x a p-totype and

of them by the B-B system, that module goes to the tasks buffer and ta looking for waMe% to optimize its oerall performance.
the next task in it together with the information needed for its execution. Referces

leaving a message to notify that it has taken p the a Afri Mpcalun I. Ywrdon. L. Constaxr. L. Stm;iiumd deign. Prmic l.3i.19?9

of the assignment the. module returns to the B-B s)m nt report [ s ¢ 2. iadson. MA. Pn,.pi.s of Program Design. A,.t- =1. Pre s. i95

succesful (of Unsuccessful) termination of its LA. 3. O.n P.. The cma.y -relatonshp m e o.ard a unified icw Of Data.Them are four differet typcs of working modules. ACM Transactions on database systs. VoL1.Nol.M9 36. 1976.

0. Data eb-wBmwscs - Patcrn Reeo.-acr% thai look jhrogh titamown 4. Knight. B.. A MAh 4Ual Bas, for Enti Af aly Enit)

of data in the databasc for pattermn the data to siore in in atsat lorrm Relationship Appm_-h to Soft.are cr+igrlincrg ,cd, 'a,.4 '

in the B-B. 90.moecdingsoltheThild lnt aiConfercnon Entity.Relatnship
- I. Datalwase Cormncor,,.M-kfifer issch as gnd gcnrCtorsj that ApproadL Anaheim. Clifomia. U.S.A_ 19S. North MIollamJ. 198-

construct the topology and msanai the datbae in a dy)aim, tagz e, S. Ptridis. %. Kniah. B.EdArd. D. A Desigr. fo rdiaNc (T)

- 2. Daabase Upbr-e, tsuch as lI, naing rmtnc" cd.c to vaties Softar" in Rahrilit) %rJ Ro btaus-re of Eaga nri-ng -. A E

of data in the database. B r a. C.A. Fwrz nte- AJ.rpp-3-17. Praocding k Of L' 2 d InZ c mional

- 3. Outpurt functicq that uel +,t +.e from the databaea w"-v vn Cenferce hld in M .ly.2 24 April 991.Elseicr. l991

thrm in order to output to the utinsu-Jh as wmounrg moJutsJ . .& Rsslad. E1. tngcur-as of "rre ; UK; s"1nrfa ,-'. lot. Ionnial

The control module CNT asks the usr for his rmqirmena and MatM -ahi'e Stoies (19541 21.371-3S.

7. Morga.TEngirnore.RI. B1 rdSyem$.AdfL ""  -WSy -!-S
597



The Role of Physical Analysis in
the Numerical Simulation of Aerodynamic: Flows

ilanxin Zhsng Feniggan Zhuang
China Aerodynamic Rt & D-Center Chinese Aerodynamic Research Society
-P.0O. Box 211 P. o. Box 2425
-Mianyang, Sichuman 621000 Beijing, 100080
-PRO PRO

Abstract

Typical examples are given for the illustration -of- the role of physical WVe hlave nl a '( "
anialysis in the numerical simulation of aerodynamic flows. The first is related '= z (-x"()
toithe proper choice of grid Reynolds number and avoidance of spurious and
oscillations or even-chaos in a numerical calculation~of shock waves-with 1 = + #3(I - U2)A (10)
shock capturing- technique. The-second shows the development of a vortex Weimdalyrcgzettifu>3,I.
along its axis, the existence of unstable limit. cycle-and-its relation to flow Wemedalyrcgiethtf u ie

-picture in the bursting region.2

1. Introduction 1 U

With the rapid development of supercomputers it seems that numerical period doubling will occur. --We note pax is essentially -thle grid Reynolds

results are easily obtained The essential problem is that whether the results number, m'u depends on .1 an-dsMwl-take for example I-= 1.4 and Mca s 4,

thus-obtained are physically in reality amid-tme large quantity of nunmerical tlien-r. = 2.56. The period doubling plieonomenon-has been-verified by

daa if improperly. treated would- lead- to distom ted physical flow pictures numerical simulation of ome~dminensmonal Navier Stokes equation. Similar

whichm may often be misleadinig Thus the treatment giveii iii this paper may conclusioi-cami be drawnm if-we start thle solutionm at d!ownstream side and

not--be without practical- sigificanice. Examples are given for the study-of marching toward the Upstream.
flows containing shock-waves and vortex flows.

III. -The Development of a Vortex- along its Axis

11. oluton-o onedimnsioal sock-aveSuppose we have-a vortex spiralling -around -its axis z We now study
For-steady flow-in-one dimension, the Navier Stoke's equations can be the flow pictures in- the tran-sversal planes, where x, p and z t;,rm a local

integrated yielding ducartesiaii-coordinates with tie origin at o. Alogz axis th- transversal

du 1 (u-u.,)(u-u 2 ) velocity--components u and vv are zero. Let- us consider to-.. ;ie flow is

TZ u steady, tlme-equatiomi for the--streaniline is
whe U.d yZ

13 i---Pc~s(2) dd 1  (12)
8,Y+. /I U(x,p z) v(x,Z) - w(x,p,Z)

peS -and ut,, ai e density and velocity- at infinite upstream respectively, -T is Tefloig eut a eesl band
the ratio of specific-heats and -the coefficient of viscosity, u2 is thle velocity Te oovngsuscnbeailotied
at-infinite downstream, which-is just the inviscid velocity- behiiid a normal 1. If a(,),)'3Z has thle same -sign ill-tle i'eishbulhvod of thle urigin (either

shock -wave Of course here we assume-ei sa a supersonic velocity. U 1we always positive or always aegative),-LIhen in this legmun tile transversalsectivn

take u,, as the reference velocity, equation (1) -becomes streamnlines will not be ckosed.
2. Depending on whether 8(pw)/i8x is-positive or-negative, we will have

du= (u - 1) (U - U2) the transversal streamlines being spiral outward or inward, amid in the usual

U. (3) terminology we call spiral inward vortex as stable and spiral outward vortex
as unstable.

where1 3. At thle point of a vortex bursting pw = 0, so there must be a decellerating
+1 ( )

2  
' (4) flow just-before bursting to occur and vortex-bursting is accompanied with,

U2 + b - ) Afan unstable spiral.
In order to reveal the possibility of producinig chaos we first use perw~rhation 4. li'orn a similar analysis-imi nonlinear mechanics, we know- there exists
technique- and i eemonly- second order teris, we calm see immnediately tile a stable Iiiiiiting cyclc in fiomit amid iii the vortex bursting region,. In case

equation is reduced--to Landau's equationi Let us suppose the imitial-vahue we have a-bursting bubble, then theme must exist-a secomid limnitinig cycle,

be-givemi at far upstream amid wt are lookinig forward: the -solution as-we though ti-s hiriting cycle is unstable. Sotliere is imo guaranitee for thle actual

march downstream. Then it is possible to put realization of-steady-vortex burstinig bubble.

U = ~-+-~ 5. In thme longitudinal section at bursting plmit, time sectiomi-streamnems are
U of saddle type.

Substituting eq.(5)-into eq.(3) amidimeepimig terms up to O(e )-Welhave WVe have imiade a systematic-aliah~5is of a~allable experimental data re-
lated to vortex bursting and also ilade a study of flow around an axisyni-

de mictric obstacle placed on a flat plate, The munerial- results agree with all

Z 1 (1 - U2)6 +f6U26 t  6 qualitative pictures imemitionmed above

wbich-is indeed a Landau equation. Write dowm correspoidinmg fimnite differ- IV Conclusions
eice equationi in theifolowimig form Though tile physical analysis made so far iinvolvinmg little inatlieinat-

n flAX(1 - U2)e' 13AZU2(6 2
r '7 ics yet-it already shows tme potenitial imvolvedto understand complex flow

pictures, otherwise we willI be lost imi ami occami of numerical data. It is also es-

where Ax x"Z+1 - x" Introducinig ai-new variabic-z sential to uincover the-uiiderlyimig physical mnechmanism amid to lead to effective
means to control or modifythe flowv to suit our specific purposes.

() Time research wao-supporsed by dile China National Natural Scienice
I+ 13(l - u2)6=- Foundation.

598



UPWIND COMPACT SCHEME WImH DISPrRSInN PECI.ArOR1

Ma Yanwen Fu Dexun
Laboratory for Non] inear Mechanics of Continuous Media

Institute of Mechanics, Chinesp Academy of Sciences, Peijing lOO0)8()

Abstract-For improving the resolution of the + 
shock;. a dispersion regulator and an artif,;c-- 0 (5)
al dispersion are int.coduced, and an upwind
compact scheme with dispersi.cn regulatox is The modified equation with the leading term
developed, takes form

1. INTRODUCTION - + -- = , f=au , R=const
(6)

In ref.1 a compact scheme was developed.This Rewrite it into form
scheme was useful for improving both of the
accuracy and the efficiency, but there are os- aU a. 2 - U ,. U
cillations in the numerical solutions. In this -C+ )JR- 7- 1 / aX
paper a dispersion regulator and artificial
dispersion are introduced and an upwind com-
pact scheme with dispersion regulator is deve- If we have a shock as shown in Fig.l the coe-
loped. Numerical experiments show the scheme fficient M>'0 in the front of the shock. Ne-
developed has high resolution. getive JrA is a reason of oscillation produc-

tion behind the shock in the numerical solu-
2. UPWIND COMPACT S.CHEME WITH tions. In the present paper the parameter R

DISPERSION REGULATOR in (6) is reconstructed as

A. Compact Scheme and Upwind Compact Scheme u(x+LNx)-u(x)I -Iu(X)-U(X-ax)f
R(u)=lal ----------------------------- C7)

Consider the Aodel equation Iu (x+Ax) -u (x) -u cx) -u (x-4x)
aU + 21 =0, f=au , a=const. (1) which is called dispersion regulator in this
a t C9 Xpaper. The function R(u) changes sign across

In ref.1 a compact scheme is developed. The the shock.
scheme has high accuracy, but there are osci- With dispersion regulator we have two kinds
llations in the numerical solutions near the of schemes:
shock. The solutions may be improved if the
scheme is upwind biased. Consider a- semi-dis- a. Scheme with 'artificial dispersion. The
crete approximation for equation (1) scheme suggested is

+A j=0(2) aui 1 ' (~,

oloF j+l + 3 Fj + 1- Fj-l=ao x fj+bo' x fj (3)

ao=0 y + - ' - - 2e4 b. Upwind compact scheme with dispersion re-
gulator. The parameters Ek are determined as

Y5= - - E+ F bo:=- + 2:F follows

(o=3- + 2E3 =o, -- FOR(u) E4=0.125

where Eo is a positive parameter and R(u) is
where , " and 0 are forward, backward and
central differences. Scheze (2) and (3) for determined by equation (7).
a>0 with F> 0 and F, > 0 is called upwind com-
pact scheme. WiLh different choice of the pa- 3. APPROXIMATION OF THE EULER EQUATIONS
rameters Fk different schemes can be obtained.
The simplest one within schemes with accuxacy Consider the 1-D Euler equations
of order three is

S-Fj-l= J- .- + 2S- = 0 (8)
y + . l 6 X ~ (4)a

It is dissipative and it can be solved easily. U=( , , E) T , f=[ u, pu 2+p, u(E+p)]T
! U2

B. Upwind Compact Schemc with Dispersion P= T, E=_( CvT +
Regulator

Consider a semi-discrete second ordez accu- The difference approximation used is

rate scheme

(I+0 - A++! A-t U14' 1 = t+
i This work supported in part by the National
Foundation of Natural Science (9)

S----------- f (10)
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where A is the Jacobian matrix and f- =AU,

S=S-A S, and Aare the diagonal matrices u
with elements

Xk = fz)/2

Xk are the eigenvalues of the matrix A. In

the computation the parameters Fk are deter-
mined as . . . .__ _"_

0, + (S) .125 a. density b. velocity

4. NUMERICAL EXPERIMENTS

A. 1--D Shock Tube Problem

The upwind compact schene was used to solve
this problem. The computed results at the time
t=0.;A1n.re given in Fig.2.

B. 2-D Shock Reflection

The free Mach number is Mo=2.9, and the in-
cident angle is 29 degree. Some computed re-
sults are given in rig.3. The numerical expe- c. pressure d. intenal energy

riments show Fig.2 snock tube solutions at t=.14
(ujwind compact scheme)

a. the third order accurate scheme (2) and
(4) has nice solutions near the shock but
still with small oscillations; P,

b. the third order accurate upwind compact
scheme with dispersion regulator has high re-
solution of the shocks.

r. Supersonic Flow Around Blund Body

The scheme developed in ref.2 with artifi- a. the pressure ( y=0.5
cial viscosity and with artiticial. dispeLsicn (simplest upwind compact scheme)
,as used to sc~.ve the axial symmetrical su-

personic flow around a sphere-cone. The shock
near the axis oscillates in the numerical so-
lution obtained with artificial viscosity.
When the scheme with artificial dispersion is
used non oscillations are found in the nume-
rical solutions.

b. the dencity contours(the
REFERENCE simplest upwind compact scheme)

p
1. Ma Yanwen and Fu Dexun, AIAA paper

No.87-1123.
2. Ma Yanwen and Fu Dexun, Lecture Notes in

Physics Vol.264, 1986.

c. the pressure at Y=.5(scheme with
u dispersion regulator)

Fig.l sketch

of the shock

d. density contours(scheme

with dispersion regulator)
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NUMERICAL SIMULATION OF SUPERSONIC SEPARRATED
FLOW OVER BLUNT CONE AT HIGH ANGLE OF ATTACK

Shen Qing Gao Shuchun and Zhang Hanxin
China Aerodynamics Research and Development Center

P. 0. Box 211,Mianyang, Sichuan 621000, P. R. China

Abstract-Through a study for the properties of-boundary layer equations, a [*" A90, B)JAq* = -(A"- A ,'q-A4(64P
space-marching technique for solving parabolized Navier-Stokes (PNS) equa- + 6, + + 6€ G-R16c )
tions has-been developd by Zhang recently, and-the axisymmetrical flows (3)

over blunt-cones have been simulated successfully. In the present paper, the [A" + (6C-, M')JAq =
above technique is extented to the calculation of-flow over blunt-cone with q.+ Aq
cross-flow-separation at-high angle of attack * According to Zhang' s technique, 64Pns in Eq. (3) is calculated by (1-u,)

/ff1 (S )),. If Beam- Warming scheme is used, the fourth-order dissipation
term of 3] is employed Co supress high frequency oscillations. Eqs. (3) rep-

Introduc.ion resent block tri-diagonal systems of equations which are solved using a matrix
Flow fields with cross-flow separauons which dominat die shoc k layer ,ol er as des, ibed n '3. It is impourtit that the main diagonal elements uL-

durin& the reentry of configuratiom at high angles of attack can be nulatod cup, a domiviia posawiin s.linmg he ulaix. -sually, implicit souithing
numerically by solving Navier StokestNS) equatriu, where F.uler ones be- term. are used to eahaice the iila dliago.ial elements ... The same purpose
come Invalid. Because the ".t is very high and the omputer storage is limit- is attained with litiuiig-he marching step siue, then Liu implicit smoothing
ed, the a,.ication of time dc.,enden NS solver to the hree-dieisirial oun- terms are needed and higher ai.uray is achieved. Also, the impliwt NND
figrations is restricted greatly. Thus, ds..ssion about various simplification bheid' has been usedaid no objvius differene is found beLwe., results
for the NS equations has been made[i). This analysis shows that the PNS a- given by two methods separately.
quatlons are of the most interest. The reasons for-this are (1) falling between Boundary Conditions
the complete NS equations and the boundary layer equatauon, the set of equa- The body surfa.e ,oitdivi n,-sip, a spwfied surfac temperature,
tions .re applicable to both m, sd ,aid v scou flow regions, which mcans that and .ero nvraal pressure gradicnt) are Implemented implitly i the aigo-
the inviscid-viscous interaction is included automatically; (2) the PNS equa- rithm.
tions are hyperbolie parabolic type when certain conditions are met . e., the The ouL bo - shock is fitted using the-" pre sure approach

1 
procedure.

iniscid region o: the flow is superson,. and the streamwis velcity wmpv- The pressure behind the shoik t .alculated from £4s. k3) with one-side differ-
nent is positive) ,and then can-be solved by advancing an initial plane of data enae in the .-direcnuon, and the remaining flow variables are evaluated by sat-
in space. As a consequence, a substantial reduction in computation- time and isfying the Rankine-Hugomot relations.
storage is achieved; (3) for stable marching downstream, the detail informa At symmetry plane, the refl,t cvadition is employed implicitly.
tion can be supplied for the flow fields without reverse flow in the marching Initial Conditions
direction. Initial conditions for starting downstream marching computation are pro-

Recent yeare, various supersonic viscous flows have been computed with vided with the three-dimensional tune-dependent NS Code13,.
PNS method

r
2

1
0
3

. The key technique for stable computing is the proper treat-
ment of-the streamwise pressure gradient inside the subsonic region-near-body
surface which produces the Influence to the upstream and leads to the so called Results and Discussion
"departure solution". Numerous researcherst2iij have done a lot-of work to Cats I
overcome this difficulty. At first, the flow over a blunt sphere cone with 10" cone half-angle at

Zhang et alf
I'

. improved the PNS method based on the properties of the no incident is calculated in order to demonstrate the efficiency of the algo-
boundary layer equations. No departure solution occured-with small marching ritin. The flow conditions are
step size. The computational results for the three-dimensional flow fields with M_ = 8, R, = 5 * 10 t

(L/R. - 50),
the method of E11") are presented. The present PNS code has been used to cal- T, = 72. 46K, T, = 200K.
culate the laminar flow o'er shpere cone at angle of attack up to 20". The The results show good agreement with the dais from [14] for the shock loca-
computational results are compared with the data from references and exper twn in Fig. I and surface pressure in Fig. 2, which verifies the validaty of the
ments. present code.

Caes 2
Flow over a blunt sphere cone with 4. 7" cone half-angle for an angle

Numerical Method of attack of 20" is computed here. Flow conditions are
Governing Equations Af, = 10, R -= 2. 3 X 10 6

(L/1, = 10. 52),
The-conservative form of the PNS equationsll is Tr, = 49K, T, = 294K.

Results are compared with those of [15]. Fig. 3a presents the shock shape of
B? + F, + Ge -- 11 

t  
(1) thepresent calculation on the pitch plane. Fig. 3b is an experimental photo-

graph('J. Fig. 4 and 5 present the surface pressureand heat transfer rote re-
where the perfect gas assumption is taken; V= 1. 4, P, =0. 72, T= y.2Lp/p spectively. The comparison of calculated and measured[i$ surface pressure
and the coefficient of viscousity (p)is determined from Sutherland' s law. variation with the circumferential angle at difference axial positions is present-
Numerical Algorithm ed in Fig. 6, and the similar comparison for the normalized heat-transfer rate

Eq. (1) can be rewrittenas is shown in Fig. 7. The comparison shows the good agreement between the
wEa + Pc + F, + G; = 8 (2) computational and experimental results.

where E=:E-P, and No adverse pressure gradient along the meridienal angle exists at x/L=
0. 11. However, a minimum pressure point develops off the lee meridian at

x/L='0. 445, which indicates the existance-of the crossflow separation. As
[(1-so)) j the result of the apparence of the secondary crossflow separation, thesecond

P = J- minimum pressure point occurs between the first minimum point and the leeSPmeridian at x/L- 0. 95. rig. 8a presents the limiting stramlineswlicrc the de-
velopment of the open separation is observed. The primary group of converged
limiting streamlines and the second group of converged limiting streamlines

w, is mi (1 ,kMf), k is a safety factor and is taken as 0. 8 In the calculation, manifest the primary and secondary separation lines. The experimental phoo-
For tomputing efficiently, an Euler implicit approximatly factored, finite dif graph (Fig. 8b, of 'i5.which provide us the real oilflow pattern shows the
ference algorithm in delta form is used, where P, is treated explicitly. The dif same image. The vortex structure is given by plotting crossflow velocity vec-
ference equations of Eq. (2) are tors in Fig. 9.
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Conclusion
The space-marching technique developed by Zhang for the axisymnctri-

-cal flows over- blunt cones is extented to-simulate asymmetrical flaw with
crossflow separation. The results for blunt cones, specially the separated flow
patterns calculated, are obtained satisfactorily. It is shown that the PNS M1

methd used in this paper is successful.
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A FAST EFFICIENT ALGORITHM

FOR THREE DIMENSIONAL HYPERSONIC VISCOUS FLOW'

and JU-KUI XUE
:RU.QUAN WANG Departm.-nt of Physics
Computing Center 1Nt-hwesten-Normal University
Academia Sinica Lanzhou, 730070, CHINA
Beijing, 100080, CHIINA

arc obtained through A, 13, C by the characteristic information along each
Abstract Based on the Singlc Level Conse;-/ative Supra-characteristic coordinatc direction and-have the special form as

mcthod-(CSCM-S) proposed-by Lombard et al. III, we suggest-a more fast- - +
eficient-algorithm, which-combines a single- marching technique for super- U D -f 1
sonic-dominant zones with a-multi-siveep procedure for complex flowfields. where
The new-one requires about-an order of magnitude less CPU time -than the 

[ 1 0 0 0 01

Ovrteps ei I. INTRODUCTION-'
Oe-hpattnyears-there has been a great-development in-efficient)

algorithms for comprissible flow. Among tlieziihe CSCM.S algoritm III is I' - 0 0 0
very attractive for multidimensional Euler and Navier-Stokes problems. The I"
algorithm is based on an implicit symmetric Gauss-Seidel method along the 0 L, _L B,- 0
flow direction together with-an implicit block-tridiagonal diagonally elomi- T'-1 0 yfC 74- Z 0
nant approximate factorization scheme along the other directions. In prac- j0 Z./x: W7/ C/ ,
tice the-global relaxation in whole computational domain is not-economical / -C 1
for a large-scale supersonic, dominant flowlield around a missile-or space 0 4 /.4,T . T
shuttle-orbiter. In thia paper we suggest the more fast efficient algorithm,-
which combines the-single-sweep for the supersonic dominant flow w'ithi the P P/(7y- 1) /2~ ?
multi-sweep- process in the complex flow zones-along the flow direction and2+ Y2

adopts an explicit-implicil. scheme rather than the full implicit scheme in +.

the crossflow directions. We call such combinations as CSCM-S algorithm. D' '(JAI _t AXjj, A- is tile diagonal matrix consisted of eigenvalues
Numerical experiments showed the efficiency of our new algorithm. of the matrices A. The-M and T represent the transformed matrices from

non-conservative to conservativ'e equations and from characteristic to non-
11. SIMPLIFIED NAVIER-STOI.ES EQUATIONS conservativc ones, resper aively. The bars indecate that the matrices contain

The viscous flow is described-by the full Navier-Stokes-equations NS) averages of the adjacent grid point data. The viscous terms are approximated
Hlowever, in many-practical problems some viscous terms appearing in NS bycnrldfree.Tuteestigifrneshmes
equations may be negligible. Based on this idea, the sirnpli~ed Navier- 6q '. -H8ji,+D q'
Stokes-(SNS) equation- were derived using either the order of~magnitude()
analysis or the viscous-inviscid interacting flow theory 121. The co~nservative +~q~.', ~ ',
three-dimensional SNS equations have tht following form in tUe-goneralized +I.)kqY
coordinates J q a F a L.where N'..~ q +2-64q, +r;+VC14q" +r3IAq"+a+ CVrq" +

at +=f+ , - (-4 T -e ,, -) (I) C- 6,9, D =1I+ A+ - -+ - . or solving eq.(4), the symmetric
a~ a0 marching iteration is-adopted-along C-direction. i.e. the iteration consists

where q =_(ppu, po.pwo COT, = . j G1 xZ:!, z i Re - --:, of-a forward-sweep step

B3, F, C and F., G. represent iniviscid and viscous flux vectors, respectively. (1+DB6 L"h 5
F., . contain such viscous terms that have orders of magnitude 0(1) and

O(R ). The veiocity, -density, temperature, viscosity and presure were q*= q"l + 69% 6 q94fkm 0
nondiinensioncd by U., i l p and T.U, respective'ly. aiid a backward-sweep step

Ill. NUMERICAL METHOD 9f~ q* +69'+', sqi 1
1f =.~ 0

A. M ULTIPLE, SWVEEP PROCEDURE where
We consider an explicit-implicit difference equation-fecr (1) at any grid L(-"q = -Lq" + j~~-q-f)+-i- (qj"+. 1j-9 JL~kpoint (Cor,-,f) fk C i J

-Lq' + 2- ( -l -

j6q"~l +J" AFn~' AGfl+i n AF" AG

6e ~~W, au ac ~ ReA 1 ~ 2 B. SINGLE SWEEP TECHNIQUE
Note that the lsa~ward-sweep step (6) may be removed for thie super-The -CSCM flux-difference splitting III is chosen as the basic scheme of sonic dominant flowfield and the numerical solution is found-using only theour algorithm, i.e. the inviscid flux difference can be express.ed as forward-sweep (5). In fad', this can be easily done putting -- 0 in eq.(4)

AE =AE++ AE = +V~q+ 2A~qand numerical results in-this way are in good agreement p~ith those obtained
AE AE + A A~V~ -4-AA~qby the PNS space-marching technique. In this case ti,: formard sweep step

AF =AF4 + +AF- = ]+V,,q + (3) bsecomes the following form
AG =AC++AG- =C&+V~q -C-A6

where V1 and &q are the- forward and backward differenices, A = fl I= "

= jp ~ - Jacobian matrices and (lhe matrices Ad', IQwhr
This work is supported by the National Natural Science Foundation of wherel+Ihq~ ~ )

China. q
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L9'~ = iVcq' +- iiVq" +B-6ie ? V,9' +C A~q'

CX)$C Wd

IV. NUMERC AL TESTS V: 30

In order to test the efficiency of the CSCM-C algorithm, we-computed
some large-scale two and-three dimensional hypersonir flows past a s4phcre-
cone-and-a simple ipace-shuttle orL'ter. A part of results for-the sphere.
cones is given here. In the paper 131 numerical-test was accomplished for the
sphere-cone hypersonic flowat Ai,=20 and-zero angle of att~ck-with the .

CSCM.S -algorithm uind- the- convergent solution was reached through 260
global sweeps. The sarac problemn has been also computed by the-CSCM-C______
under the-following ficestrean- conditions *

= 20 Re ~ 1', ,.., ~25k, T0 =Fig. 1. Surface-pressure

Numnerical solut~on was found by using the single sweep technique except along sphere-cone at zero angle of attack
for a small nose region, -in-which the steady solution wass obtained- through VI
100- global sweeps. Figs I- and 2 show surface pressure and heiating-rate
distributions, respectively. They are in excellent agreement with-those ob- O-~. -d.
tamned-by-our 3-D VS" -code 141. The similar-test was carried-out for 150 is VSI. ,-s.I4

sphere-cone thret-dimensional flow at 200 angle of attack and the freestream
conditions are tie same as [51, i.e.

A0 10.6, Re = 1.3 18 x 10 , Too = 47.34k, T.,, =-300k .

In- this case the explicit-implicit scheme may reduce one-third of CPU
time-in comparison with the full implicit scheme (see table).

TABLE£

COMPARISON-OF DIFFERENT SCHEMES Fig.2. Surface beating-rate

AT ONE MARCHING STATION along sphere-cone at zero angle of attack

S;;IEMF, EXI'LICITIMI'LICIT _IMLICIT QD.0 I-
CPU of per time step(sc4 16.36 24.93
CPU of rer grid point 0.021 0.032
total nu-siber of iteration 12 12 M.0 -

total CPU time 196.32 299.16 -5rn

40.0 
-

*Figs..3 and 4 represent axial distribution of surface pressures and heating ;.
rat~i along different meridianal planes. Th points indecate experimental
data. Clearly, the single-sweep technique -is -acceptable in the'supersonic X.

dominant flowfields. 21.0 .

X.,o

0.0

V. CONCLUSION Fig.3. Surface pressures o

As is well known-that the time-dependent Navier-Stokes solver-requires *4gshr-oea20anloftac
a large amount of CPU times to obtain a convergent-n, merical solution and (fll'
it is more adequate to local complex flowfields. The space marching PHis
algorithm can save an order of magnitude CPU time in comparison with
the complete NS solver. However it has the inherent problem with stability,
iLe. the exponentially growing solutions will occur if the streamwise pressureI
gradient is retained in the subsonic regions. The present CSCM-C algo. 4(
rithm-consists of the space-marching technique and the time iteration-and I '-

it i free of-instability and requires less CPU time than the time-dependent
Navier-Stokes solver. We expect the present algorithm would be more effi- 3.01 t. ~ en
cient to the-large-scale flowfields around to the missile spat.. shuttle orbiter *Cf~3.fIC
coi igurations. 2.0.

X2 0
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NUMERICAL SII-fULATION TOR '1-D-'FLG -USING NND-SCHEMES

Ye Youda Guo '.hiqluan and Zhang Hanxin
China Aerodynamim csPewrch and Developmfent- Center
P.O0. Box 211 ,Mianyaan,,Sichang, -621000 P. R. China

Abstract NND-scheme which-it. developed by Zhang LA.s been applied-tv = 0±A~ )(-E); + O(T~;+I) (6)

tha-hypersonic flow around a shuttle -orbiter- like Beometry proposed by This expression-is second order accuracy in time for 0=1/2 and is first-or-
CARDC. Euler equations in a-finite difference are solved by using explicit der for O= 1. Substituting (4) and (5) into this expression, the following
a pace-mfarching algorithm and implicit marching iteration-algoritlun. -Nu- implicit scheme can be obtained:
met ical calculations are performed for the problem under the conditions that = At A -
Mach-number is 7. 0 and the angle of attack is 5. 0 deg-ree. Numerical re- Vj ;-z(11+112 - Hi,-A/2) (7)
sults oft-these two algorithms are compared with epch other and agree very ~
well.

Introduction (1- + Ol±s 8
In the calculation of complex flow fields contsining shiock-waves, mc-, j.

attention has been-paid to the shock capturing method. In order to capture k- inn~(~ Il
shock waves smoothly without spurious oscillations near-or-in the shock re- 6 t,

gleons, mixed dissipative schemes including-free parameters-with first order =z l ind 1+/ l)
accuracy near shock and second-order schemes elsewhere have been widely 2 4.11
-* -EI 3. There are inherent disadvantages in employing these schemes. 1 nimej AF-312)

Virstlj, the free parameters are--basically determined by numerical experi- I ~ -is
intats. Secondly, the resolution 0~ tl'e shock is not very saisfactory. Natu- k 1-2minrrod(1 ,A 4L)
rnlly. tho develc'rment of non-oscillatory dissipative schemes containing 2 A112
no free parameters with high resolution has much been emphasized recent- c ts in idea in es, blis'iing our implicit scheme is tu use tile abvve luni-I's
ly,-sich as TVD schemes(-$)and ENO schenmes (13 is .t time step n. We havei general

Through a-study of the one dimensional -Navier-Stokes equations,-it =kAPl+ 0(AlAz)
was found that the spurious oscillations securing, near shock waves with Pi Then equation (8) ma!, b written as
nite diffsrence equations are related to the dispersion term in-the conre- 11j+ ,r - fl-l,i 11,+112 - I- + 0(1 + kl - kll -
spending modified-dllterential equations. If the sign of tile dispiersion coef- (Ft' - d~ptl, J- 0(1 - Pz + V,) -(6Pj' - di'? 1)

-ficiet't-igp.opcriy' adjusted in order to in-ke the sign change across the shock where
waathe undesirable oscillations can be totally suppressed. Based on this 6FFf F+ -

discovery, the non-oscillatory-and dissipative Lcheme containing no free nc
ptzsmeters ( NND scheme ) is developed. This is one of "TY ".Inor-. A)-&ff' 4- 0(&1;)
der to ttes& the effectiveness of the scheme in space- marching calculations, 8F.s=A;ydU;4i + O(Al")
we hare carrie out numerical simulations for two-dimensional flows of
shock and expens~on wave fiteraction -flowfield. Moreover, the NND 6;+I V ;
schemes have been employed-for-the calculation of hypersonic inviscid flow A+
around the shuttle-orbiter-like geometry.A+ A-- A

Numercal lgorihm Ihe above equation (7) c ';s be estimated by the equation

1, Semi -discreted-NND schyne 2A.6 tj± + Vf6ll + A-idU(..jI;+in - 1!;-1/2) (9)
For an one dimrensional-Euler equations where

Az
here U is . vector and F is a function of the vector U. The NN~D scheme of A lA*~~ i+k);
semi-discreted form Wsill]I: +11 -L)j M I-1 -)T

-
1~~,)(2) 0 1 0 -Al + ki )A741

where This cqusbtion -,; what we have pursued zm order to establish th~e so called tim-
Ils+Inz = FJ1ijs + FT12 plicit NND zeheme, we can prove that this scheme for O=]I is one of TV!)

=tzn Ft + j12misnoJ(AFtIAs,AFtI%.i) schemes, and is unconditionally stable.
FTA=-F - 1/2mivmd(AFAIn,zAFT,31)

Numer,cal Resis
2, Explicit NND scheme 1, Interaction of shock wstve and expausion wave
For equation (I) two step predictor -corrector scheme is .In order to check out shock - capturing- properties of NND schemes,

r' - 14 2A113 we consider the problem showed in Fig. 1, OBAC is a curve, N N1isa flat
Lili= L -(I~+iz,(3)n platep FA is an oblique shock-wava. Computation~al regin is OAB3CDEFO.

Az __ AL- ,.~, (~) We specify a uniform Macli number 2. 9 at the left boundary FO, and the
1 !(J 2 6Izi conditions at WF which is behind the shock, where the angle contained by

I~ Ms scheme is second order In time and space, and is TV!) scheme. The the in~idcnt shock %ave a,,Ji the flat plate is 29'. A-flow tangency condition
enaxiimun allowable Courant numeber Is 1. is given at boundary OABC and MNI and the variables are extrapolated at

For simplicity, the predictor step of (3) can be also taken as :boundary CE10.

U; A'(Fjz+A;12 Since the flow is supersonic in this case-, we can solve ruler equation
LI i A~ n+Ai~n by using the explicit space-marching algorithm.

I.e. mlnmod(a,b)=0 in .3) is used. The space-marching computaionj is started out at the left boun-jary,
3, implicit NW!) scheme the space-marching step is 0. 01.
For one dimensional Euler equation (I), we have Fig. 2 shows the pressure contours cv~s..Avtu mhy (44! scheme, and the

4); =-I(1;i - () first order upwind (UP- I) and second order upwind (UP--2) schemes.
at'/~ AXIt is quite clear that the spurious oscillations necai or in the shock region can

(JJV ~ - be totally suppressed with NND scheme, and NND scheme has ligii resolu-
Pj Z.;'111irz I~t'z) 6 ulon to shock eaptuing.

From (2), according to Cranks-Nicolson method, U'*+' can be expressed 2, hlypersonic Flow Around Shuttlo-Ortate'-Lise Geo-!ez y
as Wec study the hypersonic flow around the hlutjo-orbiw.- like geoni-
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ctry, it- is-obvious-.that- the Afow- is supersonic in the -afterbody flowficld
when the angle of-attack is not very-large, so the space-marching method
is applied to olving the steady-Euler equations. Through the transformation
of coordinate *,stemn, we- obtain-the three-dn~ensional compressible steady
-Euler-equatlions in dimensionless as " '

+_LF E 0(10)
where iacthe coordinates ofstreamW'v o wall-normal and circum-
ferential-directions -respectively. Since equauxas (10) are hyprbolic and Lc'.'4.4,
F=F(E)PG=G(E) so the two step NNI) scheme-(3)-can be useddinctly. __

When the angle of attrck is large, the s'Jbsonic pockets will arise in the ..

at terbody flowfied, so the time and sp,.. -mrching methods shom2la be ap-

plied-to-solving unsbeedy-Euler-equationr On the -one- haind, apace_ - -' ~ " -
marching calcuttiop, is performied~Aong =:edmwise diicctiop, on the ulher
_,and, the-time-iteratioa-is; carried out on-the every-cress-section. Ii is cawy
to obtain implicit mnching-teration scheme from model scheme (9), the l'ig.2 xressure contours C iDzM., PVni.29.O
Gauss-Seidel iteration will be us-d in the circumferential dire'tion,

On the-body surface, all -variables can be determined by using tangen-
tial flow, comlition and four chara-cieristic relations derived from Euler e-
quations. At the shock wave,-the Raiskine-Hugoniot and one characteris-
tic relation can be usee deterinfe ie shock wave shape and all variables.

'Teinta profile cza given by-tim- dependent-blun-t becyv code 1l1.
The L'wiicid-solution f.:; Ieen-obtained &-; the follhwing-ft. 's'.earn ondi. 4
tion_:N1.=7, a=S*. Fig. 3-gives ze yrtssure-contours on-lie bo4'f stir-
face of leewardp the meridional surface q= 90* p 270% and out boundary
cross section.- the density. contours are showed in Fig. 4,p interact.on of the
body shock azid wing shock are showcd clea.1y on-the meridiorxs' sirface ip

=90, 270'. Fig. 3-and Fig. A -also show the contact-discontin-uties after
the interaction of- body shock and wing shock. The pressure distributions on)
meridional surface-q'= 90' obtained with explicit-and implicit scheme are -

compared-!- ig. 5,_ which agree-very well. The above results dern. .nstrate
that the-cirpability of capturint-hock- and other contact-dzcontinuties witll,
NND.schernes is satisfactory.

Concltiding Remarks
According-to the-calculated results avIl the others We are sure

it- is reliable to-the NND scheme. 11te distiri, uished feature of the rchemes is
c2pability-dt-canimring shock and other contat discontinuties, Futhermore,

the schemes-_-3;osess good -stable-characteristies and converged accuracy,
wich is essential to any high shock resolu*.ior scheme. In addition, the pro. Fig.3 Pressure contours 2( OD 7,nttck-50 ,leeseird)
sent form seems to be the simplest, meanwhi'e,,the amount of the numeri..
cal-work is much reduced in comparison with soine other high-resolution '
TVI) schemes.
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GRAVITATIONAL FORCE S IN
DJAL.P 11oSITY MODE LS- OF SINGLE PHASE PLOW-

'rOdd Arbogast
Departmenat of Mathecmatical Sciences
Rice tUniveCrSity
INotistort, TX 77251-:1892 U.S.A.

Abstract-A-dual-porosi 'ty inodel-is derived by thle formal the- nrmral vector tu the-inatrix fracture iter-face OS?' (or OC.
ary of homogenization. Tlet ixrodepPrupCXI) iuu jLaesgait u.,,-upptr arid-i'.ei k.ae tters fur-fracture-anid matrix
in that it respects tile- cqeIlibrikiln 5tdtes of the rInejiurn. quantities, respectively. Let P (or p) be the fluid pressure, arid

(I,* (or ) and K* (or k) be the-porosity and permecability on
1. INT11OJ1[TONe thc pore scale (so '.* 1z and K* is vcry large). The fracture

We consider flow in a-naturally fractured-reservoir which we i93temn porosity arid permeability, I, arid K, are defined on the
idealize as a-periodic mediurri as showrx iin Fig. 1. There are fracture spacing scale. Easily
three distinct scales in this system~, tile Pore scale, tile IcF-Qd/Q, 1
of-the average distance-between fratures, and the scale-of tL
entire reservoir. The-concept of drialporosityji4l, liO'j-s-used to %,.here i 'denotes thie-volume-of the -set, while K is derived by
average the two finer -scales in. bidJ a way that the pore scale is iuniugerlizativii. Finlally. , J') or P(p)) arid 14 arte-fluid density
recognzed as being much smnaller thant tire fractares- pacig scale, arnd viscosity, anid !;j the grasi1tatonal euristarit. Lcet-e, poiit
The fracture system is--modelu-1 a a porous-strilcture listinct in the jthkartesiar direction, where e.3-puoiit down.
from the porous structure of the-rock ithe Mairiz) itself. Define the function ' lkX3) as the solution-to

ix40'=p 
4g; i.e., 

X30) 
(2)

f 2 NX;Then VP - P(P)gCgea 0 if and only if P = Ol(X3 + i3) for some
0 constant i3, and so V1b(X3 + i3) is the gravitational equilibrium

/ - pressure distribution. We note that the pseudopotential of the
Y 1) flow is given-by 0_1'(P) - X3-

Fig. 1. The reservoir R. Fig. 2. The unit 41 Q. We ignore boundary conditions on r912, external sources/sinks,
and initial conditions since we are interested in internal flow.

-Dual-porosity models can be deriVed Iby the technique of ho.- h irsoi oe:frtefatr lw
mogenization [21, 131, [6] (see also, the general references [5), [71 Temcocpcmdlfrtefatr lw
and (91). Briefly, we Pose tie- corfect mhicroscopic equations of0
the flow-in the reservoir and then let the block size shrink to zero. -([9t(~I (P (P)e)
The resulting macroscopic model is foraivlated irn si.' spae di. = 0 , f Q" (3a)
mensions, three of them represent the cltire rescrv'oir over which 11-1 P(Pc)Ic(VP' - P(Pe)ges) . V
thle fracture system flow occurs. At each point of the reservoir, y'-pk(cp-pp)gj -v xEOM.3b
there--xists a. three dimensional, "jn~uitely small" inatrix block = rn~kcp ~~g3)-rxeO2,.(b
(surroended by fractures) in whitch iatrix flow or-curs. For the matrix,

For single-phase, single componeit, flow, it is recogrized that
diffusive, gravitational, and viscotiS forcecs affect the movement 0~-p!%') - j.-mnp(p)k(cVpY' -P(P')ge3)]

of fluids between- the matrix and fracture systerris; ho'vever, only
diffusive forces are easily liandled_(sec, e-9., [1j, (4), [0], (8], [10], 0, XE4, (4a)
-qi the many -multiphase models in the Petrahetns literature). 0 (0ti(P') + (C' - 1)(X3 + 13 x )
Simply including gravity in tile usatric of thle standard model x E 01 ,. (4b)
M2, N3], [61 creates an inconsistency iii tjat whlen the fracture
sy-.emn is in gravitational equilibrilirb, tile riatli.x sybtem Is not, On each Q', we need to define '.For a gi ven P', we can find
in-thi- paper we derive a consi-,tut-mdci. fur each constant ' the solution ~'of the steady -state problcem

corresponding to (4). So, for the given fracture pressure P', we
2.7 F, MICROSCOPIC A$) VIAGRtOSC011C NvfODiUS take the (' which gives rise to the fi that satisfies

Denote the reservoir by R2. For vsequecnceof &A decreasing to r5~ld p~ x 5ze i, we consider equivalent reservoir,- with matrixc blocks that ie _ W ~(')x (5)
are c times the original size iii ally lineair direction. Let R'~ and~

I? c thr t'ic acture arid matrix PaOrts of A12 resp~cciveiv. Each aherc p' is t steady state solution of the unscahed problem
penrion of tht reservoir is corngruent tc the uiaqt cuii 6Q, tile, f-ebiespl...m to (1), ivet, by remnovinig the two c's appearing
period-at pohi Z C- 42 is denoted bi , () For thle nxed uni a-s coefficients in (4a) and replacing (4b) :iy p' =P'. (In the
coll Q(see Fit,, 2), we write CI, ani Q,,, for the fracture and case of an incompressible fluid, simply take f 0.)
mau, parts, rze,,wcctivcly. Let~ 'hc centrciid of Q- ir e i origin, Ti aiyo n~r.:Ji oesstsistefloig

a hb-. centroi of Qd(x) be 7~z) henl X ta " .rf. (ij Darcy flow governs tli2 reservoir, and it does so in the
Asympt-ttically, x (x) selects a pci*od and yJ specifies a point standard way when or = 1 (since then ~'0);in thle enlarged, congruent perioid Q. Let v' denote the unit (ii) For each e, D~arcy flow occurs in the fractures and within

'Thi wok~va suportd i par byt, N.:aiona ScenceFolti-the scaled matrix bloeks (i.e., if aay matrix block Q'
dation and the State of Texas.isepnetout etrsfmdeqaos
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indicate that -Darcy flow-results); the ('' terms of (3b) imiply that P0 = PO(x t)- only. Second,
(11n) If-the fracture-system is in -gravitational cquiibrium in die c' termsb of (3ai )aud thue o terms vf (3b) allow-us to write

the vicinity of a block, then thle-boundary conditions on
that block -reflect -this gravitational equilibrium; P P0

(iv-) -For fixed fracture conditions- around any matrix block, Z -wi -P)gw3 + Z,

the steady state matrix solution gives rise to -the same
mass as calculated from the steady-state solution of the for zome r (x, i), where the jj (y), j 1, 2,3, arepeidcars

unsaled matrix problem. OQ-and satisfy -eidcars

Werequire (iv) so that mass is conserved, since whenw~e scale -v, Vw)=0 j,(a
tematrix problem with (ii)-(iii), we change the pressures which V Vj ,yEQ,(a

inychange the total-mass. Under steady-state conditions it is VYW1 . i -ej -, y E- 0Q. (9b)

easy-t account for any-such spurious changes. Recognizing that (e 1- 1)XX3 -3(X)) (1-e)y3, we have
INae-remark that the standard microscopic model [2], (31, 161 (7) from the to terms of (4).

replaces (4b) with p, F ', omnits (5), and to be consistent We now conbider (S.First, (4) or-(J), without the time deriva-
needs to have p(p')g-replaced by epWp#)g-in (3b) and (4a). Thle tive term, implies-i iO p(Vp -I (p0)-+ yj3 + 0). For p", the 6-

2

novel expression (4b)- can be viewed as a scaled continuity of tei ins of itb defininig equation and-the 0~ terms of its-boundary
pseudopotential, since-we can-rewrite it as condition imp~ly 1P = PO. Now a-rescaling shows that

~i~pE -IX ( 4,W) +eiz N4(x) = O) - X3-

The mnacroscopic mnodel: For the-fracture flow, IQ ,z ]Q le-J 4,0

+ J ) dy for some At~ depending on the P t 's and on (-. A-similar expres-IQI JPO) + tL 1, sion- holds for the -right side of (5), and so the e0 terms of (5)
- V,. [p'lp(P)K(V1 P0 -p(P 0 )ge4] = 0, xr=-fl, (6) give the definition of O i s)

Finally, the co and el terms of (3a) and (3b) can be analyzed
where (1), (9). and (10) define the new coefficients. For the exactly as in the standard model [2], [6] to give (6), and- the
matrix~fiow, for each x E D tensor K is seen to be given by

O pp -Vy - [1,'p(p9)k(Vyp 0 - pOp0 )gea)] =cj :C y ~ 1i);(0

=0, YGEQM, (7a) jIjI ON IjIi;(0
jP 0  (0p'(_PO) + Y + ), Y e OQ,,, (7b) K is symmetric and positive definite (see,-e.g.,[3)

where 0 is defined by (2) and ' is defined by REFERENCES
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MODELING OF THREE DIMENSIONAL UNSTABLE
MISCIBLE DISPLACEMENT IN POROUS MEDIA

Ashok Chilakapati and Clarence Miller
MaryFanett Wheeler Department of Chemical Engineering
Department of Mathematical Sciences and Rice University
Rice University Houston, TX 77251-1892 U.SA.
Houston, TX 77251-1892 U.S.A.

Abstract Simulation-of three dimensional unstable miscible dis- ILI METHODOLOGY
placement utilizing a numerical method which combines the mod-
ified-method of characteristics is described. Numerical experi- 2.1 The Problem.
meats are presented. Consider incompressible miscible displacement in a porous

medium having the shape of a rectangular parallelpiped. The
I. INTRODUCTION pore space of the medium-is initally filled with the resident fluid.

The medium is flooded at the side x = 0 with pure invading
infloiw through a porous medium small flow disturban ces art (or d lain) fluid. Thus z. i. th;, A.i,, floW dimcttiou aid

continuously generated due to heterogeneities of tie inediumn, 9 and z are the dirc tions transverse W the fluvv. Let Lr, L4,
both-iphysical and chemical. The-processes of finger groth and and Lz be the x,!), and - dimeni,.o of the paallelpipcd and let
interaction are linked to the heterogeneity of the medium andan f (0,Lr) A (0, L4) ^ (0,1z). Undei the abuVe assumptions, the
particular to the spatial variation-of porosity and pernieabliy. displacement lan be riudelled by the folluwmg bet of equations.
For example viscous fingering arises in the displacement of a fluid
in a porous medium by a less viscous fluid. That is small per- -u = -- Vp (1)
turbations tend to grow with time producing large protrusions or
fingers. A large number ofmiscible enhanced oil recovery pro-
cesses are dominated by viscous fingering and cause a severe re-
duction in displacement efficiency. In groundwater fingering can
cause uneven spread of a contaminant. Chemical heterogeneities +
arising-from adsorption and ion exchange, further accentuate the at
instabilities.

Numerical simulation is a major tool in understanding the Equations (1) (2) can be wiibined to yield the pressure equa-
effects of various parameters on miscible viscous fingering. Inves- tion and (3)-is thc concentration cquat;,,n. Iere D i: the diffusion
tigation of the effect-of the structure of the porous medium has dispersion tensor. The eigenvectrs of this tensor are urthogonal
been an active research area for many years. A major difficulty is with onc of the eigcn~eetors being u and the eigentalues Qi,,a

in developing realistic descriptions of the medium for numerical and a1.
simulation. Conditional simulation [4, 5, 7, 8, l involves the gen- We impose the Diridilet boundar wnditions p - pu(t) ard
eration of synthetic porous media-that are compatible with the c = co(t) at the inflow boundar) & - 0. The uutflow buundary
available statistical information. To obtain a meaningful statisti- conditions at x = Lx are
calresult, many realizations must~be carried out and then aver- = (4)
aged. A number of statistical techniques that have been employed P = 04
for generating realizations of a porous medium are described in + U -VC 0 (5)
(6+

In [7, 8] Moissis, Miller, and Wheeler studied by numerical The remaining faces hate noflo boundar. conditions. The
simulation the effects of spatial variation in permeability and of initial condition is c = 0. The Viscosity IL in (1) is a function of
the viscosity ratio on horizontal unstable miscible displacement. the concentration e of the intading fluid. The equation of state
Their numerical experiments were limited to a two-dimensional used in this work is
porous media and to a linear (rectangular) geometry. In this pa- -= [ (f' ! ' - !)el 4  (0)
per-we briefly discuss extensions of these results to three spatial +7

dimensions. ror a linear hlood problem we tormulate a numerical
method combining a Galerkin characteristics method with con- where it, and i, are the viscosities of the resident fluid and the

tinuous trilinear elements for the concentration of the invading invading fluid repectively and J = prf]r.

fluid and a- mixed finite element (cell-centered finite differences) 2.2 Numerical Method
for the pressure equation. Some numerical results are presented The system of coupled equations is numerically approximated

which involve a porous medium previously studied J3, 71. by a predictor corrector time stepping method which combines the
modified method of characteristics for the concentration equation
and a mixed finite element method (cell centered finite difference
method) for the pressure equation (MMOC-MFE).
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Let Mh(Zh) denote the finite dimensional space spanned by [1] MAL S. Blartlett. The .Statistical Analysis of Spatial Pattern.
tlrc continuous (discontinuous)-trilinear (constants) -defined on fl. Chapman and Hall, London, 1975.
Let 14, = V(z-) x V(y) x V(z) where Vh(x) denotes the ten-
sor product space of cuntiuious piccewise lfiears on 'LO,x .r ad 12 R_ E. Ewving, T. F. Russell, and M. F. Wheeler. SMUuldtiUn

discontinuous piecewvise constant> on- LO, LypI - j0, Lz;. I 't and uf mniscible dibPlai-enicnt ubing ziai.'le heluds and a riovdificki
V(z)-are defined similarly, method of characteristics. SP 1,2241, 193.

Lt(3) R. IM. Giordano, S. J. Salter, and K(. K. 'Mohanty. The ef-
V,(z = 4,(z fl{vl~x~y0) ~x~,Lz)= o} u fects of permeability variations on-flow in porous-media. SPE

14-765, 198.
Similarly we define IVYt). 4AWe define the inner product <. v,u >~= fnoudxdydz. Let -4 A B, Journel and Ch. J. Hujibregts. Mining Gcostattstics.
At" > 0 and t' = nAt. Academic, New York, -1978.

In he ~!Mc-ME frmuatin w sek a aproxmaton [.51 L. W. Lake. A Marriage of Geology-and Reservoir, Engineer-
(C; ,-U inMh X x V tothesoluion(c~, u)as ollws.ing, volume 11, pages-177-193. Springer-Verlag, Berlin, 19S7.

For n 2: 0, the MFE approximation (pn, Un) is-defined by: [6] A. Mantoglou and J. W. Wilson. The turning bands method

~4C"' 0 )for simulation of random fields using line generation-by a spec-
knUn,v v> - < p,, v > tral method. JIfater- Resour. Ries., 18:1379-1394, 1982.

= j (L (fv~tn)(O d ve ~ S [7] D. Moissis, C. A. Miller, and M. F. Wheeler. A -Paramet-
10 0 dd, vEA() tc Study of Viscous Fingering, volume 11. pages 227-2417.

<v V, >= O, () Springer-Vecrlag, Berlin, 1987.

whecre C0'0 
- CO.[J D. E. Mloissis and M. F. Wheeler. pages 243-270. Academic,

For-n 2: 1 the IMMOC approximation Cn k - 0,1, is de- INew York, 1990.
fined--by [9] T. F. Russell, M. F. Wheeler, and C. Chiang. Large Scale Sim-

Cn _-1 ul Dt~~~)~valtion of Miscible Displacement by Mixed and Characteristic
71%;>+ <D(1'-4kVC' V >= 0, (10) Finite Element Mcthods, pages 8:5-107. SIAM, Philedelphia,

At 19S6.

for X e MA -where

C ( YZ)1(11) C'~C~ CWc'n r-MtAispEs

=,,:I YZ)1 -'(1, Y, Z, (12)

(13) Lo Pr-u Xt. P-'E I.

(y,z)-E (0,-Li)-x (0,Lz). Here

=Cst-l ( j- U(X) A (14)

and
Cn= C",1 (15

EO"'(x,) is an approximate average velocity between the times
In-' and In, which -is computed by segmenting the time step At
into smaller sub-time steps and using a predictor-corrector pro-
cedure to determine the velocity along the characteristic in each
sub-time step.

The combination of the MFENI and the MMOC has been pre-
viously applied to the solution of miscible displacement problems
in two spatial variables [9, 2, 7, 3]. IY L-

111. NUMERICAL RESULTS

Tire following data has been used in the simulation. &g,

2.76 X 10, -ct = 7.73 x 10~ an ro molecular difrusion. Tire
inflow boundary condition for c was unity. We set

Lz =Ly =Lz= 1.

The isotropic permeability used in the model is described graph- 4.. .

ically in Tig.1 for a high and a low permecabiliy planes. Corre-AD
sponding concentration profiles are shown in Fig.2. Fig. I

Fig. 2, A1=10
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ORDER-OF CONVERGENCE ESTIMATES FOR FINITE ELEMENT

APPROXIMATIONS-OF DEGENERATE PARA&BOLIC SYSTEMS

MODELLING REACTIVE SOLUTE TRANSPORT IN POROUS MEDIA

-PETER KNABNER

-Univcrsitit- Augsburg
Institut fur Mathematik

Univcrsitiitsstr. 8
D.8900 Augsburg, Germany

Abstract - The sensidiscrcte finite element appruijuxmatom is stud- One 'nay thirik Jf thcx zatc fuuctiums,-ic. des.ript,.rib uf 0"i.,
ied -for a scinilinear reaction-diffusion system cvnsisting uf a than the explicit vn ;t KA'j, but this spccfic atiuctureb ism
parabolic and an ordinary differential equation, %%here the nu- portan! for the following considerations.
linearity is non-Lipschitz, and-a related pde vf 'porous -mcdiunm Fur thc senili"neat "itse K; c haie despite uf the Posible
equation' type. Based on stability estimates fur the continuous dcgencratioa the uptmna L.pschztz staLty uf. 96th respe~t t.

problem, order-of- convergence estimates- arc proved for linear the energy-normn
elements in cnergy- and L2-norins, which-partially are optimal.

!UIQrT: max 11u('04()+fu9(QJ
We consider the finite element approximation of equations, which t ,)J~+II~J(.I

are conceivable as anmacroscopic model for transport-and-adsorp Theorem 1l. Let (u,, v,) be weak -solutions for -the data-ulh,
tionzin, porous media (cf. [41 for details). A water floiv-regime, roi and F, then
characterized-by the water cont ent 0 and the-fluz-vector- field q
and assumed-to be known, causes the transport of a solute -with -2 Jr -~u-w . -F-

concentration-u by convection and diffusion/dispersion. The
substance undergoes a surface reaction with the porous sceleton 0
like adsorption, i.e. there is an adsorbed concentration u. The Here and-in the following C ,0 is a constant independent of
adsorption-reaction may be either in non-equilibrim, leading to the quantities, with which it is multiplied. The pro.of tcf. j~j, 14j)

8t(Gu)+pa~u - V.- (D Vu- qu) = 0, consists of three-basic steps:

= (~u)-a)in QT :=S1X(0,21, (KA) (I) Test the pdc with the primitive of u := ul - u,,

(I1) Test the ode with u,
or-in equilibrium, -which gives rise to v' = jp(u), i.e. (1)Ts h d ihu

at(Ou) + p8,i(u) - V - (DV- - qu) =0 in QT. (EA) These steps will reappear in the proofs of all the followino as-
sertions.

(KA)-or (EA) are supplemenrted by boundary and initial condi-
tions For k -~ oo we expect convergence of (ICA) to (EA). Under

(D~u- q) -= Q 0) o Si := i x(0,certain conditions on the data the speed- can be estimated (cf.
(D~t - q) -= F(>0 on ~~' X (,2'j (4 for details of the convergence proof):

DVtr - n 0 on 5.,r := S2 x (0, 21, () Theorem 2. Let (trfk),u(k)) be weak sol utions of (K.4) for the
u(_,0) =uo (>0)fu(.,0) -'o ( 0)J in P.. rate paramneter k and let u. be the weak solution of (EA) for the

same data, then:
Hereby fl C IR~is a bounded domain, 8.q = S1(3S2, such that
q-n < 0 on St and q-ra! 0-on S2, nbeing the outward normal.
The nonlinearity ip, the adsorption isofl-rn, only-fulfills C~~Qr

0, t~s)> 0for forsom p (01), (2) This justifies the kinetic-approzimation for (BA), i.e. to approx.
0, ~is nn-dereasngimatc the solution of (EA) by the solution of (KA) for large

such that degenerationiny occur at u = 0 leading to finite speed
of propagation of-supp ui (and supp r) and limited smoothness We now turn to the finite element approximation of (J(Aj, where
of the solution. For the following results certain conditions are we only consider the discretizaton in space. bet ik c Wl. be a
necessary with respect to-the coefficients- 'These are fulfilled if bounded domain with smooth ORl and 7.& a regular tnangulatton
the rate parameter k > 0 in (KA) is a constant and the other of 11. The discretization parameter h is given by the maximal
coefficients depend only on space satisfying diameter of the triangles T it TgA. To simplify the notation, we

ignore f1-Aty- T', ie. we treat 91 as a polygonal domain. Let
0)(z) Oo0>0, P(Z)2 pa>0 V-q(s=0=, (3) p be aconstant and define
D(z) is symmetric and positive definite uniformly in z.
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supp u, then the estimates of Theorem 3 -can -be shown-along
Sh := {-XE C(N) I XIT is linear-for each T- 2T}, the lines -of (1]. We conjecture that this property holds true, as

(fg) f gdx. (4) this is-the case for travelling wave solutions (cf. [31), but there
dn is no proof up-till-now. Without -nondegeneracy property it is

Ten the consistent semidisrerte Galerkin approztnnation is given possible to-consider (7), (8) for a-regularized pe and to adapt

by uh,vh : [0;TJ - Sh satisfying the regulaization parameter e to-h.
This leads again to an order of convergence estimate, but weaker

(Ot(0uh), 77)-+ p(8h,) - (Lh(uh),77) = 0, (5) than in Theorem 3.

Finally, we consider the convergence of the se-aidiscrete kinelic

(Otv,,1l) - (k((uh)- vA),i/) for ,-tz Sh, t E-(0,T], (6) approzirmation. A combination-of Theorem-2-and an estimate

similar to Theorem 1,-but uniform in the rate parameter k, leads
Uh(o) =-Oh, Vh(0)= V.-(7) - to

where L& =-Lh(i) is-defined~as follows: For 7/E Sh: Theorem-4. Let u be the weak solution of(EA), (u~
k )

l
;
v

(
)

the solutions of (5),-(6), (7) for the rate parameter k, then:

(Lh(u),,)_:= -(D n.1Vu - qu, V 7) - jqzu i scr+J I U (h') L2((Q ) C

The data are-assumed to be-sufficiently-smooth and-uol,, v h are 2
-taken as the-L2 -projections onto Sh. fork = (h-).
Despite of the-missing- Lipschitz continuity of p there is an op- 0
timal order- of -convergence- estimate forthe energy norm: References

Theorem 3. Let (u,v) be the wetk solution uf-(KA) and 'I; Barrett, J., Shanahan, R.. Finitt Element Approximation of
(U, va) the consisteAt senida.rete C4lerkin approxinuation, then. a Model Re,.t!oUni-ffusion Probleni with a Non-Lipschitz

i) Iu - UhIQ-Uh, Nonlinearity. Preprint (submitted).

0 [U --uhL2(Qr) < Ch - . 12] van -Duijn, C. J., Knabner, P.: Solute Transport through 2
Porous Media with Slow Adsorption. In: "Free Boundary

Hereby p-is the-Hlderexponent of W. Problems: Theory and Applications", Vol I (K.-H. Hoff-
mann, J. Sprekels, eds.), Pitman Research Notes in Math-
ematics 185 (1990), 375-388.

The proof uses -an- auxiliary linear problem -by-freezing the non-
linearity at the solutiun. Let (ut,vh)-denote the-Galerkin ap- [3, van-Duijn, C. J., Knabne., P.. Solute Transport-in Porous
proximation for this-prublem. Then uptinial cunvergence results Media with Equilibriurn and XNon-equilibrium Multiple-Site
for-u - uh are well-known. The-remainder uh - ua is inestigated Adsorption. Travelling Waves. J. reine angew. Math. (1991)
-by-means of the basic steps in the proof of Theorem 1 and rea- (in-press).
sonings in [1]. It is open, whether also-in 1I'4L2(Q-) the optimal- [4) Knabner, P.: Mathematische Modelle ffir Transport und
estimates 0(h 2) holds. Investigations of uniform convergence Sorption gel5ster Stoffe in porisen Medien (in German). Ver-
are-in progress. lag P -Lang, Frankfurt/M., 1991 (in press).
The consistent approximation is-only asymptotically in accor-
dance wi*th the-physical picture insofar(6)- is -not a local equa-
tion in space. This-is achieved-by considering the-semidiscrete
Galerkin -approzimation with-mass lumping, which is defined by
(7-) and

(Ot(Ouh)O) + P(Otvh,12)h - (Lh(uh),t1) = 0, (8)

(Otvh,)h = (k('p(uh) -v),7)h for 27E Sh, t E (0,TI, (9)

where

(f,g)h : 1 jI(f,g)dx and for u E C(R)

I(u) G Sh is defined by J(u)(P) = u(P) for all nodes P of T".

In-fact (9) is equivalent with the collocation approach requiring
the ode to-be fulfilled at the nodes P. Proceeding as-in the proof
of Theorem 3 we are lead to an additional term which can be
interpreted as the quadrature error. If the solution u of (KA)
would have-the nondegeneracy properly with a = y@' which

roughly states that ul/ a grows !nearly away from O-supp u into
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-COMPUTATIONAL ASPECTS OF CONTAMINANT TRANSPORT WITH
NONLINEAR ADSORPTION

CLINTDAWSON 111. NUMERICAL APPROACH
Department-of Mathematical Sciences

-Rice University Under the assumptions given above, (1) can be written-as
Houston, -TX77251-1892 U.S.A. Oct+R(c)t+5c.-Dc=0, x>0, t>0, ()

Abstract Simulation of advection-diffusion equations modeling solute tran-
port -in groundwater by higher order Godunov-mxee nte element tech- where-R = pK, /1, fi = u/O, and-D = D/ Let p = c + ReP, and let 9(p)

-nques is described. In this approach, a higher order nov method mod- be the inverse function, ?(p(c)) = c Then (4) can be written as a parabolic

etF-advection, while the mixed method models diffub These methods equation in j:

ce especially-useful for problems with-nonlinearities, n as nonlinear ad-
sorption terms. Numerical results for solute transport with instantaneous, /it + 01(p): - q(p)#= 0, X > 0, t > 0. (5)
nonlinear adsorption-are presented As mentioned before, this equation poses the difficulties that the nonlinearity

I. INTRODUCTION cP is non-Lipschitz at c = 0, and the flow is generally advection-dominated,
thus the solution exhibits sharp fronts. The-effects of choosing p < 1 (as

As noted in two recent reports by the United States Environmental Pro- opposed to p = 1) are to make the fronts even sharper, and to further retard
tAction Agency t1 and Department of Energy [2, the potability of ground- the flow of the chemical species. In fact, in the limit of zero diffusion with

-water at many locations in the UnitednStates is being adversely affected by p < 1, solutions to (5) can exhibit-shocks for smooth initial data.
For advection-dominated flow problems such as (5), we have studied the

the introduction of hazardous chemicals into the subsurface Such chemicals
(benene touen, xlen),-asoine hebicdes an peticdes application of higher-order Godunov-mixed methods. This class of methodsinclude BTX (benzene, toluene, xylene),gasoline, herbicides, and pesticides was formulated and analyzed for nonlinear advection-diffusion equations in

Modeling the flow of-these types of chemicals through the subsurface has [8]. A multidimensional extension of the method is described in [9]. We now
seen increasing interest in-receit years. describe the application of this algorithm to (5).

The flow of contaminants in groundwater is influenced -by many factors, Assume we truncate our computational domain to a region (0, ). At

including the aquifer characteristics (hydraulic conductivity, porosity, etc ), the point we wil assume the "outflow" boundary condion(

the presence of microorganisms capable of biodegrading certain compounds,

and the chemical process-of adsorption. Biodegradation is an- important pt + fiq(p) = 0, at z = i. (6)
aspect of groundwater flow, as many compounds maybe eliminated by nat-
ural biodegradation. Moreover, natural biodegradation processes may be Let-0 - Xi2 <. Z3/2-'- ... < z.1i2 = be a partition of [0,i] into grid
enhanced to effectively remove contaminants i]. Adsorption, which is a re- blocksB - [ , z,+i,/],and let x, be the midpointof B, h, - X+i/2-

tardation/release reaction between the solute and the surfacc of the porous ZI-,/2, and hj,+2- (hj + h ,)/ 2 . -Let At > 0 denote a time-stepping
structure, is also a significant factor in contaminant movement. Adsorf- parameter, and let t nAt. For functions 9(Z, t), let g - 9(X,, t").
tion can hale'the effects-of begragtirig a haz.rdous cmpourad from the On each grid block B,, we approxmniate 1i" by a piecewise linear function
groundwater, and slowingthe overall movement of the chemical species. fi", where

The author and M. F. Wheeler have developed and tested a numerical al-
gorithm for modeling multidimensional, multicomponent contaminant flow = j2' + (a - x,)6j'; (7)
which includes the effects of biodegradation and linear adsorption, see for
example [3, 4]. In this paper, we consider one-dimensional flow of a chem- c is approximated by a piecewise constant function C", where
ical species in groundwater undergoing (possibly) nonlinear adsorption. In C"IBJ = cq. (8)
an earlier paper-[5], the author and M. F. Wheeler described a first-order
method for simulating this problem. We-will describe here a higher-order In (7),
extension of this technique-and-use it to study nonlinear adsorption phe-
nomena in one space dimension. fin = Cn + R(Cg)'. (9)

II. TIlE MATHIEMATICAL MODEL Let 7 (z,t) denote the diffusive flux, 7(,t) = -bq(), = -D=c. Ap-
plying the mixed finite element-method to the diffusion terms in (5) with

Let c denote the concentration of a chemical species in solution We the lowest order Raviart-Thomas approximating spaces, and using the ap-
assume a source of solute e = coeat x = 0, and assume flow is in the positive propriate quadrature rule, -t is approximated by (see [8]),

direction. In one space dimension, conservation of mass yields

Oct +pAj+uc.-Dcx =0, x>0, t>0, (1) 7(zJ+i/2, t") " '!j+1/2 = -D h+1 /C (10)
c(a,0f) =c0 (z). (2)

for ./= 1,2,..., J - 1. At the inflow boundary,
lere, the positive-constants 0, u (cm/h), and D/ (cm 21/h) denote poros-

ity, Darcy velocity, and the sum of the molecular diffusion and mechanical " - - (11)

dispersion coefficients, respectively. The term pA represents the amount hi
of solute adsorbed, where p (9/cm3) is the bulk density In many cases We discuss the handling of the outflow boundary condition (6) below.
of physical interest, flow is advection-dominated; that is, u is much larger Discretizing (5) we obtain the difference equation
than D multiplied by some appropriate length scale. This causes numerical
difliculties, which we will discuss in more detail below. +1. - +/ n+1/2 -

The-term-pA is in general heterogeneous, depending on the adsorbent -'i + P,+112 - n(PI-11 2 ) + - V-112

surfaces. The adsorption process can be divided into two classes, equilib- At h0 (2
rium and non-equilibrium. We will only consider the case of equilibrium which holds forj 1,..,J-1. In block Bi, we first compute the predictor
adsorption. Adsorption is assumed to be in equilibrium when the reaction
kinetics occur at a much faster rate than the rate of transport. In this case, (p).+i by

A can be written as (see [6, 7]) A = 'P(c), where (c) is an adsorption - ,+1/2) ', .+/2
isotherm. We will assume '1,(c) is described by the Freundlich isotherm, (i+_i___.__+ _ 17'.Pj..i/2 J = 0. (13)

At hi

We define Cn+i(t) - q((pP)n+i), and the diffusive flux at i is approximated
where ld (cmi/9) is the distribution coefficient. Note that in this case 1P(c) by
is not Lipschitz continuous ate = 0 for 0 < p < 1.

For more details on these models, and the mathematical ramifications, ,,+ = - 2 DC+ (i) - CJ+ (14)
see 7). +/2 =-2D l(

Finally, we update T& ' by an equation of the form (12), with j = J.
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The term 1(i+,)2i an approximation to 1)(11(X,+112,ti2) We 1p 5] C. N. Dawson and M. F. W~heeler, Characteristic methods for modeling

proximate this term by characteristic tracing fruni tile Puint (Zr,+i/2, t"+ 12) riumnhnear adsorption iii itmninant tranwport, rrv.eediiigs, 8th
back-to time t", i.e., we-define the characteristic x(t) satisfying Internatiunaa Cunfcren~e un CunipuLativiial MIthvds in Water Resuuirces,

Venice Italy, 1990, Computational Mechanics Publications, Southampton,
x'() ~jjil) tf~'

2
)= J+i12. (15) U. K., pp. 305-314,

Assuming the CFL constraint [6] J, J. T. I.-Boesten, Behaviour of herbicides in soil. saiulation and
erperimental assesmnent, Pit. D. Thesis, Wageningen, 1986.

At (6AY -F '1' T '): 1, (16 7] C. J. van Duijn and P. Knabner, Solute transport tit porous-imedia with

cquilibriuni and non-equilibriuns rnultzle-site adsorption. 71ravelling-waves,
then x(t) crosses the t =-t,' axis at a point x 3,L E B), where lustitut fiir Miathematik, Universitat Augsburg, -Report No. 122, 1989.

At,
Xj,L = J+1I2 --- (f)(17) 18i C N. Dawson, Godunovmtxed methods for advective flow problems in

one space dimensioni, to appear in SIAM J. Numer. Aiial.

The term o~iJ)is given by [9] C. N. Dawson, Godunouvimized methods for imiscible displacement,
-. n112Initeriiational Journial for Numerical Methods in-Fluids 11, pp. 835-847,

L~j1/2 = (T~(18))) 1990.

Thus, the advective part of (12) is handled fully explicitly. Substituting
(9),-(18), (10), (11), and (.14) into (12), we obtaiii a nonlinear system of
equations in C;~i j= ,.J. Once Cy'+i is determined, 4i+1 is updated
by (9).

Thle last step -in the- calculation at time 0+1~ is thle -computiiig of tile
slopes, -6'+1 j = l,..., J. The slope in-the last interval, 6p'+i is set to
zero. In-the remaining intervals we set 0

I -J071i1

where J5

,i. , 'in(I+Pj 1,i1 I/-i, if A+iyj+i A...j'+i > 0, (0
0,i otherwise (20

Here A+Pi is the forward difference (j+i - fil)/hi+i/2, and A..1i 1 is the
corresponding backward difference. 'T le point of the procedure (19)-(20) is
to compute a piecewise linear approximation- which doesn't without intro-
ducing new extrema into the approximate solution. Thus, in-blocks where
the solution already hias a local extrema, the slope bij is set-to zero.

IV. NUMERICAL RESULTS

In this section, we study the effect on the solution of varying the exponent
p. We choose co =I , 0 .5, R = 1.5, u = 2.5 cm/li, and-D =.1 cin 2 /h.
Thle computational domain is 0 < x: <100 cm. The initial condition for all 0 __________0____

We first consider the case p = .8. To test the convergence of the scheme,
we compare the approximate solutions at time t = 25 hours, generated using
50 and 100 grid blocks. As seen-in-Figure-1, these solutions are very close Figure -1: Test of convergence for p =.8.
In-Figure 2, we compare solutionis for P= .5, .8, and 1 at-t = 25 hours.1.
Tliis-figure shows that increasing p results in sharper-fronts-and substantial .
retardation of the solution, as expected.

in conclusion, the Godunov-mixed method approach described here gives
solutions which agree with physical intuition. In future work, we will extend-
the method to model more physically interesting situations in multiple space
dimensions. a
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EFFECTIVE DISPERSION MODELS-FOR VISCOUS
FINGERING IN HETEROGENEOUS MEDIA

Richard E. Ewing
Departments of Mathematics, Chemical Engineering,

and Petroleum Engineering
University of Wyoming

Laramie, Wyoming 82071

Abstract-In order to scale the highly localized behavior of viscous fin- .c V

gering generated-by heterogeneous media up to computational and of
fieldzscales, we must develop techniques to obtain effective parameters Mhlte c, a fraction betweea 0 dud 1, m thul tentraLiun of the ikvadinig
for coarse-grid models which match fine-grid simulations. In [1], Rus- Iluid, 0 ib the porosityuf the idium, a i* the-fluid veloity,. is the
sell, Young, and-the author presented-a coarse-grid dispersion model lvn rate at the wZll, is the r.sidwnt cuilcentratiulk at thd-well and
of heterogeneity and viscous fingering-to match fine-grid simulation- D is the-dispersion tensor g ve,.-by
of-miscible displacement processes. They adjusted longitudinal and D
transverse dispersivities in a dispersion tensor to match recovery curves D = (dm1 + deiJE + dguIE)
for simulations of:viscous fingering on fine-grids. Although they were here din, dl, and di ae the molecular, longituaii.al, and transverse
able-to match-production from various simulations, they pointed-out dispersivities, respectively, eq - u=ui 1u 2, and- E = I - E. Both
that:permeability -averages, variances, and- standard deviations alone miscible and immiscible codes usedlin our simulations utilize a physi-
are -not able to-determine dispersivities, since the specific permeabil- cal dispersion tensor with different lo gitudinal -and transverse terms.
ity distribution in each realization can have significant- impact upon Usually dl-is approximately ten times Gt. Although this is clearly natu-
the-flow-and hence the recovery. In [2], Espedal el al. consider sim- ral for miscible displacement, the local physics of multi-phase flov does

i r -models for immiscible, twodphase flow. In this paperliardispersion moel fo micbe w-paefw ntd ae ot normally involve a dispersionphenomena. H~owever, via perturba-
we-combine these-ideas for multiphase and--multicomnponent flow, us- no omlyivlea iprin1eoea Hwvr i etraetion analysis, Espedal has developed a natural dispersion tensor arising
ing dispersion models coupled with accurate treatment- of first-order from heterogeneous flow at larger length scales. Furtado el al. 131 have
transport effects for-both-models. This coupling will be very important stochastically arrived at a dispersion phenomenon with effects some-
for-fully compositional models, which possess aspects of each process. where between transport and diffusion in origin. This corresponds to
The-dispersion models are presented for both multicomponent and the need to match the gross -permeability effects with first-order trans-
multiphase cases. Then accurate high-resolution numerical simulators port concepts and the-finer-scale fingering with-dispersion models.
are introduced-and used as our experimental tool. Numerical results
illustrate the success of dispersion models for all these problems. Il1. NUMERICAL-EXPERIMENTS

I. INTRODUCTION In the numerical-experiments, we-systematically vary mobility ra-
tio, longitudinal and transverse dispersivity, andhieterogeneity on fine

The understanding and prediction of the behavior of the flow of gids. We use log normal permeability distributions, considering tie
multiphase or multicomponent fluids through-porous -media are often ffect of variance. We also simulate seceral different randomly gcner
strongly influenced-by heterogeneities or quite localized phenomena. ,ted permeabilities with- the sanie statistic,d properties-to see-whether
Although considerable information can be gained about the physics of the gross -fingering behavior and recovcry are similar. Then we seek
multiphase flow of chemically reacting fluids through porous media via relationships between-the fine grid parameters and those in the coarse
laboratory experiments and pore-scale models, the length scale of these gridmodels to use effective parameters which match "averaged" prop
data is quite different from-that required for field-scale understanding. erties of many fine grid simulations. The computations for both the
The- coupled fluid/fluid interactions are highly nonlinear and quite multicomponent and multiphase models on fine grids have been match
complex. The presence of heterogeneities in the medium greatly com- ed effectively via dispersion models.
plicates this-flow. We must understand the effects of heterogeneities
coupled with nonlinear parameters and functions on- different length REFERENCES
scales. We use the simulators as "experimental tools" in the laboratory
of supercomputer environments to simulate tle process on increasingly 1. R.E. Ewing, L.F. Russell, and-L.C. Young, An anisotropic coarse-
larger length scales to develop intuition on ',ow to model the effects of grid dispersion model of heterogeneity and viscous fingering in
heterogeneities and viscous fingering at various levels, five-spot miscible displacement that match experiments and fine-

grid simulations, Proceedings 10th SPE Symposium on-Reservoir

1I. DISPERSION MODELS Simulation, Houston, Texas (1989), 447-466, and SPE Res. Eng.,
(to appear).

In-order to ensure that the information passed from scale to scale 2. M.S. Espedal, P. Langlo, D. Sevareid, E. Gislefoss, and R. Han-
is-dependent upon the physical properties of the flow and not upon sen, Heterogeneous reservoir models, local refinements, and effec-
the numerics of the specific simulator, we have extensively studied the tive parameters, SPE 21231, Proceedings of Eleventh SPE Sym-
codes used and have shown them tc be essentially free of numerical posiure on Reservoir S:inulaizon, Anaheim, California (1991),
dispersion and grid orientation effects. The codes utilize mixed fi- 307-316
nite element methods for accurate fluid velocities in the presence of
heterogeneities and modified inethod of characteristics techniques for 3. J. Furtado, J. Chim, W.B. Liudquiot, and L.F. Pereira, Char
accurate fluid transport Without numerical disperbiun. acterization of mixing length growth for flow in heterogeneous

The miscible displacement of one fluid by anodther in a porous porous media, Proccdm, ofElvueth SPESy-nposium on Rcscr-
medium f is given by voir Simulation, Anaheim, California (1991), 317-322.
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Reentry Aerothermodynamic Simulations

using the Taylor-Galerkin-Finite-Element Method

E. Laurien, M. B6hle, H. Holthoff and J. Wiesbaum

Institute for Fluid Mechancis

Technical University of Braunschweig

3300 Braunschweig, Bienroder Weg 3, Germany

Abstract- The hypersonic flow around space capsule-like grid is then rotated around the axis r = 0 by small

bodies under the conditions of reentry into thezearth's angles pn forming an array of n sectors between

atmosphere is simulated. As an appropriate numerical successive planes 0 i 27r. Corresponding triangles of

algorithm the Taylor-Galerkin finite-element method has these planes :form skewed prisms, each of which is

been selected. Results are presented for flows in subdivided into three tetrahedrons in space. By this

thermodynamical and chemical equilibrium, technique large three-dimensional grids consisting of

tetrahedrons can be generated, the tetrahedrons of each

I. INTRODUCTION plane being geometrically similar. The grid is

'semistructered', i.e. unstructured in x,r and

The engineering- need to simulate reentry structured in p.

aerothermodynamics requires the development of new

numerical algorithms and their application to III. SIMULATION ALGORITHM

realistical configurations. The physical problem

involves strong shocks, high temperatures, boundary As the algorithm to simulate aerothermodynamics of
layers, entropy layers and the interaction of these reentry including strong shocks, boundary layers,

phenomena. Therefore a numerical method to simulate such entropy layer,, and thermodynamical and chemical

flows must posess flexible spatial approximation relaxation the explicit two-step Taylor-Galerkin method

properties, such as provided by unstructured locally [1,2] is applied. This algorithm is formulated in a

refined computational grids. Furthermore it is desirable cartesian coordinate system x,y,z using transformed

to couple the flow computation with computations of the node-coordinates. Elementwise constant and linear shape

heat flow within the heat-shield- consisting of non- functions are used. Beginning with a parallel flow the

ablative ceramic material. We have chosen the Taylor- Navier-Stokes and coupled chemistry equations are

Galerkin finite-element method [1,2] as the basis for integrated in time. Integrals of the shape functions and

the development of a three-dimensional their derivatives are split into two parts, the first

aerothermodynamical simulation code. In the present onlj depending on x and r and the second on i. In an

paper some computational aspects are outlined and new efficient implementation of explicit finite-element

three-dimensional simulations under reentry conditions methods integrals must be precomputed and stored for all

are presented. permutations of element numbers, local node numbers and

coordinate directions. In our method we reduce the

II. GRID-GENERATION computer space greatly by only precomputing the first
part for each tetrahedron of one sector and the second

An axisymmetric three dimensional grid around bodies of for each sector. Using the axisymmetric grid

revolution is generated using the-cylindrical coordinate nonaxisymmetric flow can be computed, e.g. with a small

system-x,r,p. First a-relatively coarse two-dimensional angle of attack.

unstructured grid consisting of triangles in the x-r-

plane is computed using transfinite interpolation to In order to improve shock-capturing properties the

generate the nodes and Delaunay triangulation [3] to algorithm of flux-corrected transport [4,53 has been

generate the triangles. The grid is then locally refined implemented. A model of chemically reacting air [6) at

in regions of shocks and boundary layers by subdivision high temperatures was su far applied to thermal and

of selected triangles with 'hanging nodes' avuided. This chemical equilibrium and is currently being implemented
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for nonequilibrium flow. In the equilibrium case the 1991, Cracow, Poland to appear in ZAMM

system of chemical reactions as well as the vibrational [6] C. Park. On Convergence of Computation of

excitation of the molecules can be decoupled-and solved Chemically Reacting Flows, AIAA-85-0247 (1985)

a priory. This precomputed solution is used during the

simulation as a Chebychev approximation.

a) ~b)

IV. RESULTS

The algorithm is tested using the two-dimensional

example-of a circular cylinder at an inflow-Mach number

of 20 for frictionless flow. The computational grid and -

a perfect gas solution is shown in fig. 1. A three-

dimensional Euler simulation of a sphere (220 000

elements, 40 sectors) is shown in figure2.

V. -CONCLUSIONS N

Finite-element simulations of three-dimensional flow

around capsule~like configurations can be conducted on

axisymmetric semistructured grids. First results for

thermochemical nonequilibrium and viscous flow will soon Fig. I. Two-dimensional simulation at an inflow Mach

be available. However, physical and numerical models number of 20,; a) computational grid,

must -be validated by comparision -with experimental b) isolines of the density

measurements during actual reentries.
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The large-scale structures of three-dimensionally evolving jets

ECKART MEIBURG and JAMES E. MARTIN
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Abstract - We -continue our investigation of the evolution and-interaction of a helical mode pair- of azimuthal
three-dimensional evolution of nominally axisymmetric wavenumnbers +,'-1. The numerical technique will bricfly be
transitional jets subject-to axisymmetric, helical-or azimuthal described in section 2. In section 3, we will discuss the
perturbations and combinations thereof. Our approach is a emerging-flowfield with partiular cnmphasis on the large-scale
computational one, employing inviscid- vortex -filament vortical structure.
techniques to gain insight into the mechanisms leadingto the
concentration, reorientation, and stretching of vorticity. Our 2. Numerical Technique
earlier studies had demonstrated the emergence of vortex The non-divergent nature of the velocity field in
rings connectediby-couterrotating pairs of streamwise braid incompressible flows, along with the defi,-ition -of 'urticity,
vortices for the case of superimposed axisymmetric and allows for a complete description of the kinematics of the

- azimuthal perturbations. Furthermore, for the-case-of a-hehcal flow in the form of-the Biot-Savart law. Using the-theorems of
perturbation combined-with an azimuthal one, we-observeJ Kelvin and Ilelmholt, for inviscid d)namics-and-following the
the emergence of concentrated streamwise braid vortices all gcecral concepts reviewved by Leonard (1985), vortex
of the same sign. -In the present investigation, we study the filaments are- used-for the representation of the vorticity field.
interaction of two helical perturbations of opposite sign. Each filament is represented by a number of node points
While they cancel each-other at some azimuthal locations, they along its centerline, through v hic.h a -ubic spline -is fitted to
become amplified at- others, thus leading to- a complex give it a bmooth shape. The three-dimensional Biot-Savart
three-dimensional flow pattern exhibiting regions -of strong integral is reduced-to a line intcgral by assuminglan invariant
azimuthal vortices connected by concentrated streamwise algebraic voi:icity-distribution around the filament centerlinc.

- vorticity. In addition, the interaction between the For the -numerical simulation, we limit ourselves to the
- opposite-sign helices results-in strong azimuthal velocites, temporally groving -problem, i.e., our flow is periodic in the

streamwise direction. We take the velocity difference
1. Introduction between the centerline and infinity as our characteristic
The present investigation represents a continuation of our velocity. Ihe thickncss of the axisymmetric shear layer,
earlier studies of the evolution of transitional jets under defined as the velocity jump divided by the maximum slope
three-dimensional perturbations (Meiburg, Lasheras and of the velocity, serves as the characteristic length scale, which
Martin 1989, Meiburg and-Martin 1990, Martin and Meiburg results in the filament core radius of 0.5. In these units, the
1991). The types of perturbtions we have been considering radius of the jet considered here is 5. lence, the important
are of wave-like character in the streamwise, helical and ratio of jet radius to momentum thickness of the jet shear
azimuthal directions, as past stability analyses had layer is 22.6. The Biot-Savart integration is carried out with
demonstrated their relevance v. ith respect to axisymmetric second order accuracy both in space and in time by
jets-and vortex rings (Batchelor and Gill 1962, Widnall, Bliss employing the predictur-corrector time-stepping scheme
and Tsai 1974, and Cohen and Wygnanski 1987, to mention just and the trapezoidal rule for spatial integration, rcspectively. -A
a few). Recent experimental investigations by Tso and Iussain more detailed discussion of the numcrical method can be
(1989) as well as Mungal and lollingsworth (1989) show found in Ashurst and Meiburg (1988).
convincingly that evenfully turbulent jets are-dominated by
ringlike and-helical structures whose dynamics become largely 3. Results and Discussion
independent of the Reynolds number when this The subject of our investigation is a nominally axisymmetric
dimensionless parameter is large. Furthermore, Corke and jet perturbed by tv u helcal vvaVes of azimuthal wav enumbers
Kusek (1990) experimentally demonstrate the possibility of +1 and -1, respectively. The axisymmetric shear layer is
resonance in axisymmetric jets with helical mode pairs. represented by vortex filam,nts that initially have-the form of
Edwards, Marx and Ashurst (1991) observe large-scale vortex rings. Consequently, there is no overall-svirl in the jet.
structures of a helical nature in swirling jets as well Numerically, each of the two helical perturbation-waves is
Consequently, our series of studies aims at achieving-a more introduced by slightly displacing the vortex filament
complete understanding of the nonlinear growth and centerlines in the streamNsc direction. figure 1 shows the
dynamics of these structures, with the ultimate goal of flow field at time t-1.72. The tvo side views and the
successful manipulation and control of jets. Our numerical streamwise view clearly demonstrate that the two
investigation of axially forced jets emerging from a corrugated perturbation waves c.ancel each uher near y -0, whereas they
nozzle (Martin and Meiburg 1990) showed the formation of amplify each other around z-0, thcreby forming regions in
vortex-rings that set up a strain field vith a free stagnation which the vrticity becomcs slightly more concentrated.
point in the braid region. Small perturbations in the braid Thus, a Kelvin-llclmholtz-typc instabili, of the axi.ymmetric
vorticity due to the corrugation are subsequently amplified, shear layer is triggered near z-u, wvhich leads to a roll-up of the
whereupon pairs of concentrated streamwise counterrotating vorticity layer and to the formation of segments of
vortices form in between the vortex rings. This scenario is in concentrated vortex rings on opposite sides of the jet.
accordance with the mechanism buggcsted by Lin and-Corcos I lowever, these segmcnts arc out of phase with each other, so
(1984) as well as by Neu (1981) for the plane mixing layer. If, that a contour plot of the azimuthal vortiuity component in
on the other hand, the axisymmetric jet is perturbed by a the plane z-0 vuuld show a staggered pattern, iesembling a
helical wave, a layer of streamvwise braid vorticity forms that Karman vortex street. TIhis phase shift between the emerging
has the same sign everyvherc (Meiburg and Martin 1990). If vortex ring segments on opposite sidc of the jet lad. to the
the helical symmetry is broken by introducing a periodic interesting situation in %ich bum,_ regions of a vortex
perturbation in the azimuthal direction, streamvvise braid filament are con,, ctcd towards thic jLt axis, v hereas others are
vortices emerge that become amplified in the strain field of displaced away from the axis. in this fashion, the vortex
the helix. Ir the present paper, ve will study the inviscid filament, in between the .- crging vortex ring sections,
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Fig. 1: Side views from
the z- and y-directions,
respectively, as well as
streamwise view at time
t-1.70. Shown are the
vortex filaments over two Fig. 3: x-, y-, and z-views

.1 streamwise wavelenghts. at time t-8.05. Concen-
Observe the cancellation trated structures form
of the perturbations near that connect the vortex

yI -0. _ _........ring segments.

,ft ,ll

Wt 'ti

Fig. 2: z- and y-views: at time t-5.70. Note the formation of
out-of-phase vortex ring segments.

deeosac twhich becomes Fig. 4- x-, y-, and z-views

larger as thetamplitudetof the Kelvin-llelmholtz instability ! .q/ at time t-11.95. Where

grows. This .tendency-has become much more pronounced te ji sr t e laround

by time E-5.70 (figure 2). We observe the formation of ' each other, thus creating
concentrated streamwise vortical structures connecting the each.oaherlocity creating

out-of-phase vortex ring segments. This situation appears - alng the axis of the ring
similar to the-one in mixing layers with a defect caused by a
phase jump at-a given spanwise location. By time t-8.05 (figure,...... .... section.
3), these concentrated streamwise structures have grown in References
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General considerations on hypersonic reactive-flow
and the challenge of computation tion of hypersonic reactive flow.

The hypersonic flight-of a space vehicle when it reenters the From a numerical-point of view, the challenge of -this task
aTm he hersoncighth nresides in the necessity-of accounting for more complex physical

atmosphere (high Mach-numnbcF, up to 30, high angle of attack, moes(r-rlssopetch ity d!soe fwih
up to 300) corresponds to a- crit!cal phase from the viewpoint of models (more-or-less complete chemistry mcdrs, someof whicn-
aerodynamical control and thermal loads control, and gives rise being currently developed on the basis of more recent data; in-
to the development of advanced numerical specialized simulation clusion of wall effects, etc.) and accounting for more complex

tools. aerodynamics: e.g. the-presence of stronger shocks in particu-
lar, makes the question-of robustness more critical and-partly

At high altitude,-the low-density atmosphere (pco= 2.5 2-Pa, for this reason, many-authors employ upwind schemes for which

p,=4.28 10- - kg/m 3 at the altitude of 75 km) undergoes a the artificial viscosityis inherent to the-approximatior.. Then,

strong compression across-the main detached shock of the exter- the extension of known schemes to the reactive-flow case is-usu-

nal flow. ImniediatA.l' 'lehind this shock, assuming a freestream ally not immediate, since -the diagonalization of the convective

Mach number of the ortair of 30, the temperature reaches sev- terms (Euler terms) in the governing equations depends on the

eral tens of thousan-d.oeggrees (Kjpand air-dissociates and is in form of the state equation-and is different when the fluid-is mad,-

strong chemical but also vibrational non-eqtilibrum. Along a of several species. Several extensions of the van-Leer flux-vector
particle path,the various non-equilibrim modes relaxto-eqnl- splitting-and of the Roe and Osher flux-difference splittings in

librium at different-time scales: vibrational equilibrium is- first particular can now be-found in the literature.

reached, then chemical-equilibrium. The dissociation reactions
being endothermic, they absorb an important fraction- of the From the designer point of view, the flows of greatest-inter-

energy; in this process, the -tcmperature decreases rapidly. To est are those in the "near-equilibrium regime". For reasons-that
realize the quantitative importance of this effect, it is-instruc- will be discussed in the lecture, the numerical discretization of

tive to consider the case of a steady inviscid (external) flow for classical type of the equations governing non-equilibrium flow is
which, when chemistry is-negligible (i.e. at lower Mach numbers, very stiff in this case, and overcoming this difficulty may reveal

Moo < 10), the temperature at the stagnation point Ts can be the greatest challenge to the computational scientist.

related to the frcestream temperature To by the relation Finally, since shock-layers ii the hypersonic regime are thin-

. 1 ner than in the better-known supersonic regime due to both ef-
Ts / T 0  1 + - M fects of larger Mach number and chemical dissociation, and-since

the physical phenomena are more complex (dissociation, vibra-

which expresses the cunsercitlvi of totti lwithalpy per unit mass tivii, --tij ,id mute intuo,.. ktiu ,,&l oliiko), it is evident that
along a stieamline. Trying i,,vv this fumula %.h _10 - 25, the ontrol uf the qualitq of the dct.-iatc q pioxmiation is more
-1 = Cp/C, = 7J5 (diatomic gab) and T 0 = 205 K (standard critical and is also mure strongly dependent oi, the-quality of
atmosphere at an altitudt, vf 75 kii . i,,id. T-= 25 830 K! In the employed mesh. HCnc, ,o0uCs suh io mesh gencration, and
reality, in this iiviscid ca,,, ii 6 iiipletcl) dissueiatcd-in the nuric generally, rimesiztrol bcoit,. inue escential.
stagnation-point region, aid the temperature is (only) near 6000
K, that is, 4 times smaller. Brief description of the lecture

Another important effect of chcmisty on a typical blunt The lecture will eiphasize somc of the most important as-
body flow is that it modifies noticeably the shock location; the pects of the numerical con ptamoii of hypersonic external flow
stand-off distance may be reduced in some cases of 40 Vc or by upwind bceiines applitablV to,lrbitlily mtrunt'red meshes.
more; more generally speaking, the entire shock layer is-thinner.
This effect is also of gext concern to tht designer, since tile After tlt pr-sentatioi c f -i.nc ial cunsideratiuns on
intersection of main sh.ck with partb of tlt sttuctuic should bc l,.lt, h'pctlsoni natuc f b. ,ei uilibi..i and non equilibrium
avoided (overheating, uestruction). models will be described. The esential effect of the -Damkler

number on a typical blunt-body non-equilibrium flow will be
For all of these reasons, and since laboratory experimen- briefly discussed.

tution of this e:tmcnre legilme is very difficult (anl costly) and
often impossible todau y fu c l ,,, ig ij, it i., ,ipuit . nt l1. I,i i itt \ U ,hlia m i - El i it t iid bhuib %vill
to (evelop efficient ,mnd ta I Ald,,t ,' i t l , i t .t It,ol., fti1 th pitt,die Ut I .,m I6 d fm b tth Ioih . It)kly A upcd ( equivalent-)
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ap, -:oztc) and strongly-coupled formulations-will be compared. Jilustrati'% e Example:
Many- blunt-boK,~ flvw~computationls- will be-showvn to-evaluate Invibcid Flow ovei -i Duble ellhpsc s(froi [41)
or ve.iCy numerically the- effect of -various -paraameters, such as (M,,=25, a = 3O*, larger berni-axis 60 cmn.)
the'fr&e9tream-Mach number.~'r the size of- the- obstacle.

-linplicit-tim~esieppiag will. be -presented, and its-efficiency
demonstrated. The- construction- of--quasi-second-order schemes
iac'nrporating monotonicity devices will be introduced with bome
enmphasis-on~t-he appropriate -choice- of- the set- of physicfd vari-
ables on which limitation should be al,,lied. in- particular, the
drastic effect-on the wall-checmical composition-of the order of
accuracy of the approximation scheme will be shown. ' ~ -

The difficulty to correctly simulate the stagnation-point re- ~ ~
gion in a non-equilibrium flow-will be discussed and illustrated.

Many examples of computations will deal-with inviscid flow. .__
However, a preliminary assessment-of the effect of the transport M

= model or -a Navier-Stokes reactive-flow computation will-be in-
cluded.

Finally, some considerations -on mesh- generation will be
made. An example will--be given-in-which several meshes have
been-constrvcted in the-course of the solution convergence. Ini-
tially, one constructs a smooth -(structured) -mesh wriploying a
"hyperbolic grid-generator" in which the distribution of- cell ar-
eas is controlled-to target-a prescribed external-domaln bound-
ary. Then, one-or mo re-mesh enrichments are made by-elemnent
division-to adapt the (now unstructured) mnesh to the solution.
The same solver (adapted to- unstructured -data base) is em-

-plo y e d th r o u g h o u t . R f r n e
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METHOD OF GRIDS ADAPTIVE TO SOLUTION FOR PROBLEMS WITH BOUNDARY LANERS

L.M. DEGTYAREV, T.S. IVANOVA
Keldysh -Institute of Applied Mathematics USSR Academy of Sciences,

Miusskaja P1.4, Moscow 125047, USSR

I. INTRODUCTION 1i +

In mathematical -physics problems an error (Lhy) 1 -h Yx)i+i/2- (r Yx-v2J

of the finite-difference method IlIzil = Ilu-yll 1 r. - yi (
(u is the solution of an original differential +- W/ 2 -= - fhi
problem, y is the solution of a i N-1 , Yo YN
finite-difference problem ) is determined by
the number of grid points N so that- as N - o -hi+12= xi+1 - Xi I hi= 0.5 ( hi+1 / 2+ hi-1 / 2)

the equality (yi+1 -yi) + +
I m Yxi+/2= ,wi+1/2=Pi+1/2Yi+iPi+1/2Yi

l1 z 11=0C -J- 'i + 1/2

takes place asymptotically. The value of C on pi+ 1 / 2 = 0.5 P (xi+1 / 2) ± I P (x.+ 1/ 2 )1]

real "crude" grids may be decreased by We emphasize, that convective term ( p U )
redistributing the grid points. Without a in -(2) is approximated by the first order
priori information on the solution structure upwind difference. It ensures the maximum

the optimal grid can -not be constructed. In a principle for (2) and removes the oscillations
general- case such information can be obtained in difference solutions. The difference

when solving the problem numerically, and then solution error z.= y.- u ( xi) satisfies the

the grid can be property corrected. It is difference equation
natural to call such a technique the method of
grids adaptive to the solution. In this paper ( Lz)i = -

this technique is based on minimizing the with truncation error
truncation error [1]. In the method the I [K " h + T ()
requirement of truncation error minimization h. 1/2h + 1/ 2- Ki-1/2hl+ O(1i4)

leads to the ,equations fnr the grid points
coordinates. Introduce the point grid coordinate x ( a )

such that x.= x ( a,) , a, = i ha and require
problems including those with a small that

parameter at leading derivative are that

considered. In such problems the solution has Oi 0 ( hi4 (4)

high -gradients in the region of boundary at each point i due to a proper choice of x

layers. Using the difference schemes of the The condition (4) may be rewritten in the form

second truncation order in the convective (Ihx)i=./(i xi)- . 1i/ 2(xi-xi.)=0 (5)

terms is not expedient here due to

ocsillations of the difference solutions. The i.1/2= , 2  + W2 i+/2 1x= 0 , xN= 1 .(6)
first order upwind schemes yield rather low

accuracy. In the paper this contradiction is The given grid function ci+1/ 2  0 (in the

proposed to solve by increasing the upwind simplest case ai+1/2= o ) makes it possible

scheme accuracy on adaptive to solution grid. to redistribute the points between the high

One [2] and two [3] dimensional boundary value and low solution change regions. To reserve an
problems are considered. order of truncation error the regularization

function a W/2 - in (6) should be compensated

II. 1-DIMENSIONAL BOUNDARY VALUE PROBLEMS in the right hand side of the difference

Consider the boundary value problemscheme (72 1(Lhy),= -I + 1 (.( hii/2- (CC (71)
(c u) +(p u)-q u=- f,h i

u ( 0 ) = 0 , u (1) = I (1) Different simplified modifications of grid
e( x ) > e 0 , q ( x ) > q 0 monitor (6) are possible as well.Going over to
The problem (1) is approximated by the second order simplifies (6) essentially
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[2] so that (6) takes the form- equations for grid points coordinates like

1 Yi+- Yi + (8). In fig.2 the example of adaptive grid

+ 1/2 xi I + (8) for (10) is shown. There are two boundary
III. TWO DIMENSIONAL BOUNDARY VALUE layers here. The first one is located near the

up boundary of width - "'-, the second - near
PROBLEMS-ON TRIANGULAR GRIDS the right boundary of width e .u-

Consider the 2D problem 0

V-(C Vu) + V(p u)= 0, x = (x1 ,x2 ) E S, (9)

_u + 11. . V n X e a
On

where p = (p1,p2) is given vector , which

satisfies
V.p =0_ (10) u 0

The problem (9),(10) may be considered as a

model for Navier-Stokes equations: Briefly I
outline the difference scheme and the

derivation of the grid equation for problem

(9). They generalize ID equations (7) and (8).,-
The standart finite element approximation of

(9) on an arbitrary triangular grid may be u = 0 .
written for point i (see fig.1) as a n0. . . .0

fig.2
kB( Yk - y) + A y  = 0 (11) Adaptive grid for equation eAu--=0, C=0.01.

k k 2 Boundary conditions are shown in fig.2.
_k+1

k fig. I IV. GENERALIZATIONS

Element of triangular grid Note some generalizations of the method.

for scheme at point i First, we used local optimization of

-truncation error. Meanwhile it is possible to
In (11) the coefficients Ak , Bk depend on use optimization of some integral norm of

coefficients C(x) , (x) in- the original truncation error and to construct the grid

equation and on grid geometry. On the equations. Second, in section Ill we

triangular grid with acute angles only considered the 2D diffusion-convection
coefficients Bk always are positive. The equation. This approach admits a direct

coefficients Ak may have any sign, therefore generalization onto such 3D equations. Finally

the scheme (11) does not satisfy the maximum the proposed approach may be extended to time

principle. Write (11) in the form dependent problems. The algorithm and resuls

Bk(yA- ( A+ yk+ A- yi) - for 1D evolution problems are given in [4].Bk YdY + E ( k Yk
k k (12) References

1 k A y  = Ak+lAkl 1. Degtyarev L.M., Drozdov V.V., Ivanova

2 k kI (yk yd)- = 0 k A 2 T.S. Differentsial'nye Uravneniay, XXIII, N 1,

Separate equation (12) into two equations p.1160 (in russian).

(Lhy)i = E Bk(Yk-Yi) + E A+ +  = O(13) 2. Degtyarev L.M., Ivanova T.S. Preprint
+ Ak k k 0 ( Keldysh Inst. Appl. Mathem. N 145, 1990.

1 E lA (14).3. Degtyarev L.M., Ivanova T.S. Preprint

2 k k1 (Yk - Yi = 0 (14) Keldysh Inst. Appl. Mathem. 1991 ( to be

The difference equation (13) is a published ).

generalization of ID upwind difference scheme 4. Degtyarev LM., Ivanova T.S. Preprint

(2) onto triangular grids. It satisfies the Keldysh Inst. Appi. Mathem. 1991 ( to be

maximum principle. From (14) we may obtain published ).
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Invariant Manifold Theorems for the
Navier Stokes Equations

S. S. Sritharan
Department of Aerospace Engineering

University of Southern -California

Los Angeles, California 90089-1191

second result-is the upper scmicontinuity of the global attractor
Abstract with respect -to regularizations of the Navier Stokes equations

-In-this paper we reviev. the results on eisteme, unqe by thc addition of artificial viscosity terms. We %611 also present
- ness and-regularity of invariant nianifulds fur the .azcr- a sruthncss result fur global ini~atiazt (uimtial ) naarifvlds fur

Stokes equations. Some espects of glubtl attri.Lor are the regularized systemn. These glubal (ut inertial inranifulds (.an
also discussed. also be regarded as approximate global manifolds for the original

system.
IntrductonIn this-paper we will only consider -viscous- flow in bounded

domains. For a discussion on various -issues -of unbounded do-

We will present-certain results on the structure of attractors for manse
- the Navier Stokes equations. Ladyzhenskaya. [Ill -proved that

the time dependent viscus fluiv in t%%o dirrieri ,ad bvuiided 2 Governing equations-and functional
domains-can -be characterized by a compact global attractor de-
fined in the-following way. Let llV(f, 0; -) be thesolution operator framework
which relates the velocity-field a any given time to the data. For

thecas-offlud lowin-wo imnsinalboude- dmais, he Let fl C RI, n = 2 or 3 be a smooth bounded domain. We will

operator W(t,0;-)+is defined in-a Hilbert space H for all pos- cosdrtepblmffiin u):Qx Oo - 1xR

itive times as a-compact operator and-satisfies: the semnigroup such that,

property; ui+(-V)u =-Vp+ Pu in 0 >c(0, cc),

11(t, t1 ; WQ1 ,0;.) W(t, 0; -), 0 :5 11 :5 t. V .u= 0 in fl x (0,coo),

We then note that the Navier-Stokes equations define a dissipa- f~,1 sxt o x )EOlx[,o)wt u - =E 0
tive dynamical system. This means there exists an absorbing set Lkt ~X )fr(, )E02x(,c)wt

- in the solution space-inside which all orbits enter after a certain adux0 0  o 2
- time. Existence of- absorbing- set was first noted by E. llopf in
- 1941 [91 using energy estimates. Let Ba(1jI)-be the absorbing Here if fl is multiply connected then we require that the flux

ball in the Hilbert- space H. Then the global attractor A associ- through each component of the boundary be zero.
ated with the nonlinear semnigroup TV(-) is defined as the fl-limit, Let (U(xltPx ) eabscsouinfed(hc sa

- set of Bjn(H): orbit on the at tractor) that satisfies the boundary conditions. It
is known-that (ijl. the orbits on the attractor A are regular (that

A = f-l-U (s,0; Bn(H)). is U, P are infinitely smooth ) and defined-for positive as well as

negative times. Wearc interested in studying the solution orbits
- The set .A is comnpac~t, W1onneCted, Attza1..t a!, bu.u Seta Uf flearby this given orbit in an appropriate function space. Let, us

R'I and is invariant to lf'(t,0, ) for pusit,.e as kocli-as r~gati.c introduce the change of variables u U -t-v anid p P - q so

times. This attractor- contains in particular the steady, periodic, that (v, q) satisfy,
quasi-periodic-and- almost -periodic solutions. The llausdorff di- -UVV(-'U(-'V=-0r1 lX(,0)
mension dii of Alias been shown -to be finite (1, 12, 1-1. 21, 22, 31. v+UV +-.)+vVv=-civi nQ(,c)

- Such results for three dimensional flow problems 'vould be of o in2x(0c)(1
great interest for the understanding of the dynamnics of turbii- ()

- lence. Another open problem is the task of proving tire existence V(X, L) = 0 for (z, t) E i012 x [0, oc) ,
= of global finite dimensional invariant manifolds containing the and V(X, 0) = vo, X r 12
- attractor. The possibility of existence of global invariant man-

ifolds containing A is suggested by the theorem of Mane (171 I ucinlfa ewr
- which essentially implies that A can he parametrized bv 1 2.%ucinlfa ewr

number of-parameters with j%', : 2d1, + I. C'oordinates of suci We will use the vector spaces,
manifolds would provide us with ii effective means of complit-
ing the properties-of-the attractor (which may be of fractional j(fl) ju fr.1 --+ TI;u 6 C'(l), divu 0 ,

- dimension.). In this report we will pre-sent certain re-sults in
this subject. First result [251 concern-- oIth then livpeibohir it. 1II (u.1 f! X1 E V L"(SI),divit 0.utzx n 0, r E 01.
of periodic solutions of the Navier Stokes equations in bounded V= fit.: f - 1R; i. E IPi(1). divu = 0; ux) 0.a x _f01).
domains. Analyticity of the invariant manaifold, is the cen-

- tral result. For earlier studies on hyperbolirity -ce [131.[81. Tfhe
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3 Linear and nonlinear semigroups uv = P,,[(U -VW +(v .V)UJ

3.1 Charactcrization of the Stokes operator and B(vv) = P11[(v -V)v].

and the semigroup it generates Lemma-2 If U E A then Lu E £(D(A9)D(A0I 2)),c E[0~~,1I1]. The bilinear operator satisfiesB(.,.) : V xV - D(A' 1/4).

-Let us define the-coercive-and continuous bilinear form a(-,-) :

V x V -- R as Proof of these results can be found in [251. The second-result is
actually due to [6].

a(u, V) = n Vu- Vvdx.

Let g E H. Then since H C V = £(V; R), by Lax-Milgram 3.3 The Linearized problem

lemma there exists u E V such that Let us find v E C(0,oo; V) A C'(0,oo; V') such that

a(u, v) =-(g, v)(n), Vv E V. v, + Luv + Av = O, f >-O.

This defines the itokes operator A as Au = g with u E D(A) v(O) = Vo E V.
and D(A) C V dense. In-fact using the Cattabriga regularity This is resolved as
-theorem-[2, 26, 24) we obtain an explicit representation of the
domain of A as D(A) = H2 ((1) N V and A is recognized as v(t) = S(L)vo - L S(t -- 1)Lu(rW(7)d7.

Au = -PnAu, Vu E D(A) If we define the operator K as,

where P11 : L(f) - H is the orthogonal projection. The I

Stokes operator-is self adjoint and-positive definite. Moreover [ JV(t) = -S(t- r)Lu(r)v(7)dr,

A- E £(V; V') n £(D(A); H) is an isomorphism on to. We 0

have the continuous, dense and compact cmbeddings. then '(I -rAjjV(t) S(t)vo. Properties of Lv k, and the est
mates on S(-) allow us to show that for small enough T,

D(A) C V C H = H' c V' C D(A)'.

Since A- is compact in H we can- define the fractional powers

Aca E R of A using its spectral resolution: Thus we have the convergent series representation.

'00 00A o0 XdE(A)u = Ep(u, ).O ,, Vu E D(A), v(L) = >[A2Sl(t)v0 = Z(t.0).o.
I I n>O

where E(A) are the resolution of identity genesated j A and Unr,.4 ene. s of the .t,; , that eo,. elution uperalvi
{pVh 4b; are the eigen pair of A. The domain of X' is Z(t, 7) satisfies Z(t, r) = Z(f, zl)Z(q, i], 0 < r _ < 1. Using

this we extend Z(t, rj to 0 < r < t < Oo. Estimates on the
D(A0) = 0= a ; IIvllltA-) = . Stokes semigroup allow us to prove,

Lemma 3 For i- < t the maps I - Z(t,7) and r -4 Z(t,T)

It follows from a theorem of Lions [151 that D(A11 2) = I. are continuous in the uniform operator topology of C(V; V) f)

We will denote by D(A-*) the dual of DlA) (closure of H £(D(A- 1f); V . For < the operator Z-t. ) 6 £(V; 1') A

under the norm of D(A-0)). The resolvent of -A svtisfics £(D(A- 14 ); V) is compact We also hart
>

llR(A; -A)llc(,.) _ e, for \ E S_ , 0 < e </ i- UZ(t,7)"VC(olAtoJ.X < ( .3 >/ .
Let us no-v consider the cas where the hasic lluv is T-periodic

Here EA is a sector containing the right, half- plane.Ltusnwcsirthcaehr hebi i Tproi
in time. Existence theorem for time periodic solutions for the

Lemma1 -A generates a compact semigroup that is holo- Naiei-Stokes equations cAn he found in When U is T-
morphic in EA. Aforcorer for 0 < A , period;. Z(TO is called the monodromy operator and sat-

isfies.C
llS(f)l(D(A,;o(A. - -) " I > 0 Z(nT.0 = Z(T,0)'.n > 1.

and 3c> 0 such that, 3.4 Full Nonlinear problem

flS(tQllfjruat) - t > 0. Let w- find u E C{O. T'vol; V) such that

Ifere ZA is an acute sector containing the po.,itir- mal ari&. vrt = 7(.Ia - TZ(t.)B(rjri )r, r

3.2 Characterization of the inertia terms v io Z r., 1 V

Let us now consider the 'inertia termsi We a where the \\maa tin'.and As dei.rimil'-I k'- the rutrni
define a linear operator Li and bilinear operatr B" . " ;n the Lf the initial data ri,. r_ e write rif - Wlt.0. Thr- en tre can

following way. sh z¢w that 1251.
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~vo --+ W(t, 0; vo)-is real-anialytic in BS(0) C V (i) '(0 1 k(o) =0,
(ii)D95.(0) = D4,3 (0) = 0... tangency condition

ThsmasW(t, 0,)arbewttna .ne sib (iii) manifolds .1, and-AL, are locally iul-'ariaut Under the

W~t,0; o) EH(vo vo t)solution map 1V(T, 0;.)

n>1 l'(T, 0; Af. A B7(0)) C MuL and W(T, 0; Al, n B.(',)) C Mt..

Thle n-linear maps 'H,(.,. , . 1) are continuous. We-have (iv)-stable manifold Al, satisfies
l, n B7 (O) = u E 1)7(0) such that Vn _> 0, FV(nT, 0; U) E

W(t, 0; vo) =_ IVQt,T; W(r,0; vo)), 0 : r:5 t < V(vo). 170 n ~0a - 0

For S1 C le2, we 'lave T*(vo) = 0o,Vvo E V [23). For Q~ C and Al, n B,(O) A K = empty
R3, T'(vo) = oo if vo is contained in a sufficiently- small ball
centered at the origin of V [6). If U is T-periodie in time then Unstable manifold Al. satisfies,

IV~T,;.)= (T0; ) :Vn 1. We note hic that-the Frechcet Ai B,(O) = {u e -B7 (0) such that IVT0, -)'u is de-
derivative of this map l'(t,0;.-)-is, DW(t,7; 0) = Z(t,T). fined-Vil < 0

4 Invariant cones and manifoldsadtedtozr-sn-+ o)adjunB( c .
(v) if u 0 M, then there-exists 5 > 0 and p E N such that,

-let us first-state the following fundamental result: !W(p7',0;U)Jv(AO) > .5.
Theoem Le th spctru-ofthemondroy opratr ZT, ) E (vi) dist(Mu,WYT, 0; u)) < dist(A',u) -for u- C- B() .ex
Therem1 Lt te pecrumof hemondrony peato Z(, 0 Eponential attractive- property of the unstable manifold.

L(D(Aa'); D(A*)) splits in to two disjoint sets at and oa, such dist(M., W(T, 0; u)) > dist(Af,, it) for u E B1 .(0)... repelling
that o(Z(T, 0)) = au U a, and property of the stable maifold.

b = up I] <if IA a.Proof-of this result can be found-in (25).

-Let Pu and-P, be the spectral projectors defined by the Dunford s R g lrzdsse :q etfrgoa
integrals, 5 R g lrzdsse :q etfrgo a

P j R(-A; Z(T, 0))dA and unique -solvability

1, -Rf (,0)A In this section we will present the results on a particular regular-
P. r = . N (;ZT )d.iation of Navier-Stokes equations. For this system, it is possible

(Here R(A; Z(-T, 0)) is the resolvent operator and Fu, r, encircle to prove global unique solvability theorem up to dimension six
a,,or, respecttvely). Then Ye > 0, we can choose a norm in[m,1111 In this regard the regularized system in six-dimen-
D(Aa), equivalent to the given one-such that ,Vv E D(A*) sions or less, behaves like the two dimensional Navier-Stokes

equations.
Wi 1IVIID(A-) = JIPuVIID(A- + IIPSVIID(,I-), [IP.11 = IP,1I = 1, Let Q2 C Rn, n :5 6 be a smooth bounded domain. Find

Wv, pl ) : nx (0,00o) -+ R x R? such that,

(iii) IZ(T,0O)PvID(A-) (a- C)IPV110(A-). vt(cVv V~vv-Av+ in 9 x (0, 00),

Hfere P, + Pu = I , P,Pu = PUP, and P,, Pu commute with V -V = 0 i" Q~ x (0, 00), (9)

This result is in fact valid for any continuous linear op~erator Ov, x,1 =0, (x, t) E OP x (0, oo)
in a lBanach space with the above spectral properties. For the ( t
proof-of this results see[4]. Let the spectrum of the monodromy and v'(x, 0) = vl x E Q2.
operator splits into two sets such that o'(Z(', 0)) a.Uoa, With It is albu possible to Ube periudit. bundiaw '.undition ( pe-
or, A o, = empty and riodic in R") for this system. Let us define V :={v E

I02(); V.v = 0). Then as in the characterization of the Stokes
b= sup JAl < inf JI = b,-' operator, we can define a positive definite, selfadjoint opera-

Aea, AE' tor A = P11A' with D(A) = V A) fl'() then D(A 1/
2 ) = V'

Thieorem-2- (Invariant cone theorem) If b. <. 1, then there as before. WeA will obtainj B( , ) . V( A V -~ 11 ... inpared to
exists a double cone that is invariant to W(T,O, ) locally. Let B( ,) .V x V , D(,4-1 1), This shows tha the nionlineatity
r, {v Ez V; IIP~vllv :5 qJlP,.v1Iv, q > 0) and let K = \{0). ini the regularized s~sti It" a better buhauoi. We Ldii pro'.c
Then W(T, 0;.-) : Bs(0) AK -- k and is injective. that,

This theorem is proved in [25) using aresult on geneid mappings Theorem 4 If Q c: Rn, 2 < it < G, the. jot a gtcn, f E
by Kirchgassncr and Scheurle [10]. L'(0, T; H) and vo' E HI, 3 a unique solution v' to (9 such

Theorem i3 The invariant-manifold theorem Let b.,b,, < tav '0T 1)C[,';)

1. Then in a neighborhood 1)7(0) C D(W,'),a E (1/2,11,
there exists two unique, analytic manifolds M, and M~u
which are respectively the graphis of the analytic iiaps,q5,
P,D(A*) - PuD(AI), q5, PuD(A*) --* PD(A0l) with,
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6 Global invariant manifolds Theorem 7 Ve > 0 and Vi > 0 the global attractor A, corre-
sponding to the two dimensional regularized system (with per-

For the regularized system introduced in section (5) we can prove odic boundary conditions)-has the following properties.

the-existence of a compact global attractor as well as the local (i) A, is compact and attracts boundes sets of H.

invariant manifolds of the type discussed earlier (19],[20]. More- (ii) W(t, 0 uA) A, tE R.

over, it is also possible to establish the existence of global invari- e -i 0. Here the semidistance 61 is defined as
ant varieties-of the type introduced in (5]. These global inva ri-
ant varieties are modelled on, finite dimensional linear manifolds Sn(,:, A) = sup inf ((u - vilit.
spanned by the eigenfunctions of A. The global invariant va- UEA, VE

rieties defined below have C' smoothness as compared to the We nute that A aboxe corresponds tv the global attractor fur
Lipschitz manifolds proposed in [5]. the two dimensional conventional Navier Stokes sy.tem.

Proof of this theorem involves certain uniform estimates (in-
Definition 1 M is called a C-inertial manifold if it is finite dependent of e) for the solution of the regularized system and
dimensional Lipschitz manifold whose derivatives are Lipschitz, an approximation result on the upper semicontinuous global at-
has compact support, exponentially attractive, contains the global tractors for nonlinear semigroups. The details of the proof can
attractor and-is invariant to the action of the solution-map (the be found in [20].
nonlinear semigroup) in the neighborhood of the global attractor. Remark: In order to show the continuity of A, at c- 0, we

For the two dimensional regularized system with periodic bound- need to prove the lower semicontinuity result: 6n(A, A,) -- 0 as

ary conditions we have e -+ 0. This issue is presently open.
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PRESENTATION OF A SECOND ORDER TIME SCHEME
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ABSTRACT - We present here an- approximation of n 2 +
incompressible 2D or 3D Navier-Stokes equations in velocity-- 2- 
pressure formulation with a scheme which is second order in time
and of finite element-type in space. The convective part-is treated- At
acording to-a characteristics method, the Stokes part is solved with = f (., tn+1 ) in !,
the help of an Uzawa algorithm.
Theoretical-results concerning the precision and the stabilityare
given .Numerical tests show the improvement given by this second
order scheme compared to a first order scheme also using div vn+1 =-0 in 2, (6)
characteristics to treat the convective part. v+l = Vd (., tn+t ) on r.

L-DESCRIPTION OF THE SECOND-ORDER TIMESCHIEME We denote by II iv the norm of H1 (92), defined by
This scheme is based on an operator splitting method similar to the 1u iv [II u Ig + vAt II Vu IIo .
one proposed in [1], [2] and [3]. = 1 2.

-We denote by Q RN(N = 2 or 3) the computational domain and II. THEORETICAL RESULTS
by [0, T] the time interval. We consider the Navier-Stokes

e- - RN2 -and p : K2 - R-solutions of In this section, we only consider problems (1)-(4) the -solutionquations: find v RN  
(v, p) of which is sufficiently smooth. Moreover, we assume that

-- + v v -vAv-+ Vp = f in f x]0, T[, (1) Vd 0.

11.1 Time consistency error
div v= 0 in 1 x]0, T[, (2)

It-is-easy to see that only the momentum conservation equationv (x, O) = vo (x) for x e !a , (3) produces a non zero consistency error.

v = Vd on r x 10, T[. (4) For any point- x r 0, let ).: [n- 0+11 -) RN denote the

characteristic curve defined by a system analogous to (5), where the
Let At be the time step and t nt = (n+l)At. The second order time discrete velocity is replaced by v. We also set

scheme is defined by two steps. hx (t) = v (ex 1 (t), t) fort e [ta', tn+].

Concerning the convection step, for any point x e 92, we introduce The consistency error is of order 2: it is equal to
the characteristic curve Xkj' : [tn ', tn+l] -- RN, solution of E (v,p) =Sup {II e(x, n+l) II, x ( , n/t n~1 e [0, T] },

Vt e [tp',, tn+1[, A (t) where
dt (x =  hr

vn* (Xn+l (t)), if Xn+1 (t) e- (x, n+l) =

5 otherwise,- (At) 2  d3hL (tn+ t) + L2v .Vv (x, t0+1)1 + 0 ([At]3)
3 dt3  D

-where (Vn* = 2 v , v 4. (11 . II is the euclidian norm of RN).

We set i.2 Stability reults

V n+ l (x) = vn* (X. +t (tn)), The present results are concerned with unsteady flow computations

and - the steady case is under consideration -.
The case of the linear convection-diffusion problem

S(x) vn* (Xnt (ti -)). v + u Vv - v Av = f in Qx ]0, T[,

The Stokes step consists in computing the approximatiops aT

vn+l : 9l -RN and p-1 : - R of the velocity and the pressure at v (x, 0) = vo (x) for x e 91, v = 0 on r x ]0, T[, (7)
has been already studied in [1]. We can deduce from Ewing and

time t n+1, solutions of Russel's convergence results that the scheme is uncojiditionally
stable for the norm 11111; moreover we have exhibited an

upperbound of the sequence (11 vn IIv)n by using a somewhat
different proof:
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Proposition 1: If divu = 0 in 92 x ]0, T[ and u.n = 0 on IMACS, Rutgers Univ., New Brunswick, N.J., 1981, pp 28-36.

r x ]0, T[, there exist constants C (u), C (f), C (v0, vl), [2] L Ho, Y. Maday, A. Patera, E. Ronquist, "A high order

depending only on 0 and respectively u, f, (v0, v '), such that for Lagrangien de;oupling method for the -ina.mpresible Nawer-

At < C (u), we have Stokes equations." Proceedings of ICOSAHOM'89 meeting,
II vn Ilv <5 C-(f)-T +-C (vo, vl). (8) C.Canuto & A. Quarteroni eds, North Holland (1990).

eNavier-Stokes equations, we can [3] Y. Maday,-A. Patera, E. Ronquist, "An operator integration
In the nonlinear case of the Nawfactor splitting method for time dependant problems. Application to
presently get stability results only when introduciig the space incompressible fluid flows." To appear in Journal of Scientific
discretization. Let h be the space step and k the degree of the Computing.
velocity finite elements. By using technics similar to those of [1], p
we can proove the [4] J.P. Chabard, "N3S code for fluid mechanics -theoretical

Proposition 2: There-exist constants Ci and C2 depending only ianual - release 2.0." EDF Report ref.HE4I/89.14 (1989).

on 92 and respectively (v, vg, vA)and(v, v0, V4, e T such that, [5] J.P. Benque, R. Ibler, A. Keramsi, G. Labadie, "A finite
h' h 2 element method for the Navier-Stokes equations.", Proceedings of

for h small enough and k > N/2, the condition the third international conference on finite elements in flow

At < inf (l/Ct, C2-hNI/4 ) yields to problems. Banff.Alberta, Canada, 10-13 June 1980.
11 v Ilj,oo < CI. (9)

[6] O. Pironneau, "On the transport diffusion algorithm and its

The scheme appears slightly less stable than the first order scheme, applications to-the Navier Stokes equations." , Numer. Math. 38,
which is unconditionally stable ([6]), but this instability may be only 309-332, 1982.
due to the technics of proof. [7] B. Mdtivet, E. Razafindrakoto,"Projet N3S de mdcanique des

III. NUMERICAL RESULTS fluides. Etude numdrique d'un schdma aux caractristiques d'ordre
2 pour la rdsolution des tquations de Navier-Stokes." EDF Report

The second order time scheme has been implemented in the ref. H172/7094 (1990).
thermalhydraulic finite element code N3S developed at EDF ([4]).
Comparisons have been-done with the original first order s heme [81 Numeri'.al simulation of osillatoar wnve ._tjon in low-Pr fluids,
([4], [5], [6]). In all the cises, the second order scheme improves GAMM Workshop, Bernard Roux Ed., Marseille, 1989,.
the results ([7]).

111.1 Results on analytical steady cases

We have observed on analytical steady tests that the consistency '
error affects more the-pressure results than the velocity-ones (cf.
Fig. 1 to 3 where results are shown for the same mesh and
At =10-3).
However, for the tested cases, with the first (resp. second) order
scheme, the computed time precision is of order 1 (resp. 2) for both
velocity and pressure. We get thus a numerical information
concerning the pressure rate of convergence since presently there is
no theoretical results for any of the two schemes. . .
Moreover we have observed that a too strong refinement of the time Isolines of vx Iso-pressure lines
step leads to worth results. In particular, when in the momentum analytical solution
equation the convective part is-very important compared with the Figure 1:
diffusion-pressure part, we cannot get a good pressure without
refining the mesh together with the time step. The theoretical space-
time precision of the second order scheme applied to the Navier-
Stokes equations is under consideration (see [6] for the first order
one).

II1.2 Results on an unsteady case

The computations of the Gamm workshop ([8]) have been
performed with the two schemes. They are concerned with a flow in
a heated cavity at a zero Prandtl number and with homogeneous
Dirichlet boundary conditions. The following result is given as an
example of the improvements given by the second order scheme.
For a Grashof number equal to 30000, the reference computations
predict an unsteady periodic state which is well computed with the Figure 2 solution computed with the first order scheme

second order scheme, although the first order one converges to a
steady state. U-t---7-ml\n_

IV. GENERALIZATION

This scheme can be generalized to a k-order time scheme ([3]). The
consistency error has been studied in [7]. Concerning the order 3, a,

the scheme has been succesfully used together with the spectral
methods ([2]). The stability results are under consideration.
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HOW-DOES THE NAVIER-STOKES EQUATION ENGENDER CHAOS?

JON LEE
Flight Dynamics Dir. (FIB) 111. FIVE-EQUILIBRIUM STATES
Wright-Patterson AFB, Oil 45433 USA

For the present study, we shall restrict ourselves
to the single-mode and three-mode forcingAbsrat For the2D7-Navier-Stokes equations as a Gi . i"72 ... . O).

specific model for dynmical systems, we- have found g 2s g 2 6 . ).
that the chaotic transition is couched on q 2-torus- _3 (0 r I r i r I 0),
like manifold which is the product space of a circle g2 6 .g2 .g2 ,, 27 ,s.g , ),28and rmultiply-periodic orbit. This is Wonceptualy where g's are assumed constant. For the time indepen-

similar to the unstable 2-touus of Ruelle-Takens- dent forcing, trajectory behavior can best be catego-
Newhouse.

rized by the amplitude-angle form un=Rnexp(iun).
I. INTRODUCTION Hence, the equations of motion in Rn and on

Although it is agreed that the laminar-to-turbulence f "
transition-begins with emergence of a periodic motion Wr r(r C) , ' o(rVa). (3)
from the fixed point (laminar flow), there is no
general agreement as to what happends next to the represent an assembly of 430 coupled Un-OSCillators.
periodic motion as the forcing (Reynolds number) is Here. Vr and V. are the vectors of Rn and wn' "r and
further increased. Several scenarios leading to chaos I are the right-hand sides involving the forcing
have been proposed;the unstable quasiperiodic 3-torus 0 a
of Ruelle-Takens-Newhouse[l,2], period-doubling of g=F exp(iOj) for J=26, 27 and 28.
Feigenbaum[3], and intermittency of Pomeau-Manneville W h f
[4- (see, for instance, the review article of Eckmann We have found experimentally that (3) admits the

(51).We shall show that the 2D Navier-Stokes equations following equilibrium;
In a cyclic domain follow, at least conceptually, the I-cOnSt, n-periodic, n-chaotic, (4a,b,c)
scenario of Ruelle-Takens-Newhouse closer than any
others, although the-actual state of affairs is some- and Zn=const, Zn=const x t, Zn'periodic,
what more complicated. Prior to chaos, there appears
a multiply-perlodic orbit and the chaotic transition nco-nst x t + periodic, wn=chaotic. (Sa-d)
takes place on a 2-torus-like manifold which is the
product space of a circle along the longitude angle Only certain combinations of-(4) and (5) give rise to
and the multiply-periodic orbit in the plane of lati- to the equilibrium states (ES) as follows;
tude angle. Instead of the perturbation of a circle ES I: Fixed Point - eqn (4a) & (5a)
map[6,7J, it therefore appears-that the appropriate ES II: Circle - eqn (4a) & (5b)
model for chaotic transition would be the area- ES III: Closed orbit - eqn (4b) & (5c)
preserving map of Chirikov(8] generalized to Include ES IV: Torus - eqn (4b) & (5d)
anharmonicity. ES V: Chaos - eqn (4c) & (5e)

For ES III the principal frequencies of 1n andZ~n
must be rationally related, otherwise the orbit is

I. A SET OF 860 EVOLUTION EQUATIONS unclosed. What is, however, unexpected is ES IV. Let
us denote the equilibrium state by X=Rexp(iO) without

For a 2D periodic flow with no mean flow, it is the overhead bar. Thp comunation of (4b) and (5d) is
most expedient to Fourier analyze the velocity field explicitly given b'

V(c) and body forces (c) in a square region of side RoR0,Arsin(2nfrtfYpr), Q--Qo4't Awcos(2Tft4). (6)
4 )x _J ( (J))

exp (i
A

'
4

)
, where =(2,,/L)[

L by =) Here, R is modulated by a sine with amplitude Ar, fre-

(nxlny=O,±l,±
2 ....) is the wavevector. By spanning quency fr' phase 

9 r' and Aw, fu' (p are defined simi-
larly for sl. The angular velocity 1l' is measured

incompressible (}) and (}) by the unit polarization positive/negative for counter-clockwise/clockwise

vector ( ) normal to -, the incompressible Navler- rotation. Since l'T-2n(O.16) in Fig 1(a), the phase
Stokes equations give rise to the so-called triad- plot of Xr vs Xi has rotated counterclockwise by about
interaction representation in spectral form 58 in Fig 1(b). Note that R=R0 and fl--Q04't is a

3 k( i u*()u*( )+g(), () circle S' of radius RY(ES II). and R=Arsln(2nfrt4Vr)

wher(evi and Q-A4cos(2nft49,) form a closed curve C'(ES III).
where v is the kinematic viscosity, k-l 1 /2 and

%i)4 0 9 7(,* r()4 ) s IX,

the symmetrized coupling coefficient. Let us label
the wavevectors in the successive k-rings. There are VVUV
430 wavevectors for isotropic truncation of the upper

wavenumber K=16. By abbreviating uln)=un and glR )

-gn' enumeration of (1) yields a set of 430 equations X,

for un with 106,244 triad-interaction terms in the
right hand side.

For computation we split un into the real and imagi-

nary parts by un =,riu n and, similarly, gn=g. +i. F/2"; nG In(b)
Denote the vector of ur and un by u r n d OuI by 0

(U), the triad-interactions by 9 (1,M). gr and g by -1

The set of 860 equations has the vector form ....

9 -0 (U) 4 ( MAI) + Q, (2) (a)

similar to the evolution equation of Constantin et. F I1. Rotating phase Plot.
al.[9]. The energy and enstrophy conservations follow 0I RO.8+O.I5sln2ff(O.Ol2t-0.3),
from U,Y >=wlY>-O,.where <.> Is the scalar product. S? 2?,(O.O00It)+O.O4cos2(O.O12t)

over T 1600: (b) Phase plot; (c)
(c) Construction of 2-torus.
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Hence, (6) represents a-2-torus-like manifold(ES IV) (Fig 4(b)). Note that separation is brought about by
of the product space C'xS' . For definiteness, we shall the period-doubling of R12and r 32 . and the overlap-

say latitude angle-0 (=2oof,) encloses C' and longitude ping Is due to the longitude angle. Finally, there
L- comes the climactic phase plot of Fig 4(c)-which -can

ange 1 (Q' reolesC' around the Si (see, Fig -165 no longer restrain -the orbit on ES IV, thereby-thrust-
anl f) ~' eovsIng Into a strange attractor.

of Arnold[lO]). -By decoupling the two angles. one can
generate a segment of 2-torus as shown In-Fig 1(c). V. -Conclusions

VI. NUMERICAL EVIDENCE FOR CHAOTIC TRANSITION One can schematize the chaotic transition as shown
In Fig 5. Prior to chaos, a multiply-periodic orbit

A large i'= 0.02 is-used to assure the validity of lies on the plane of-latitude angle. However, with the
Isotropic truncation for K=16. Since F F2 =F~ouF. emergence of longitude angle there forms a 2-torus-

F2 , like manifold, similar to the quasiperiodic 2-torus offorcing amplitude F is-the parameter for trajectory Ruelle & Takens[ll (see, Fig 1.14 of Ref (11])-. Hence,
behavior. Numerical experiments have shown that-ES a gnrlzto f hrkvs8 rapeevn-aIII evolves into ES V within a very small range of F. ga eer piatn o hrikv 8 are prsrVn a
since u n- oscillators-are dynamically similar,-we shall sinnfs...in+,oie.+Rii.(7
pick out 11 -scllto and examine how chaos can- ~~~ 27r sIn4G ] i±0-f+i± 7
develop out of a-multiply-periodlic urbit. Here, we indicdte Only the second hdrmonic of-strength

Under Q the chaotic transition takes place in-F= 0 2 . In the absence of which (7) is the original map of
(0.1601.0.162). -First, we present in Fig 2(a) the Chirikov[8]. It further reduces to the circle map W()
phase plot at F=0.1601-, which is closed. Fig 2(b) eG+flJsin27T9 that Shenkert6] and Rand et.al.[7j have
shows that R 132 and-u. are periodic. Now, as F is 2
raised to 0.1615, we find in Fig 3(a) that the phase quavspertd as ari moe f or cati rastino
plot is no longer closed, but appears rotating about quierocobtona2ous
the origin of the phase plane. From the angle of Fig Referenices
3(b), one can-estimate longitude angle fl';
-2n(O.000055) and latitude angle 27rfj:2.(0.079) by 1. Ruelle,D. & F.Takens,Comm. Math.- Phys. 20,167(-1971)

(6) Hecetheorbt o u latr I ona-2. Newhouse.S. .D-Ruelle & F.Takens. Comm. Math. Phys.,
(6. enete rbt f ;oscilao isona.~ 35 (1978).

2-torus-like manifold(ES IV) which is a wrinkly dough 3. Fcigenbaum.M.J., J. Stat. Phys.. 19,25 (1978).
nut-with contorted but smooth cross-sections. -For F> 4. Pomeau,Y. & P.Manneville. C~omm. Math. Phys., 77,
0.1615, -the orbit cannot remain on ES IV, hence is 189 (1980).
attracted-to a strange attractor. 5. Eckmann,J. -P., Rev. Mod. Phys., 53, 643 (1981).

Simlaly udeG 3 the chaotic transition takes 6. Shenker,S.J.. Physica JD, 405 (1982).Similarl, uder- 3-7. Rand.D.. S.Ostlund, J.Sethna & E.D.Siggia, Phys.place In F=(0.06722, 0.-06729). Here, the existence of Rev. Lett.,.Y9. 132 (1982).ES IV is found almost at a point value of F. As F 8. Chirikov.B.V., Phys. Rept., 52. 265 (1979).
increases toward Fw 0.06729, we shall come to pass-a 9. Constantin.P.. C.Foias, O.P.Nanley & R.Temam, ..
threshold value (yet undetermined),-beyond which-u 132- Fluid Mech., 150, 427 (1985).
oscillator evolves continually from a multiply 10. Arnold,V.l.. Ordinary Differential Equations, The
periodic orbit to chaos. To be specific, we have shown MIT Press (1980).
in Fig 4 a sequence of three phase plots observed~at 11. Marsden.J.E. & M.Mc~racken, The Hopf Bifurcation
F-0.06727. First, the orbit splits into two loops(Fig and its Applications, AppI. Math. Sdi. 19.
4(a)) and then each -loop overlaps In the phase plane Springer-Verlag (1976).
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THlE STABILITY OF DIFFaE4CE SCHEMES OF A PARABOLIC EQUATION

Sun- Qiren
gn~ai Inistitute of A~plied l bth. & 1L1ech.

149 Yx si Pa, p. n~ai 2OWX72
People's Rep~ubic of Qimn

Abstract - This paper proproscs a new-method--to-improvc scheme of (2) is

the stability-condition of differecec schemes of a parabolic cqua. F (3

tion. Necessary-and sufficient conditions of the stability of this Then we consider alternative explicit difference scheme of
new method are given and proved. Some numerical examspleste

show that-this method has some calculation advantages, problem (1).

1. Introduction j (Q,,+U, + , +U

for the parabolic equation, ~+ ,,-U) +, -d ubr

+a- a+- + 0 u)+ J(x,yr,t), (v,yzr)ae, a< T T
x Z __---*---.1 (U',, 1 +Ia.uU ,*,4U ()

u(x,y,1~) -o, (x,yr)asr, o<IT hi T (t (4)

1u(x,yr,o) - q7(x,y,.-), (xy,)e[2 + + U'*, + --611)' i j l -e e' u b

where U, - U, , +A +0i,.i U, -,(5~ -o0
Q - f(x,y,.r)Io <x <1, < y< 1,0 < z<1), r-aflN

a as-a positive constant, many-feasible difference schemes were

constructcd~on difference computation of the initial and bound. Set 111. 41fn+~ ~5 whei +j+l is a odd naunber,

ary-problemby many authors. When we use-and explicit- differ. u ia a 1~ ef1
1

I-,j4-., whe ~~ sa vnnbr
ence-shoceme to computate the-problem (1), the step is limited t. 1  . 2 ehnia+isnevnubr

grealy n oderto atify sabiityconitins.and use separated variable method to Ifiad a stability condition

Thispapr poposs ancw etho tht afaxe spce tepof schaeme (4) The sufficient and-ncecssary condition of-scheme

9 and alternative time steps are adopted in alt arbitray-choosing ~ )i
explicit difference schecme to-improve stability conditions for cx. r ()

plicit difference schemes which-are used to solve-the parabolic

equation (1.1).-According to general idea, stability conditionas ofrieFlali li ae eadp ae pc tpI n s
tiesteps ihand vlaitcrnatcly. If we use t2in odd time levels and

the explicit scheme should- be satisfied on each time-level. As a

matter of fact, it is not necessary. Vw laen we adopt suitable stable ~ a1 ee ielvl n w eesaccniee sawoe h

and unstable-schemes alternately, then it-finally leads-to a stable following conclusion -for inmproving stability conditions call be
obtained.

scheme. In -this paper we give and prove-the- improved stablity Theorcns I. To the equation (I), whean tlac tiwla btps z2alad
conditions which are much better than the stability coanditions of

-thcclasicl epliit chee. hereore wccaninceas th tie Tarc alternately used to difference schseme (4), the sufficitcalt and
the ~ ~ ~ ~ ~ ~ neesr classicals exlii scheme.t Thrfraecarices tetm

step-in practical calulation, finish- calculation work ia: less tinameesreodtoisoseblt rR '6R .3R, J~RJ + I
and -bring -calculation advantages of cxplicit-schemcs- into fulla

play. (1), R 1 ?2.J7 and(II)j~ R,>6,2 (6)

11. Sufficient and Necessary Condition of Stability
whererwa 10 orhj,-,r ,rr

We canusc a lot of kiadsof explicit schaemes to calcuslate (liea a~ ~ ae/,R,~,+ 2  2 ~rr
equation (1). Here we use the simpOlest classical explicit difference

scheme to calculate the problem (I), aaad then inmprove stabality Proof. First, we prove thaat the sum of the areas (I) and MI) is the
necessary stability consditionls.

conditions step by step.

Theclasical explicit difference scheme of the equation (1) is Wheat the tune steps rzand ;,arc alternately used to thec

U1.I a homogeneous schleme of differeance schaemec (4) and two levels are
(U. + U:-,, U, + U combancd inlto a whole, a aaew augmented matrax is

C * I- 6r, 2-.: .. J L,.I

U:.a~~a ~ +UN~U -UaI,*-,N- I 2) C- [2r,(~*a I +4rC']

U.. - ~ J.' U" .. U"+U U.-U,- ,1

where -cis a-time step, lia=I / N is a space step, N is a posilive :a 2rI +4r'c C

teger number, I- f(ihjh,lh,kr), ip ,plh~ila,lh). Set I + ~:6F')C 2 2+ 6'F-j ~
r-at/ h7~ -We~ easily have that the stability con~ditiont of tlac tvhrrc
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C -cow- 1 , + 4COS0 2A + eoserh, a space step h= 1 / 20, mesh ratios are r1 =-2.53 and-r2 =.178,

4r time step T, - 2.53h 2 /-a-and -:20.l780 / a(a is a positive constant
a2 (l 1r)( -6 + 6r2 -6r2 number).

2 2 2 2We use difference scheme (4) to calculate approximate solu-

b -4 i r)+ 2r'Ci~ ' ________ )(I-+_______ tions. We use the mcsh-ratio r1whezs k is a odd-number and we
2 -16r 2  l+6r)(l+r 2)use thc mesh ratio r2whcn k is an even number.

2r 1C( - 6r,)( - 6r,) 2r ,C(l -6r2)(l + 4rC) Table I Values-of Difference Solution ull,
I+. 16r, + -(I+6r1 )( + 6r,) ' . 4 6 8 10

1,-rCI6r)2, + 4r2C2  2 U.415 0.841 1.167 1.365 1.435

l634 0.841- 1.577 2.189 2.561 2.694

The characteristic equation of the matrix--(7) is 6 1.167- 2.39 3.304 3.551 3.734

A2  (a' + P)A + a~b2 - c 2d,- 0 (8) 8 1.365 2.561 3.551 4,156 4.270

The sufficient and necessary conditions for the roots of quadraic 10 1.435 2,694 3.734 4.370 4.586
equation (8) to be IAI 1: 1 are

a 2 +b 2 Il+ ab, - cd 2 ,2 Because of the symmsetry- of tile initial value aru calculating

By considering the inequality uf (9), the areas which satisry s~lcme Ii this example, th,~ difrferac. sulutivii ibs10b Hl i s MyrnnneY

Von-Neumeun conditions is (6). in x, y and z directions. The table I only shows a quarter of the

In the-Folling we will verify that (6) is the sufficient stability numerical values iii G I,. piane. Fioni thec table 1, we canl see

condition of scheme (4). that the difference solutions arc convergent.
For eigenvalue Alof the-nmatrix G, there is a corresponding In inc lollowing we use the alternate explicit scheme (2) to

unit eigenivector-c1 . Then frons e1, we can get anl oilhuaomill ba- caltulate the samec example. Wt still &,tious.. spa"e -step I ,2
sis e,eCin _C2SPacc. Set U = (C1,e2), it is-easy to know tltat U is a and a mesh ratio be the uniformly largest stable ratio - V, 3.
unitary. So the time Step is C=h 2 / (3a). The computational-results are
Siticce igenvalucs ofsinilar inatrixes aic-bunac, we have show onl table 2.

uI u rC 2 A1 - + A: 2 A2 +-* + IA-'4 Table 2 Values of Difference solution ii, ,,_

U[A I a. 2- 4 6 8 10

[0 2 2 U.487 0.922 1.262 1.476 1.549
Gi 11 is a unifornsly bounded nuber when Riand R2satisfy

the condition (6). We denote this bounded number by M.. 4 0.922 1.745 2.388 2.795 2.933

SicIA JI 2 10 - 6r1 XlI - 6r2 ) whaemn6 1.262 2.3881 3.268 3.824 4.104
10l+ 6r1 )( 6. 8 1,476 2-795 3.824 4 474 4.696

( 1 A),7 1.10 13549, 2.933 4.104 4.696 4 029

For any arbitrary a. There is a cigenvalue whose absolute

value-is less-or equal to the othter cigenvaluc on absolute value, By the comparison 01 I able I ano tanse z. we -xnvw. the dif.
we might as-well suppose that F rom above discus. f'exence solutions vC the eighth lc~cl Iln tinic direction which arc
Sion, wc get solved by the methiod proposrai ;v 'his papocy have fastui

G 2 ~ ± .- - convergence than the nificvice solutions of the thirty-second
2 level in tinic direction which arc solvcd by the alternate ec.plict

IG'Iis uniormy bonde iaucr u a nd .Ischeme (2). i.e.. the time step of thec mew-methiod call he chosen

The hol theremis pove. iui times% mole thun2 the largest stability time step o1 the old
The hol theremis pove. nethod. So we only spent one-fourth the computational

Sinc th stbilty ondtio oftheimpichexpcit scemeamountt as before to get the sanie result in ihe situationi of rio
with explicit form is r< I / 3, we can kinow that it is stable orly ii ~ n unuloulcilIA;y
r1+r2< 2/-3 when a uniform time step is used. Above diszussion I ermisy

shows if Riand R2(corrcspondent r~and r. are choseun to satisfy Remark. The methilod proposed Ii this paper can be used to
conditioni (6). we will get a stable differeatee sthanic. Froni (6) any explicit scheric to improve qtability conditions.

we canl$C er, + r. < (2-1- j5 Ila geiteral.
3

Ill. N umcrical Example

Example: Consider the ho0MOgeneous problema of inil rind
boundar" value prohleri (I
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CFD FOR AIR INTAKE INTEGRATION

V. -Maudet*, P.Perrier**

Dassault-Aviation, B.P. 300,92211 -Saint Cloud, France

* Engineer; ** Head of Theoretical Aerodynamics

Abstract: To design an-hypersonic aircraft by - lips and boundary layer diverters, corner
experimental -way only, would be -unacceptable flows
because of the- difficulties and- so of the - airflows at entrance of engines and/or
induced cost.- We have to rely on a mix -of thermal-blocage
theoretical (CFD) and experimental - bleed- and succion devices
approaches. The methodology of design with CFD - variable geometry devices.
rely on check-points based on levels of Concerning the complex configurations, we
software and on levels of validation of the have to check -a minimum number of mesh
codes used in design. major -targets of points, required for the correct rebuilding-
preliminary CFD effort is to demonstrate to of the flow-field.
the customer that one has confidence In one can validate the code by using it on-
computertools and, so, in the results of elementary problems, as it is used in
computation. Actually CFD is the only way .industrial application- or by using it on
to build complete engine integration, to share generic shapes that do not include the
responsabilities between- cooperants and to maximum- complexity of -real geometry, but
clarify interface problems. On air intakes include all the ingredients of the complexity
the effort has to cover performance of -the -flow one by one, at least in one of
evaluation: prediction of flow field quality the subdomains.
(steady and- unsteady), and effects of start For the global validation, the direct
and unstart of supercritical flows, analysis of the flow field has to check that

all the- features of the flows are present,
Introduction as it is in experimental tests and that

the induced level of pressure or heat fluxes
The higher the Mach number is, the higher is inside experimental scatter of data.

will be the necessity of integration of the The requirement for efficient CFD
shapes due to the smaller area between the code has to coyer the items listed in
bow shock-wave- and the vehicle. The use of following table :
CFD may afford- a decisive progress if its Table 2 -Requirements for code assessment
-analysis capabilities are sufficient. - multidomain approach, including analytical
It is only with such a -CFD integration that regular domains compatible with -validation of
hypersonic air intakes can be fluid problems.
efficiently designed(V)  - multigrid and ability to check convergence

on one hand we will present CFD requirements4) with mesh size
to better -understand the air intake/air - automatic mesh refinement for complex flow
frame interactions, on the other hand we will and geometry
propose a methodology of air intake - alternative physical modelling (physical
integration by--CFD, supporting by an example, properties as state equationi viscosity ...)

- unsteady Navier-Stokes with alternative
CFD Requirements and checking average turbulence modelling when needed but
A complete capability is required for able to return to Prandtl assumption

global evgluation of -performance and for boundary layers Euler flow on subdomains as
analysis. Such an analysis is better done with numerous as possible.
reduced CFD effort on not too complex - interface with- geometrical definition to
configuration and on elementary box devoted check the accuracy of geometrical modelling
to some phenomena -that have to be mastered. - portability -on various computers
But for global evaluation, we need the Methodology of air intake inteqration
complete, hence highly complex geometry and
the ability to cope with the more complex Taking into account the flight envelope in
physical modelling- (turbulence + real gasesyl Mach number, angle of attack and sideslip,

The requirements can be summarized in the it is clear that massflow adjustement, to
following table : avoid any external perturbation becomes an

Table I Requirements for CFD(I untractable task. The major part of CFD
A - Physical modelling level re4uired effort will be devoted to out of adaptation

- real gases + chemistry computations.
- laminar-transitional-turbulent flows However the basic adaptation remains a

B - Basic phenomena to be included design way to reduce the bad interactions.
with accuracy So the current methodology will go from

- shock-boundary layer interaction fitting the geometrical shapes to some
problems design points to making an evaluation of an
- shock-shock crossing and shock impingement operation out of adaptation.
--turbulent viscous interactions problems An efficient way of making analysis of the
- unsteadiness of flow with separation forces building is to deduce from the area
- reattaching flows distribution along X-axis and from the drag
- vortical flows distribution an equivalent Cp ratio (the drag
C - Basic geometry/boundary conditions to be variation to the section variation ratio). The

handled integral of this curve ( CpdA) gives the
- ru.3ed nose, complex topology of fuselage, evaluation of the thrust or drag of a given

wing, air intakes
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configuration, if we know the pressure (-2) V.Maudet, P.Perrier "Air Intake
everywhere thanks to CFD. It is convenient to Integration by CFD at High Mach Number" AIAA
part external and internal flows in such an Second International Aerospace Plane
analysis. External flows give Contribution to Conference, Paper n" 90-5205, 29-31 October,
drag including lift-induced drag; internal 1990, Orlando, FL.
flows must follow Cp versus A (Area) curves (3) M.Mallet, J.Periaux, P.Perrier,
not far from the monodimensional isentropic B.Stoufflet,"Flow Modelization and
or polytropic flows in air intake. Three Computational Methodologies for the
dimensional losses appear as a-loss against Aerothermal Design of Hypersonic Vehicles:
optimum monodimensionnal flows. Application to the European Hermes". AIAA

So we get an exact evaluation- of all the Thermophysics, Plasma dynamics and lasers
contributions to the propulsive loop if we conference, Paper n'88-2628, San Antonio,
get the pressure everywhere on the complete Texas, June 27-29, 1988.
aircraft. Such a set of data is clearly the (4) M.Mallet, J.Periaux and G.Roge,
necessary base for final integration "development of Finite Element Methods for
evaluation. It comes directly from Compressible Navier Stokes Flow Simulations in
CFD capability on complex configurations Aerospace Design". AIAA Aerospace Sciences
to rebuild the cowplete pressure-distribution Meeting, Paper n" 90-0403, Reno, Nevada,
including the lips with the boundary layer January 8-11, 1990.
region where measurements are scanty. (5) -David H. Campbell,"F-12 series aircraft

Example propulsion system performance and
development", AIAA 5th Aircraft Design,

As an -example of such an approach, some Flight Test and Operations Meeting, Paper
results obtained from EULER and-boundary layer n'73-821, St. Louis, Missouri, August 6-8,
computations, on Star(Qvehicule (hypersonic 1973.
aircraft) are presented on the following (6) -M.Rigault,"A Methodology for the Concept
figures. Fig.l presents the initial mesh Definition of Advanced Space Transportation
before refinements. On Fig.2 is presented a Systems", conference EAC 89, Bonn-Bad
cut into the symmetry plane, showing the Godesderg, 23 may 1989.
different shocks. From the pressure (7) Wolfgang Schmidt "Aerodynamics of High
distribution given by computations, we deduce Speed Air Intakes", Status Report on
the evolution-of the equivalent Cp versus the FDP - WGl3 Agard Pep 75th Symposium Madrid
area for the internal and external flow (see -av 1990
Fig.-3)-. These curves, which the integral gives
the total drag or thrust, show how the air /
intake integration has to be done with the
best accuracy.

Concluding remarks

Integration of air intake by CFD is 4

the only -way to improve thrust minus drag
and selecting of viable candidates to
detailed experimental analysis in wind tunnel
and after that in flight. From now an
efficient methodology seems possible if a CFD
capability of taking into account accurate
complete geometry is available. It has been
fixed that at present state of the art,
progresses have to be done on two directions : Figure

-physical modelling improvement by carefull
evaluation of experimental tests, done or
to be done. For advanced workshops, a main
emphasis is on carefull experimental test
with better and more complete set of data.
- first reference tests to improve or extend
CFD(? capabilities to identify unsteadiness
or transitional flows in air intake, in order
to predict the boundaries of correct Figure 2.
operation and the margins associated with
the catastrophic degradation of the flow
quality. Furthermore the flow unsteadiness has
to be clearly evaluated at the edge of
present CFD. However transition phasis
in the flow building around the < I 1-!< 4 - Figure 3.
configuration can be obtained by CFD and its L -.

validation is a major challenge at the L
present time. Unsteadiness evaluation and -- T '
validation remain a target for the nearfuturg!) L L_ 7

R6f~rences HI ".
(1) P.Perrier "Concepts of Hypersonic tL, LI

Aircraft", Third Joint Europe/US, Short F :. ! . .
Course in Hypersonic RTW Aachen FRG 1990 .

- 
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Discrete models for the analysis of 2D wakes
in unsteady aerodynamics

G.-Riccardi,-A. lafrati and R. Piva
Dip. Meccanica e Aeronautica

Universiti di Roma-"La Sapienzd'
Via Eudossiana, 18 Rome ITALY

Abstract A comparative numencaFstudy of two-dimensional wake arc Ct ho0,, and 6 is the Dirac measure on R2. This vorticity field

dynamics-is presented. An application to the free wake motion behind an induces the velocity

elliptical loaded wing on-the Trefftz plane -i considered first. The wake /;t

motion is approximated either by the dynamics of a set of vortices (vortex VL C : u(xt) = o -ye(ug)K (s - zc(tog)) dug

method) or by the dynamics of a piecewise linear curve (boundary element where K --- V-'G is the Biot-Savart kernel and G(X) = ol I
technique). In both approaches some considerations about the time inte- whe K a jum i s the Sakeen ) W

gration accuracy control are made in terms of the most sensitive flow first

integral: -the Hamiltonian. Two types of the vorticity generation mecha- [u = -gr

nism aretested-in the sennd part of th-e paper where the application to

the flow around a lentil at large incidence in an uniform stream is analyzed. and the use of the tangential wake velocity definition

Some aspects of the coupling between the vorticity production and the wake Wr = !(u r + U'-)

interaction are discussed in order to explain the periodic vorticity shedding.
leads to the classical Birkhoff initial value problem for the wake mo-

1 Introduction tion 14]. Its numerical integration is carried out employing a prelim-

inary kernel treatment that, avoiding the computation of a Cauchy
In the present paper we perform a comparative analysis between integral, simplifies the overall discrete representation of the wake. If

two different discretization techniques for the wake dynamics. the K * is the new kernel we consider the "treated' initial value problem

vortes method and the- boundary element method. In.particular we L

consider a free wake as well as the two wakes generated by a lentil J at) =) -(t,(
consder fre -wke s letilat - fo= K'(--(t, so) - -;, o))-0Co)doo

in an uniform stream at large incidence. The latter case gives the (0,e0) = Z°(so)
opportunity to investigate the interaction mechanism-between the
wakes. Following the classical vortex method -approach we make here a

As a-preliminar case We take into consideration the dynamics of a convolution of the physical kernel with a suitable cutoff function in
order to remove its non-integrable singularity in zero. We consider

free wake. In particular we develop a numerical study for the motion

of a vortex sheet behind an elliptically loaded wing on the Trefftz two forms of treatment which lead to the desingularized kernel

plane. A large emphasis -is -placed on the time integration accuracy
control. WG K''()= --s aK() 1,

A study of the wake motion behind a lentil at large incidence is F

carried out in the second part of the paper. This case is complicated-

by the coupling with the vorticity production whose model is, in turn,

strongly-dependent on the wake dynamics. Typically the interaction + = K( n) - be ) wth b =
between the upper and lower wakes leads to a periodic vorticity shed- = ) k=1

ding. We have adopted two discrete appruaches in urder t. study the In the following we indicate by K; both the desingularized and

kinematic of the flow field about the body. i.e. conformal mapping the regularized kernel, where p identifies with e and 6 respectively.
and bouhdary elements. The wake is approximated with a set of vortices (Vorticity Blobs

method) or with a straight panel representation (Boundary Elements
2 Free wake dynamics technique). In the former case we study the vortex dynamics by per-

The-vorticity field of a 2D wake is given by forming an approximate integration of the following ordinary differ-

rLe ential system of NVB equations

o€z,t) = Jyo )(z €--d t,=F))g dt_, B
in which *yi is the derivative with respect to the current natural pa- dt - _ r ( -

rameter si of the circulation ri(st) on each circuit around the wake Z!"(0) - Z(o)
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where -V is the circulation around the j - th vortex. In-the second
OMapproach we study the-evolution of the piecewise linear curve approx-

imanting the wake byfollowing the motion of its vertices. This leads
to the system of NB=equations M

j* dif -1 . x"(,ir) aFBO - XOW ) Azjm(0) =

where -yj is assumed constant-along any panel.
A direct evaluation of the numerical time-integration accuracy in

both VB and BE-discrete approaches is possible computing suitable - ...
WiL -1Me _M c oo C n i nD W

quantities related-at some flow first integrals. From our numerical
experience we deduce that the most sensitive flow -invariant is the
Hamiltonian defined by .10

- j joi''CJ)f]o f(tI)a; (:(t,u') - zQ(,cr")) (2)

in which for the two above choices of K* the smoothed Green's func-
tions are

G G°(z)G(x) +Ilo

- G rep( 5 ) G~x) + I- akEi(Ck-) aL, in- in in in in un s s _

Itwrt B, is also a-first integral for the Fig.1 Wake configuration as interpolating CurTV- ofIt worths topointout that XpV,,i loafrtitga o h h rre-lbpstos( .5
-the vortez-bloli position8 (C 0.05)

discrete vortex model whereas lE- is not a stationary quantity. In
fact the flow maps asset of point in a set of points but it does not
transform a set- of straight segments in a set of straight segments.
Hence

dE.- No5 B d .(t, to)
-f-- = 2 E o dououL (ao)) 0 i - 00

dt d o

dA,. •  3 Wake dynamics past a lentil
where u, is the approximate self-induced velocity field, while d

dtis its linear interpolation given by -the-BE description of the wake The above nunerical tmhniq.es are applied W5 the simulation of
motion. The numerical integration of the above equation allows fur the flow around a lentil placed in an unifran stream at large ind-
a control of consistency between the wake velocity-field and its dis- dene. To this aim we have to ;ntrodu e models for the velocity field
placement by companng with the numerical values obtained by th abuut the-body and for the vorticit pr.duction at the sharp edges
corresponding discretized form of (2). where the separation occurs.

We apply the previous techniques to the numerical simulation of Velocity field representation

a wake shedded from an elliptically loaded wing on the Trefftz piane The first task is reached by foliuwing two different paths. the wnfor-
(see fig.1). As already described n F4u (where a VB appruah with a Aa: mapping analysis 2 and the Poincari representation A3
desingularization of the-Biot-Savart kernel was used), both discrete In the former way the field external to the body (z plane) is
approaches for a fixed-smoothing parameter p lead to a convergc... mapped ir the exterior of a unit -pcle (,-lane) by the Karman-
numericai solution of equation (1) with respeo t the refinenierL of TrefftL trarsformaation. The wakes are 13Gretized with a suitable ct
both the initial space discretization and the time ntegratin step. of Wrtlcc %'w be considered points out uf the flow field' and the mu-
Then it is possible twfind -for any p a well defined limit solution, but ton of the A th vortex is obtained by a numerical .ntcgration of the
unfortunately the resulting sequence for p -, 0+ does not converge, equation
However, as shown in (41, the loss of convergence appears confined in d.-L d / 1I 4 Ir d;if
a smaller and smaller neighbourhood of the sheet tips. These calcula- d = Al 2ri - Sa /dzlk +2 2r d

tions show that the time integration accuracy control requires a very together with the smoothing procedure tb' for the vortex interactions.
large computational effort for the BE approach, whereas it results bsing the Poincard representation we decompose the velocity field
simple and fast for the VB formulation In fact the VB approach in the sum of a uniform translational flow tuo plus a pertubation field
appears faster than the BE formulation even if the time integration u generated by the presence of the body. The limit, of this field on
accuracy control is neglected. the body is obtained by solving the integral equation
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to its breaking in a region close to the edge. When the velocity field
U'O(C - )" r()ds,) induced by the lower wake (see fig.3b) is sufficiently high to detach

f u. -(q)K(t-,7) ,v(C)ds()+ one or more elements from the upper wake the above phenomenon

no is accompanied by the convection of these elements up to the lower
2 (o, ) K x. (t ir)) dat edge. This kind of interaction leads to the formation of several small

r(T) -f M clusters in which the elements coming from the upper wake couple
n=1

where (rv) is the intrinsic reference system on the body boundary with some elements of the lower wake. The presence of these clusters

(aftn) and I', 2(t) is the configuration of the wake 1 and 2 respec- in the neighbourhood f the edge influences the local velocity field

tively. In the computational procedure the two issuing wakes may be and delays the new formation-of the lower wake. Moreover their

discretized either by VB or by BE technique. effect on the iorticty production mechanism enhances the oscillatory
dr

behaviour of F, even if a separation of this effect-from the self-

Production of vorticity induced one is difficult. We observe this mechanism only for the

When a vortex discretization of the wake is adopted, we consider lower edge, while it may occur also at the uppe.- edge only for large

two different schemes for-the production of vortcity. In the first incidence of the lentil

one (used only in the conformal approach) the-nascent vortices are In order to reduce the CPU time we adopt a coalescence pro-

-placed on the symmetry plane of the body at a small distance from cedure of the far wake regions replacing a cluster of wake elements

the-corresponding edge and their-intensity is fixed by imposing a with a single vortex. At the present time the effects of this approx-

finite velocity at the lentil edges. In the second one (adopted also in imation are not completely understood: it seems that-this causes a
little reduction of the circulation relased and a short delay in the

the Poincari formulation) we follow the motion of a neutral particle time histo of the circulation arou nd so te cncice
which starts from the body edges with velocity time history of the circulation- around the body. Also the chcico of

the coalescence parameters (and obviously the choice of the proce-

~ (u(P ) + u(P") dure itself) is very critic because we have experimented that this can

(where P+- are points near the edge on opposite sides of the wake) influence the vorticity production in a very subtle way.

during a suitable time interval. Hence we assign a circulation around

the particle obtained by integrating the vorticity generated in that

time interval. A similar approach is adopted also with a panel dis-

cretization of the wake, but the amount of shedded vorticity is scat-

tered along the nascent panel. .

In the present numerical simulations we assume the incidence of . ";

the lentil sufficiently large to have tm separation points located an 4" " -

the body edges. Two wrakes are produced behind the body and their . a)

interaction plays an essential role in the flow field development: the -S.

main effect is a periodic wake detachment that leads to the formation

of the typical vortex street shown in fig.2.

The comparison between the conformal mapping and the Poincar6 .s . ,

description of the velocity field gives a good agreement with respect
to certain global floaw quantities such as the body circulation r or

the time history of E-, even by assuming different vorticity pro-
duction mechanisms. From this comparative analysis the method of

the neutral particles appears more sensitive to the velocity pertur-

bations near the edges than the finite velocity approach. Moreover J b)

the comparison between the two wake disretizations has shown an

equal mean behaviour with some superposed oscillations that appear 7

more persistent for the BE technique, owing to the wake continuity
constraint . ,--

The Hlow resulting from an impulsive starting evolves towards a : .

periodical one after a short initial translent. This periodicity is forced Fig.2 a) Vortcz street behind a lentil oa incidence 60'_

by the process of interaction between the wakes, shown in fig.3, that )Circelation aohidded at the leding-egife (dotted line),

can be summarized as follows. Alternatively one wake (say 1) rolls up, wakes (dashdot line)

and leaves the generating edge inducing the convection of the other

wake (say 2) into the region between the first one and the body. The

motion of the wake 2 leads to a strong locdstretching of the wake I up
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[41 Krasay, R.' Computation of vortex sheet roll-up in the Treffiz

* plane, J. Fluid Mech. 184 (1987), pp. 123-155
2yh ( (5) Kiya, M. and Aric, M- A contribution to an inviscid vortex-

'~~~4-1 *'.j* shedding modelfor-an inclined flat plate in uniform flow, J.Fli
. b)_ Mech. 82 (1977), pp. 223-240

-4

Plg.3 Flowfield past a lentil:- detachment of the upper
(a) and lower wake (bi)

Finally carrying out several other calculations with different in-
cidences it-appears a monotonic decrease of the vorticit shedding
frequency for growing incidence which obviously vanishes -when- the
lentil is normal to u.,. We have also analyzed the flow field-for-dif-
ferent-values of-the lentil thickness at a fixed incidence of 600: the
shedding frequency decreases monotonically with the lentil thickness
up to reaching the flat plate frequency. This behaviour appears es-
sentially due to the increasing distance between the wakes that slows
down their interaction.
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INITIAL TEMPERATURE FIELD FOR UNSTEADY LAMINAR

FORCED CONVECTION FROM AN IMPULSIVELY STARTED SPHERE

Lai-Chen Chien
Institute of Physics, Academia Sinica

TAipei, Taiwan 11529
Republic of China

Abstract-Analytic solution for forced convection heat is an incompressible viscous continuum with constant
transfer from-an impulsively started heated sphere is properties, and that the effect6 of the heating of
investigated. Because of the impulsive start, there the fluid by viscous dissipation from sphere surface

is a singularity at the very beginning of the motion, is neglected. With the foregoing assumption, the
The accurate analytic solution for the initial Navier-Stokes equation for the fluid motion can be

temperature field is obtained by solving the non- expressed in the form (Chien and Chen, 1984) as
linear energy equation using the method of matched
asymptotic expansion to the third order. The a C 8 a a a B 32 84
solution is in terms of exponential function and error [+2cot0 . )]V2

function. The time development of the temperature at r2 sinO BO Br Br 30 Br r a0
field is plotted and investigated. The local
Nusselt number over the sphere surface and the e oc2V44 (1)
progress of minimum Nusselt number point with time
are obtained. where t is non-dimensionalized by the characteristic

time to , radial coordinate r by the radius of the
I. INTRODUCTION sphere r0 , stream function by roU. The parameters

are defined by c=Ut0/ro, a= 1/(eRe), where Reynolds
The problem of incompressible viscous flow over number is based on radius. For the problem of initial

an impulsively started sphere has been studied by flow, & is a small eqantity much less than I and a
many investigators (Bentwich and Miloh, 1978). The is order 1. The boundary conditions are non-slip
extension of the problem to the heat transfer has also at the surface of the sphere, and the uniform
been the popular subject of numerous analytic.l free stream conditions far from the sphere.
and experimental investigations (Chen and Mucoglu, The flow field is divided into two regions.
1977). Several theoretical investigations have been One is the inner region close to the sphere surface
reported ceitering around the classical problems and the outer is the outer inviscid region, i.e.
of heat and mass transfer from a solid sphere into a 4 = O + pi. The outer solution to the third order
low Reynolds number velocity field. Sano (1981), for the stream function is obtained by Wang (1969).
Bentwich and Miloh (1978) obtained the asymptotic The inner solution to the third order by the meuiod

solutions for Stokes-Oseen flow using the method of inner-outer expansion is given by Chien and Chen
of matched asymptotic expansions. Acrivos and (1984). The composition stream function is

Taylor (1962) used singular perturbation technique
expressed the Nusselt number in terms of Peclet 1 1 T 1 3T 2
number, and yielded a7 accurate expression for the -(r 2 --)sin2 O+3-[--+-(2-l+-)cos8

rate of transfer of energy for small Reynolds 2 r Re r-rF r2/ 9w
number. Hieber and Gebhart (1969) studied mixed

convection from a heated sphere for Stokes flow. I T 1 2 1 1 2

Chen and Mucoglu (1977) solved the conservation -- -+(--e- -erfc n)+- (?+-)erfen--
e  

]

equations of the non-similar boundary layer 2r /Re I V-R 2

using finite difference method to study the

combination forced and free convection about a 3 2 ( T 3/2
sphere for small Reynolds number. +-S(n)coso0 sin20 + 2(-)

In this study, we try to employ the inner-outer 2 Re

expansion method to solve the axisymmetrical unsteady

Navier-Stokes and energy equations in an attempt to 5 3 T

ey-d the boundary layer theory to larger Reynolds [f fl(in)drr(2n-- n+-r)] sin2O+18-

number. The stream function for the initial flow 0 / 2 Re
nbtp ned by the matched asymptotic expansion to the

thi-I order (Chien and Chen, 1984) is used to solve T 2 2

the energy equation. The analytic solution to the If g3 (n)dn-(1-r-)njsin
2
o cos0+27

2
-

third order for the temperature distribution 0 /i 9n
corresponding to the initial flow field is treated
with great care because of the complicated
mathematical operation. The temperature field is [2f f3 (1))d sin

2Ocos2 + f F3 (rl)dnsin40], (2)

thus obtained in terms of exponential and error 0 0

function. The time development of the temperature

field properties such as the local Nusselt number where n is defined by (r-1)/2y'a, i is dimensionless

over the sphere surface, and the progress of minimum time and S(n) is
Nusselt number point with time is investigated.

II. BASIC EQUATIONS S- -e- / eric1

Consider a solid sphere of radius r0 which is

started impulsively from rest and subsequently moves I 7 4 2 2 2 2

with constant velocity U. The origin of the spherical -- (-+-)e- +(-+)nerfn+-(--l)

coordinate system is fixed at the center of the ,/ 3 9n 3r 3 3v

sphere with the axis 0=0 in the direction opposite

to the motion of the sphere. Assume that the fluid
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that obtained by Sano (1978) solving the convection of

(U3erfp_ 1 P 2 e_ 2)+4erfcu cylinder problem,

7, 36 T1 = erf p (9)

And fl, f3 , F3 and g3 are polynomials of the similar where v is APr and q is the inner stretched variable
forms. n = R/(2 ' ). Substituting the first order solution

In order to solve -the energy equation to obtain (9) and the inner stream function into the right hand
the temperature field -for the convection problem side of the second order equation (6), one has
considered, the equation is written as (Chien and
Kung, 1982) T2 t-eT2RR/Pr = -6/Pr[(D-ln)e erfcn

a C + a +e ANl l (10)

at r2sinO 0 at 3r 0 where 9 = APr . Assume the solution for T be of

the form T2 = tF2 (0)cosO. Then the equation (10)01C2 ;2 Coto a 1 ;2 becomes
- - (--- +-- -- ), (3)2

Pr ar 2 r 2  86 r2 302 F2 ,(n)+2PrF2 -4PrF 2 - 24Pr[(n-1i/)en 2

_ _2 h 2
where dimensionless temperature T is (T' - T)/(Tw/T), -ne-1 erfcn+e /- ]r/it. (-)
T' is dimensional temperature, and TW, T, are the

The homogeneous part of equation (11) is of the form
temperature on the sphere surface and at infinite
respectively. When the sphere is impulsively started f"(n)+2nf'-2nf = 0. (12)
to move-with a constant velocity, a constant
temperature difference between the solid sphere and The solution may be in terms of error function and
the fluid is suddenly imposed. The initial and Hermite polynomial (courant and Hibert, 1953, p.90).
boundary conditions are The particular integral for (11) is obtained by the

method of undetermined coefficients. Then we haveT 0 for t < 0 (4a) the complete solution.
T = 1 at r =1 for t > 0 (4b)

and T 0 at r+' for t > 0 (4c) 6(2Pr+l)/P r
F2- - [. .4vP P--3CeTri8-nvr (Pr+~t()]

111. ANALYTIC SOLUTION FOR THE TEMPERATURE FIELD (3Pr+()
p2 _2Similar-to the problem of convective heat (2p2+l)erfp+2rPIr/ne- ]/ + Pr(4-3/r)e /t

transfer over an impulsively started circular +3/Tinra- erfcn-6'Pr(2Pr+l)/
cylinder (Chien and Kung, 1982), we construct the .t 2 +n2

solution for the temperature field by the method of ([n(3Pr+l)e +C2 [-/l(3Pr+l)ne erfcq
additive composition. Sano (1978) has shown that - 2 - 2 2
the outer solution for the energy equation vanishes +3e - ii(3Pr+ (2is+1)(r)-1(*))1/8
concerning tle heat transfer for the flow over an (13)
impulsively started cylinder. The conclusion is where C2  12(Pr+1)2Pr/(7(3P+I)] and I(n)
also valid for the sphere problem considered in this .n
investigation. I(n) = I e- 2 erfcndn.

It can be shown that the inner solution is of 0
the form.

The right hand side of equation (7) is function
Ti = T1(R, 0, t) + ET2(R, 0, c)+r 2' 3 (R, 0, t) of derivatives of the first and the second order

expansion. Substituting (9) and (13) into the right
where R is the stretched radial coordinate and hand side of equation (7), we have
defined by R = (R-1)/c. Substituting the above
expression into (3) and collecting the terms of the T3 t-'T 3R/Pr= [M3 1( )+M3 2(q)Jcos0
same order , we have the equations. +[M3 3 ()+ 3 4 (0)]cos8

Tt - (a/Pr) TIRR = 0 (5) +[M34(n)+35 q)]sin8 (14)
T2t - (n/Pr) T2RR . (04oT1R+ IRTI0).inO (6)

T3t - (a/Pr) T3RR Q(T O-cotOT10o)/Pr+ where the coefficients of the triangular functions

i are polynomial of error and exponential function.
28T-2R2 2 We assume the solution of Equation (14) be of theform

2 i /sn. 72R TIOR IRT20) /sinT. () T = 3V'iPr/r.[8F31 ()+F 32 (n)]tcos+[9Pr/TiF 33 (q)

for the first, the second and the third order + 3F36(q)jt2cos28+[-9/pr/rF 34(r)
respectively.

And the boundary conditions for the above + F35 (n)/2)Jt
2sin 2O. (15)

equations are

T (R,O,t) I at R = 0 (8a) Substituting the above expression into equation
(14), it gives set of six equations in of the formTn(R,0,t) - 0 at R - 0 for n =2,3, (85)

T (R,8,t) + 0 at R -, for n = 1,2,3. (8c) F"(q)+2PrAF'-2nPrF

The solution for the first order is similar to - GH(erfcn, exp(-n2 ), exp(-U2 )) (16)
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The completementary solution of (16) is able to be REFERENCES
expressed in terms of error function and- Hermite
polynomial. And the particular integrals are obtained 1. Acrivos, A. and Taylor, I. D. (1962). Heat and
by -the method of undetermined coefficient. The Mass Transfer from Single Sphere in Stokes Flow.
complicated mathematical operation is repeated with Phys. Fluids, Vol. 5, pp. 387-394.
great care. 2. Bentwich, M. and Miloh (1978). The Unsteady

To sum up, the solution of the energy equation is Matched Stokes-Oseen Solution for the Flov Past
a Sphere. J. Fluid Mech., Vol. 98, pp. 17-32.

T = erfcp-+rF2 (n)cos8 3. Chen, T. S. and Mutoglu (1977). Analysis of
Mixed Forced and Free Convection about a Sphere.

+ [F3 1 (n)+3TgPr/(TRe) F3 2 (n)]cose Int. J. Heat Mass Transfer, Vol. 20, pp. 867-875.
4. Chien, L. C. and Kung, I. S. (1982). Heat

+T2 [9Pr/nF 3 3 (q)+F 3 6 (n)]cos 2o Transfer from an Impulsively Started Circular
Cylinder. Computational and Asymptotic Methods

+T2 [-9APr/1F 3 4 (n)+F 35 (r0/2]sin28. (17) for Boundary and Interior Layers, J. J. H. Miller
ed., Boole Press, Dublin, Ireland, pp. 177-182.

where F2('), F3 to F3 are polynomial of error 5. Chien, L. C. and Chen, S. W. (1984). The Initial
2 -31 36 Flow Past an Impulsively Started Sphere.

function and exponential function Computational and Asymptotic Methods for Boundary
and Interior Layers, J. J. H. Miller ed., Boole

IV. RESULTS Press, Dublin, Ireland, pp. 179-184.
6. Courant, R. and Hibert, D. (1953). Methods of

The temperature fielf (17) is plotted in Figure 1 Mathematical Physics, Vol. 1, Interscience Press,
for Re = 100, Pr = 0.7. At short time after the New York.
impulsively start, the isotherms in the front half 7. Hieber, C. A. and Gebhart, B. (1969). Mixed
part are almost parallel to the surface of the sphere. Convection from a Sphere at Small Reynolds and
As time goes on, at r = 0.6, the isotherms displaced Grashof Number. J. Fluid Mech., Vol. 38, pp. 137-
away from the sphere as the viscous layer thickens. 159.
Similar phenomenon is shown in Figure 2 for Re - 500, 8. Gary, J. R. (1953). The Determination of Local
Pr - 0.7 at T = 0.6. the higher the Reynolds Forced Convection Coefficient for Sphere. Trans.
number, the thinner the thermal boundary layer Am. Soc. Mech. Eng. Vol. 75, pp. 483-487.
because the convection becomes more effective in 9. Sano, 1. (1978)-. Short-time Solution for Unsteady
displacing the streamlines downstream away from Forced Convection Heat Transfer from an Impulsively
the sphere. Started Circular Cylinder. Int. J. Heat Mass

Having computed the temperature field, we can Transfer, Yol. 21, pp. 1505-1516.
estimate the heat transfer between the sphere 10. Sano, T. (1981). Unsteady Flow Past a Sphere at
and the surrounding fluid. Low Reynolds Number. J. Fluid Mech., Vol. 112,

pp. 433-441.
Nu -K(OT/r) . 11. Schlichting, H. (1979). Boundary Layer Theory

McGraw-Hill, New York.

The local Nusselt number distribution around the 12. Vliet, G. C. and Lepper, G. (1961). Forced
surface of the sphere for Pr = 0.7 at Re = 100 Convection Heat Transfer from an Isothermal Sphereiurfae own ine Fgre 3Pr0.7 Beae n 0 eto Water. J. Heat Transfer, Vol. 83c, pp. 163-175.and 500 is shown in Figure 3. Because no existing 13. Wang, C. Y. (1967). The Flow Past a Circular
investigation is available for comparison, we
compare the trends of this solution with those Cylinder Which is Started from Rest. J. Math.
obtained in studying cylinder by Sano (1978), Chien Phys., Vol. 46, pp. 195-202.
and Kung (1982). The similar results are obtained.

We differentiate the Nusselt number distribution
function, set it equal to zero, and find the minimum 1.60"
Nusselt number point. By Newton's method, we can
obtain the progress of minimum Nusselt number point
at the sphere surface with respect to time, Figure 4. 1.50

V. CONCLUSIONS AND RECOMMENDATIONS
1.40-

The major objective of the present investigation
has been-to work out the short time solution for
unsteady forced convection heat transfer from an
impulsively started sphere. Because of the 1.30
impulsive start, there is a singularity behavior
of the flow field at the very beginning of the
motion. An accurate solution is obtained by the 1.20
method of asymptotic expansion to the third order.
The expansion is valid for the short time only, T < I.
The viscous layer considered flow field (Chien and
Chen, 1984) and temperature field obtained in this To
investigation can be used as initial conditions for
numerical computation. And the solution can be
continued by numerical integration to obtain the 1.001- .  .. ..

larger time solution (Schlichting, 1979, p. 149). 0 30 60 90 120 ISO 180
Using the accurate stable numerical method to solve 0
the governing equations, we can depict the time Figure 1. Isothermal for Pr=O.7 at ReIO00,
history of the flow patterns and the temperature Time-0.6.
fields.
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NUMERICAL SIMULATION OF THREE-DIMENSIONAL LAMINAR AND
TURBULENT FL-OWS OVER BODIES OF ARBITRARY SHAPE

-MARKOV A.A. RIZHOV YU.A., SCHEKIN G.A.
Institute for Problems in Mechanics Moscow Aviation Institute

USSR Academy of Sciences Volokolamskoe highway 4
Prospect Vernadskogo 101 125871 Moscow, USSR.

117526 Moscow, USSR.
Let us denote g = detlI g I I and consider

Abstract- The-analysis and generalization of ti

known algebraic models of turbulence have vectors a , a at two points M and- Mf

been caried out for three-dimensional employing index zero for point Mo.
boundary layer computations the supersonic .
flow- over finite, twisted wings, taking We shall introduce the coefficients Gk
into account the effects of aerodynamic GJ(M,M-). V than GI(M0,M o) = 8
heating and heat radiation. The results of a a Mk k
heat-transfer prediction are in good We shall use operators LVL and LVLAD for
agreement with experimental data.

Supersonic laminar flows at moderate LVL(f) 0 , LLAD f = 0 , where f (u
Reynolds numbers have been simulated on the u2 , u , p, h)T, velocity vector U u a +
basis simplified Navier-Stokes equations by 3 . summaion o
space-marching method, combined with global u a2 

+ u a 1= u a, I a The summation on

pressure itarations. The generalization of repeated indexes is usualy assumed, if
known parabolization techniqu. for equations exception is not noted.
in subsonic regions of the flow and new
algorithms of relaxation of the pressure are L(f) = _A. (A'(f) - A (4 Ji 8-r + TJ))
suggested. The results of three-dimensional axi Re OxI  ax0

shock layer computations over blunt bodies -js=1,2,3; sj
are presented. Here j=s=3 for VL and for

VLAD equatigns, Components of vectors 9 -

I. INTRODUCTION AJ ,..., A3 )' and matrices [I-.J 011 for the
1 5

point Mocan be written as follows
In recent papers on numerical computation u2 3=

of Viscous gas flows it has- been shown that (index zero is o3ited), u U, v, u ;
the -calculation -efficiency may be enhanced A1 A, 23 B, A3 F C, x1 -x, x2  y,
by using the boundary-layer methods and app-
ropriate scales both in complete Navier- AJ=Gl(pg k puluk)V , lj,k=1,2,3, P=( h
Stokes (N.-S.) equation and simplified N.-S. I _Y -
composite asymptotic equations, namely vis- A=PUlV, A=pu'Hv, H=h+E, E= -L gu I u
cous layer (VL) and viscous layer with azi- PL 4 - -2 g u
muth diffusion (VLAD) equations .

The application of boundary layer (BL), (&J ) =v/GI(j'gJkas+Ag J -IC +gko (GL-5))
VL and' VLAD equations and space-marching I k g - M M

algorithm along the dominant direction of
the flow, combined with the global pressure 0 14=(bs) =(o]s)4N=0,1,m=1,2,3 , N=1,...,5
iteration allows a tremendous reduction in is JolkkoJJ
necessary computing time and storage ( =V(gk! gu(G-)+u(G1-8j)+
requirements over that required for time - (V1) s-=) S vg L - P g;
dependent approach for N.-S. equations. , 4r

Gk  8GJ
II. LAMINAR FLOWS 9, J G=,(g g u - nV+ .ug is ig ku1 )

We shall write the simplified Navier - IX Ox Ox
Stokes equations in arbitrary curvalinear
coordinate system in strictly conservative JO k  8Gform. qd=0, 'PJ =gg - +11usut-- )

Let Y, Y2 , Y 3be Cartasian coordinates; 4 =(k1 x X
X, , X Y, Z - curvalinear coordina- here 1" is second viscosity coefficient.

tes of a point M. Let us introduce covariant We use approximate formulae for compo-
a and contravariant i basisies: nents A', A of vector A as follows

A' = VG(puluk+gk, p+g k(1-X)P ) (1)
S2 (2)

1 2 3 --

than components g gl1 of metric tensor where XI, X2 are special functions discussed

can be expressed as follows: below and P is a part of pressure, thatg

g- = a, ; gJ = a a is assumed to be known from previous glo-
bal iteration. If x =x2= 1, or p = P., than

IThis work supported by a grant of Soviet- formulae become exact. For stability of
French - Italian joint venture in computer exce-marching algorithm is sufficient, that
and software buisness 'INTERQUADRO'. u > 0 and Xc= eaaInF a (MlIhMs s ic i, 2a> 0
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Here F, = 1, if M > 1 + c and The computations were made using turbulenceI models by Pletcher and Cebeci, including
correct3.ons. The results are given at attack

XM1 + (7.-1)b1 (M1 ,M2 ) angle of 15 for section K = 0.33, 0.6, 0.9
F 2 if MI51+c, 0<c 1 (where x = x/c, c is local wing chord).

X t (-l) (M1 b) These sections correspond to region of

fully-developed turbulence flow.
b. gM-=,/UJUJ/(c2gj) The computed -q at section i = 0.33 is

j =gpIM +gJ 3 M = u u (3 g  approximately on 5 per cent over and at
j=1,2,3 without summation. x = 0.9 on 5 per cent lower the

corresponding values of Q.
The method in question has been tested on The computed values of q for Cebeci model

computations viscous shock layer over blunt without correction is on 7 per cent lower,
cones and swept infinite wings. The results than Q at section K = 0.33, but at sections
are in good agreement with -known data. x = 0.6, R = 0.9 the values q and Q are al-

Fig. 1 shows the distributions of shock most the same. The addition Klebanoff and
layer thickness C (x) and- thermal flux Rotta corrections to Cebeci model has not
coefficient CH(x) along infinite swept wing changed essentially the values of q. The use
R(x) = V2x/(l+x) at swept angle 600 for flow Cebeci model with correction of local turbu-

= = 110, Re = 50. The results are presented lent Prandtl-number gives increasing of q on
for global iterations of number N = 1, N = 5
(curve 2) and N = 1-0 (dots). It is 2 - 4 per cent. The results of q computa-
sufficient at average N = 10 to obtain the tion, using Spalding model are approximately
convergence to 10-3. on 200 per cent over, than Q.

Figures 2 - 3 refer to the flow M = 6; The analysis of computed results allows
__ us to modify Cebeci model of turbulence.

Re = 3500, H =0.35. Fig. 2 shows the distri- Instead of Clauser formula for outer
vorticity layer the following approximation

butions of thermal flux Cn( xj, y ) and is suggested

azimuth skin friction coefficient C72(x , y) = ko p Ut1  -

for sections x= 0.83, x 2 
3

.
4 3 , X3= 5.19 where S3-A is boundary layer displacement

lines 1, 2, 3 respectively ) along the thickness, k is dimensional constant, that
azimuth coordinate y: 0 s y s T. Dash line 0
and dots are presented CR and CFZ at x = 0.8 depends on kinematic viscosity coefficient

for bielliptic cone A = 0.1, where surface VI The value of v varries along the wing

of blunt cone has been done by the equation: surface, but this variation is not large so
approximation k = const has been used.

z = R(x,y)-; R(x,y) = Aasin2y + B cos y
A = cos c+ (x-x0)tgd , x0 = 1 - sin a.

B = cos aC+ (x-x 0)tg pcl(y), C --- I- 3V I0

1(y) = 1 for 0:5ys7/2, 1(y) = A -for i1/2sysT V7 100 - --2 l, ~o4
III. TURBULENT FLOWS oj(

The computations on windward side, 41 1.'3 so L

slender plane delta wing 65-sweep, sharp /

leading edges have been carried our for BL 0
equations, including laminar, turbulence 0 60 0

transition and turbulent regions of flow. c 08 X .- f

The solution of Euler equations has been Fig. 1. 3 .3
obtained by Godunov method.'

Effects of turbulence are incorporated by Q-vt/O 5 0(=30 P200
specifying viscosity coefficient according o= 3.3105 kg/mC
to three turbulence closure models by * 0
Spalding, Pletcher and Cebeci with some A 0

corrections, that have been found in SIDig 2
accordance with experimental data for heat

transfer coefficient. The anisotropy of eddy
viscosity investigation for Rotta model has i . 11." .
been developed, using Klebanoff correction
for intermittency at outer vorticity layer
and correction for turbulent Prandtl number , ., --- experiment
variation across the boundary layer. 4ji I , modified

The heat flux distribution over delta 4Cebeci model.
wing2 surface is compared with experimental Cebeci model
data Q in Fig. 3. The windward side heat " ' ' - 4- Cebeci model
transfer distributions are shown for section /, 1 Mw = 6.1 - with correc-
z =0.25 (T = z/l; 1 is semi-span wing size). / Re = 2.1I0 tion for Prt

= 65 x- Pletcher
model

2Experimental data have been obtained in 04 04
TzAGI. Fig. 3.
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THE OPTIMUM SHARE OF HYDROFOIL BENEATHA FREE a
SURFACE z(x) = J( ) [ + k(x-t)} d 12.8]

A.H. Essawy and A.Y.AI-Hawaj with

Abstract k(x- ) = (x- ) .2v 0,1(x- +s) sinvs + 2hcosvs] dsThe usual assumptions in problems of the obstacle beneath a free (x-J)2+4h 2  d [(x. +s) 2 1 [2.9]
surface are taken as a-basis: namely, the liquid is non-viscous and
moving two-dimensionally, steadily arid without voracity, the only IlI. The Optimum Shape vftlydrufuil of Minimum Drag
force acting on it ii gravity. With theses assumptions together with a We pose the problem of minimizing the drag coeffiwient subjeCt to a
linearization assumption we determine the forces, due to the constraint on cunature K, together with a ,onstraint on the length of
hydrofoil to obtain the optimum shape so that the drag is minimum, the hydrofoil L as following
Analytical solutions by a singular integral equation method, a
Duhamel's method and some approximate methods are discussed for -- 2K Ftyx.,ztx,1,?,1 2 dx 13.31
the linearized theory. L

I. Introduction: with the function F[ylx),z(x),z!(x),x] given by
There is an extensive literature connected with wave resistance due
to a submerged obstacle [see, e.g., Havelock, T.H. (1), (2).
Ko6hin, N.E. (3), Kothcin, N.E. (4), Wehasen, J.V. and LKaition. F[7(x),x),z'(x),x, X1,421 = 1 z(x)Ylx) + Xt14Nx) + X2z'2(x) [3.4]
E.V. (7), Kreisel, G. (5) and Riabouchinsky, D. (6)] but the three
papers which are most relevant to present work are those to Kochin where , z are related by [2.8] and, Xl,X2 are Lagrange multipliers.
, N.E. Kibel, I.A. andRoze, N.V. (3)-and Wu, T.Y. and Whitney, We define an admissible function as any function y(x) which
A.K. (8) and Essawy, A.H. (9)]. satisfies the Holder condition (9t<l) and we define the optimal
A singular integral equation of the boundary value problem is
obtained and can be solved to yield expressions for the lift and drag fun.tion as an admissible function which minimize l[y,z,i,xj
as functions of the unknown singularity distribution. y being the The Necessary Condition Of Optimahty. 8I[y,,1=0, [3.51
vortex strength together with the known shape, z (hydrofoil slope), which yields:
these expressions are given for a hydrofoil of arbitrary shape. a
We use-variational calculus technique to evaluate the optimum shape z(x) =- - 1 [ s,+ -22z±t- + kzs-x)l ds =0 [3.6)
of a two-dimensional hydrofoil of given length and prescribed mean 27c l+ s U s x
curvature which produces minimum drag. T
II. The Hydrofoil Beneath a Free Surface This equation is a necessary condition for th existence of an external
A hydrofoil of arbitrary shape is in steady, rectilinear motion at a 1[y], combines with the integral equation, [2,8], to give a pair of
depth h-beneath the free surface of a uniform liquid flow with speed singular integral equations which are to be solved for ',z subject to
U in the x-positive direction. appropriate conditions and constraints.
We assume the liquid is non-viscous and moving two-dimensionally
and without vorticity, the-only force acting on it is gravity. Substituting from [2.8] in [3.6], we obtain
The problem will be solved on the basis of linearized theory and for a f [ i3 w n
this purpose we introduce the following vortex distribution on x + .a " z "=
axis: the x- lk(s.x) +k(x.s)I ds 2X2z"(W) [s.+k(s.x)] d=0
Vortices of strength y(t) per unit length in 0<f<a, y=-h, (y>0, (3.71
clockwise) We consider the solution of [3.7] for the slope z(x) only in the case
The complex potential due to a single vortex at ( ,-h) as follows: of small slope, and we approximate to [3.7] as follows:

Zivd Now, we use the method of iteration to solve equation [3.8] as
+ eiVzt J I , follows:

w(z)-2 )i {Iog(-" + 2C [V=giO2,e=4-ih]• [2.11 We introduce function sequences of the form
The complex potential due to a the complete distribution of vortices zo,z,z2 . ,70,'1,72 ........ [3.9]
as described above will be and the stages in the iteration procedure would be as filows:

a z-c - 00e4vsds (a) First we solve
w(Z) =- J (log( -) - )dt [2.2] aa

ii z-c dz+s -c J 2X2z;(s)'%iz(s)l;_x= . Zo(x)=T-iUJ 0 () Sx (0<x<a) [3.10]
Denoting the potential of this steady motion by for"o,zowhich gives

W = 4 + i T [2.3]
Let the x- and y- components if the hydrodynamic forces acting on
the hydrofoil be denoted by drag D and lift L, then the complex zo(= - Fomosin mox + Co xsin m(x) [311]
forces acting on a hydrofoil calculated within the linearized theory [3.12X1(])m2 d
are given by 0

a
D+iL=J (P ly=o - Ply=o+ idz [2.4] . U a-x a l---JZo(s)dst'txW =-'_ , ' - zo-d d ".hTf [3.12]

L =- pU dy(x)dx , D = pU[ y(x)z(x) dx [2.5] X(o)

The boundary condition on the hydrofoil it can be approximate to where F0, Co is an arbitrary constants and m o  2(o)

v 1 1 [2z(x) =O¥ ' U v= Ujy y=-h [2.6] (b) Secondly, we solve

where u,v are the components of liquid velocity as follows: a ,, s 1 k s
S ) d22Zls) -Z 1 (S)x d y0(s)[k(s-x) +k(x-S)Jds-

u= -= - , v=---y= -. y[2.7] a

ax x Dy ay 2.1 a
Using [2.21 we can write [2.6] in the form d f2X27,3(s) - 2,zl(s)]k(s-x) dx,
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1 _ yi(s)ds I a 7. WEHAUSEN, J.V & LAITONE, E.V. 4960. 'Surface Wave",
t=U- JY(s)k(x-s) ds, (0<x<a) HandbuchDer-Physick, Vol. Ix, Berlin: Spinger-Verlag."Zl() 2rU (Js-x8. Wu, T.Y. & Whitney, A.K. 1973, "Variational Calculus

[3.13] involving singular integral equations", ZAMM,737-749.-

First we write the inversion of the first equation in [3.13] as 9. ESSWAY, A.H. 1983. "The optimum shape of a noncavitating
follows: hydrofoil of maximum lift" Arch. Mech., 35,2, pp 169-175.

1a 10. Ritger, P.D. & Rose, N.J. 1968. "Differential equation with
l z(x) = {l .- sx s)ds  [3.141 applications", Mc-Graw-Hill, Inc.

-G(a-x) n 0 

-where c1 is an-arbitrary constant and
y

ao F', . a ,a o

Etjfmt) a k(t-s)dc CO-

[3.15] h

Equation [3.14] can be written as follows: .

zj'(x) + mzil(x) = F(x), [m =- X1  (0<x<a)], [3.16] - FI0._

where

-AXIS

it-is assumed at this stage s <0 and we show later that 11(1)<0,

qI0)>0 are sufficient conditions for a minimization of the drag D.

The boundary conditions to be satisfied by zl(x) are

zl(o)-=yi(o) = 0, zl(a) = yj(a)=13, zl(O) = 0,

yl(0) =0, yl(a) =y0 , [13, Yo prescribed] [3.18] AXI" ,:s ,., , . 2 ,, .- -

The solution of the non-homogeneous differential equation in [3.16]
which satisfying the boundary condition (3.18) is

x

z i(x) = - Cx) F(4)sinm1(4-x)d +

sinmlx a .sinmlx
mrila- F(4)sinml(4-a)d + 13 - (O<x<a) [3.19]

The function z1(x) in [3.19] should satisy the constraints, and the
boundary conditions 4(o) =0 and yl(a) =yo; in this way we obtain
four unknowns ml, El , Do , and Co , which have to b4c evaluated
numerically. This problem is resolved numerically in case

l=4.O 2ft, a=4 ft, k=0.0148 ft "I h=16 ft, v=0.0093 ft l

A sufficient condition for the extremum to be a minimum is derived

from consideration of the second variation of I is 821>0 which it can
be written in the form

Its
2r a sin-ds

2 2 _+ )2 >o.

0 4s(a-s)
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A DIRECT SIMULATION OF THE-FLOW AROUND A CIRCULAR CYLINDER
SINUSOIDALLY OSCILLATING AT-LOW KEULEGAN-CARPENTER NUMBERS

Papolu lanikyala Rao, Kunio Kuwahara and Kazuhiro TsuboiThe u nstitue ofRpao, unistonautc a aence, Institute of Computational Fluid'Dynamics,1-22-3,
The Institute of Space and-Astronautical Science, Haramachi,Meguro-Ku,TokyoJapan.
Sagamihara-Shi,K anagawa,229, Japan,

ABSTRACT- A finite difference simulation method is pre- The reference scales for non dimensionalizations were
sented-for- the viscous flow field around an arbitrarily movirg d, , fur the length, -velcity, time and pressure, re-
boundary.Numeri .,al sulutivn are obtained by dire~tly integrat- spectldy. Dimenbiunlesb parameters are Rey nolds number Re
ing the incompressible Navier-Stokes equations of finite differeiwe Vd/i. and Kc = V1T/d. Primitive variables are contravariant
form by-adopting a moving grid system,based on a time depen- components u, of the fluw velocity vector relative to the circular
dent coordinate transformation.Evolution with time of the flow cylinder and pressure P. A subscript with (,) denotes covariant
structures induced by a-circular cylinder perforrmng sinusoidal derivative. The last term in the momentum equation(S) repre-
oscillation in a fluid at rest,by means of vortex sheddng,is stud- sents oscillatory acceleration in the x direction, in which T; is the
ied at Keulegan-Carpenter number,K;=9.4.The time dependent transformation matrix and g,3 is the metric tensor.
drag and-lift are also explained. The numerical techniques adopted here are based on the well

known MAC method,which was orginally developed-by Hadlow
INTRODUCTION and Welch(1965). The Poisson equation for pressure can be de-

rived on the basis of MAC method.The nonlinear terns are repre-
The study of two dimensional oscillatoruy fluws is if great imn- ,ented by means of a third-order upwind bheme(Kawamura and

portancein the design of cylindrical structures such as offshore Kuwahara,1984),e.g.,
platforms. Information about the fluctuating forces on an oscilla-
tory cylinder is of special interest to fluid dynamicists and offshore Of Ui(f+2 - 2fi+i + 9A - 10fi- + 2fi-2 )/6h ((i > 0
engineers. Several experimental investigations has been carried (U-)+
out on fluid structure interaction problems, a good accounts of Ox - Ui(-2f.i2+ 10f7) - 9f; + 2fi-. - A- 2 )161 (U; : 0

which- are available in Bearman, et.al(1985), Williamson(1985), The poisson equation for the pressure is solved iteratively bySarpkaya(1986) and Tatsuno and Bearman(1990). employing a modified SOR method.

BASIC EQUATIONS AND NUMERICAL METHODS RESULTS AND DISCUSSION

In, the present studywe introduced the following generalized The computations were performed by a super computer NEC
transformations of coordinates,which includes the time variables, SX 2 (13 G flops). The cpu time for a single case ranged from 6
in order to deal with moving boundary effectively, to 10 hs, depending on the value of Re and Kc. The time stepping

interval was At =0.00 1. The motions of vortices around a circular
= '(z,/Yt), i = 1, 2,3 (1) cylinder in relative sinusoidal flow are very complicated and the

pattern of vortex shedding varies depending on the Kc number
where x,yt are the variables in the physical domain and (, i = and Stokes number,f. Here fl = Re/Kc. Contour maps of vortic-
1, 2, 3) are the variables in the computational domain. The trans- ity for-the case of Re=300,10OOiKc=9.4 are shown in figures(1-2).
formation of coordinates and matrix are written as It may be noted that a pair of small attached vortices are formed

behind a cylinder in a starting flow. When the cylinder reverses
= C2 - = det(T') (2) direction, the attached vortices split up and pair with new vor-

tices in the new half cycle,thus convecting away from the local
where J is the Jacubian.The metric tensor g" is given by flow region around the cylinder.This pairing of attached vortices

occurs only at the time of flow reversal between small vortices
g,, =7 ,T6lg = det(g,), g' = (1/2)g-ieimne'g,g., (3) which were still attached to the cylinder just prior to flow rever-

sal. Such a process is shown in figure.1 soon after the begining ofwhere 6 and e denote the Kronecker delta and the Eddington cylinder oscillation. The attached eddies are split up as-the cylin-
permutation symbol,respectively. der moves downwards,and they each form a small vortex pair with

Consider a circular cylinder oscillates in a viscous incompress- a new small vortices. These small vortex pairs formed at flow re-
ible fluid,in the direction parallel to x-axis.Instantaneous velocity versal,where the cylinder reverses again and this eddy pairing re-
of oscillation is given by peats itself. The pairing is resonably symmetric initially (Fig.la)

and the attached vortices become unequal in strength and the
V = Vm sin(2it/T) (4) vortex pairs do not form simultaneously (fig.lb,2) upon flow re-

where 1,. is amplitude of oscillatory velocity,T period of oscil- versal,giving rise to a lift force of low amplitude fluctuating at the
lation and t time.The N-S equations for the sinusouidal flow is oscillation frequency.This situation is similar to the experimental
written as visulisation of Tatasuno and Berman(1990).The time dependent

drag and lift for two different Reynolds numbers are shown in

+ (Uu ),,= figure.3.
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EXTENSION OF THE A-FORMULATION TO
IMPERFECT GAS FLOWS

D. LENTINI
Dipartimento di Meccanica-e Aeronautica

-Universita-degli Studi di Roma "La Sapienza"
Via Eudossiana-18, 1-00184 Roma RM, Italy

ABSTRACT ( 2 =yRT (3)

The A-formulation for compressible flows is extended to-gas flows -being the gas specific heats ratio and R its constant Upon logaritb-

with specific heat-varying as a function of the temperature. The pro- mic differentiation-we obtain
-posed formulationisbased on a suitably specified function-of the tem- a#
-perature, which-allows defining the Riemann variables as linear com- 2 - = L 1+ (4)
binations, with constant coefficients, of the dependent quantities. The a -y'-

resulting equations are solved-viaa fast solution algorithm. A test Here the prime-denutes differentiation with respect to either f or x,
case-is worked out of a nozzle flow, evidentiating the differences with -T-Is the derivative of I with respect to T. From the first principle of
respect to the solution for constant specific heat. thermodynamics, written for adiabatic flows-with pressure work only

I. INTRODUCTION cDT' = RT - (5)
p

one gets, in view-of (4)
The A-formulation (Moretti 1979,1987) has proved to be-a powerful

tool for the numerical solution of compressible flows of perfect gas. For P 1 a'
'perfect' we mean that the gas is assumed to be both- thermically and P + (I + T a
calorically perfect. The first attribute refers to its obeying the perfect '

gas law, while the-latter denotes that its specific-heat c, is taken as a with the position 6 -= (-I- 1)/2. This expression will be substituted
constant. in the continuity equation.
This formulation has been successfully extended to-finite-rate chemi- The pressure gradient term in- the momentum equation can be ex-
cally reacting flows (Lentini and-Onofri 1986, 1987-A and-B), but still pressed by means of the thermodinamic relationship
with the limitation that-the component gases of the reacting -mixture
are perfect. P' = h' - Ts'
While the assumption of thermally perfect gas is closely approximated P
in virtually all cases of practical interest, the requirement that the gas where h is the enthalpy; then, after eq. (4), with h' c, T'
(or the component gases) are calorically perfect may be unsatisfactory
to describe flows subjected to large- temperature excursions. Indeed, 1 1
cp exhibits a fairly large variation with temperature. For example, the p + a -Ts
specific heat-at constant pressure of air varies by about 25% in the ' 7

temperature range 300 - 2000 0K. The set of eqs. (1, 2) can then be recast as
In this paper we extend the A-formulation to- (inert) flows of ther-
mally perfect gas with cp varying as a function of the temperature T. 1 A(
Such gases are sometimes referred to as imperfect gases. The resulting ( ( u A

formulation is extremely simple and involves a limited computational
overhead over the perfect gas case. Ut + uuz + 1 a,,-Ts 0 (7)
It is applied here to- the- computation of the flow in a quasi one- + .7
dimensional nozzle in order to prove the workability of this approach
and to evidentiate the differences with respect to a perfect gas com- At this juncture, we make the crucial remarks that the terms a' can
putation. However,-it will be apparent that the-range of application be expressed as aT T', being-a a function of the temperature T, and
of the present formulation is completely general. that the term

I I fy =R cp

II. FORMULATION (1 + ) aT a

The formulation is presented-here for simphcity for a quasi one- is solely a function-of the tempecature as well. We can thus define the
dimensional flow. function
We assume as state variables the speed of sound a and the entropy s, T
and the velocity u as the motion variable. Consequently, the continuity F(T) _ do (8)
and momentum equations, which we write for convenience in the form I' a

where 0 is the temperature as a running integration variable, and TO

P + up. +A is an arbitrary reference temperature. Notice that the integrand is ala p -+ auz = - au- (1) isaarirrreeecteprtr.Ntcththenegndsal
p A ways positive so that the function F(T) is monotonic and can easily be

I inverted. This definition allows expressing the terms in the derivative
ug + u u. + P P. = 0 (2) of a in eqs. (6,7)as

will be recast in terms of the variables u, a, s. To this end, we ob- 1 at = Ft
serve that the speed of sound is related to the temperature T via the 6 (1 +2 T)
relationship
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and similarly for the derivative with respect to z. We can then recast with
eqs. (6,7) in terms of the new variable 2.+A2.ns ____2_a_1

Ft +uF+ au f (9)
Astride the sonic line the accuracy of the algorithm is reduced-to first-

ut + U" + a F - . 0 -(10) order, by setting

with f - a u AZ/A. By summing and subtracting eqs. (9,10), and 1 1 = Al,n 1 2 = A2,n = f-,
with in order-not to violate the domains of dependance of the variables.

A, - u + a A2  u - a The eq. in Ri is integrated by sweeping in the positive x-direction,
whereas the one in R2 is integrated by sweeping from the sonic line

we get the final form to the exit (supersonic region) and from the sonic line to the inlet
(subsonic-region). This algorithm gives a very fast convergence to the

Rit + As-Ri. - Tsz = 6 (11) steady solution.

For the case of imperfect gas, the procedure is initialized by first guess-
Rt + A2 R2. + T si = fl (12) ing the temperature field, and accordingly estimating F via-the rela-

-having defined the Riemann variables as tionship

R = F + u R2 = F- u F = F(T) (13)
as in (8). The a field is analogously initialized by means of the rela-

Thus, the new variable F allows the definition of Riemann variab tionship
for imperfect gas flows as linear combinations, with constant coeffi-
cients, of the dependent quantities, in-analogy with the formulation a = a(T) (14)
for perfect gas. In the case of isentropic, strictly one-dimensional flow,
such variables represent true Riemann invariants. as in (3). This allows computing Al and A2.
Further, the imperfect gas formulation becomes formally identical to Then, at each iteration step the new values of R, and R2 are computed,
theperfect gas one. and u and F-are-updated as
It is apparent that the present formulation can be extended without R1 - R2  R+R 2
any difficulty to multidimensional flows, by redefining the Riemann 2 2
variables in a similar fashion.

The speed-of sound is then recomputed as

III. SOLUTION ALGORITHM a = a(F) (15)

where the argument of (14) has been transformed into F by inverting
As an example of the present formulation, here we apply it to eq. (13). A, and A2 can then be recomputed and a new iteration cycle

the-flow in a converging-diverging- nozzle. We limit our analysis to started, until-convergence is attained.
the isentropic case for the sake of simplicity, and further consider the Tae untiycondergen attained.stea y stte oluton oly.The boundary condition at the inlet involves matching the total en-steady state solution only. t ap
A semi-implicit algorithm, developed along the guidelines of Moretti's thalpy
(1983) fast solver, is used. In this iterative technique eqs. (11,12) are U2
integrated separately, at each step, by successive sweeps all over the = h - -
computational domain.
The discretized form of eq. (11) is, with second-order upwind differ- where h is recovered as
encing: h = h(F) (16)

R - Hi.. + ' R.. - R*.- 1  - with the stagnation enthalpy h,, i.e.:

AL AX
U2

being A always positive in the flow under consideration; the averages h, = h(R2 + u) +
are defined as 2

-1 
= A1.,,+A 1 .n-. = + p1  where F is expressed via the value of R2, computed from downstream.

2 2 The above nonlinear relationship is iterated to get the value of u at
the inlet.

The caret denotes the previous iteration level. Once the converged solution is obtained, the density can be recovered
As far as eq. (12) is concerned, we have to make a distinction between as a function of F, via eq. (5):
the cases A2 > 0 and A2 < 0. In the former case (supersonic flow) the
discretization is analogous to that for RI: IogP ! JT (17)

P0 Rro0R2.. - R2,. + X2 R2,. - R,..- - the pressure is then computed by means of the (thermal) -equation ofAt Az
state.with In the present implementation the functions defined by eqs. (13-17)

X2 = A2.n + A2.n-I + p6- are computed off-line and approximated by 4th-order fits obtained by
2 2 means of orthogonal polynomials, in order to make the computational

procedure as straightforward as possible.whereas for A2 < 0 (subsonic flow) we get

R2.. - .- + 12 R .. i - R.

At AX
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Fig. 1. Axial profiles-of velocity u (made- dimensionless with the Fig. 3. Axial profiles ofz temperature-T (made dimensionless with
reference value -vTn,. -Dash-dotted lie, perfect gas, dashed line, the reference value To). Dash-dotted line, perfect gas, dashed Erie,
imperfect gas; solid line- nozzle contour. imperfect gas; soliline, nozzle contour.
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Fig. 2. Axial profiles of Mach number M. Dash-dotted Lae, perfect Fig. 4. Deca) of the residual of the computation. Dash-dotted line,
gas; dashed line, imperfect gas; solid line,-nozzle contour- perfect gas; dashed line, imperfect gas.

IV. RESULTS gases results do not scale with temperature). Although at this high
temperature some molecular dissociation and formation of nitric ox-

We shov. -here a comparsun between a "ir. atiun performed fot ides do Kccut, a -hcmic4 cquinbriorn computation pcrfurmcd-%;th
perfect gas (With I~ - 1.4; and the present appro"c [us Amperfect gas, the code 6y Reynoids 1381; 3huss that the wumuiatve m=s firact~vr
for a-critical How in a i;,nvergsng-dioergkng nozzle. The Working fluid of the ensuing pruduts Ls iras than A'X, and ew-,rdingly in this study
is assumed to be air, with caiuni properties as a function of the Lemn- We negitcffecta ;ciated to the tary zngcomposW,L1n. In pattiil, the
perature accounted for by niCan3 of the so-caima NASA poiynomnia13 lariation , , he averagc muecuia: weight turns out to be absolute)
(e.g. see Gardiner-1984). negligible.
A nozzle wit!, conical conicrgirig tsemi-angle 4;' and disergsng t'stim- A Cornputationai grid With 4G~ nudeS is chosen Z3, fut pcrfCrI. gas, it
angle 15S) setion3, matched by a throat section with &,- cuai 1 rufiie1  giVes a rEiatibe discrepanry betweTen the, M"c numbeiC t.ornpiidan
is considered. The inlet and throat radu are C .19 and ,.lZ, respctiLvely, a:Ytcay and by the-numerica solkution at convergenC limktcd to a
the radius of curvature of the throat is equa: to t trhoat Sadius,-arid maximum j'4 oser the eomipu'.atioria: omnain) of ~.%.
the geometric. expansion tatio-'exit, to throat area; s3 S. The aiagna- Figure L c,mparm axmaprofi'es of veoi,.y1 nfor the &%uc asm of perfeet
tiori temperaturz T. is assumed to he 2000'K (nOte thai. fot imperfect and AMpcTfect gas. The nuazte profie is superimaposed on the figure.
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In the same fashion Fig. 2 compares axih, profiles of Mach-number,
and Fig. 3 profiles of tempe'ratu:e.
It can be observed-that while-t and M4are affected to r. limited extent
by the varying es,, the temperature computed with the iimperfect-gas
model exhibits a much-slower decay than the perfect gas solution,
owing to the higher specific-h'oat. In particular, the gap between-the
two c-1lutions at the outlet-is-about 2000K, thus underlining the need-
to account correctly-for the caloric properties of the gas.
'Further, neglecting -the -effects of temnperature on ec, leads to oversti-
mating the mass flow rate-by 4.-1%, and the velocity thrust by 1.5%;
accordingly, the specific-irnpulseis understimalled by 2.5%.
Fig. 4 compares the convervoneechistory of thme computations- for-per.
fect and imperfect-gas. The-solution '-, ... . zscribing-the
same (arbitrary) Mach number -distribution in both cases. It is ap-
parent that the solution-algorithm described in Sect. III gives an
extremely fast convere r cc -rate,-with the steady state reached in as
few as 30 iterations.

V. CONCLUSIONS

A simple formulation to-e~ff.ctively extend the A-formulation-to

imperfect gas flows is presente~d and tested.
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The perfect-absorbing boundary conditions

for the approximate hydrodynamics models.

Novikov V.A., Fedotova Z.I.

Comp.Center,USSR Academy of SLc .o-s Comp.Oenter,USSR Academy of Scinces
Siberian Division,Krasnoyarsk Siberian Division,Krasnoyarsk

The construction method of the In spite of the fact, that any computer
perfect-absorbing boundary conditions on twC. algorithm for hydrodynamics problems solution
domains boundary, on one of which the fluid includes the conditions on one or another
motion is described by linear, and in ,nother "transparent" boundaries, these questions are
one-by nonlinear shallow water equations, poorly treated in literature.
have been described. The approach proposed The most classical is the problem 3.
also permitts to solve the problem on a free The approaches to its solution are cosidered
wave pass through the outer boundary out of in the works [I], [2], [3] and in the number
the domain and the problem on the reflected of others. The Sommerfeld condition ir
waves outgoing from the domain through the generally applied [1]. The most close to
boundary, on which the disturbances are ours is the approach, represented in [21,
preset as boundary conditions. [31, devoted to the conditions on the

outer boundaries in gas-dynamics problems.
. With -numerical simulating of long In the present paper the approach,

waves propagation in water areas one often equally applicable for the problems 1-3
deals with the following, at the first sight solution, has been proposed. This approach
"different" problems: works in the cases, when one successes in

paravariables introduction, which,firstly,are
Problem 1. Let's describe the long waves perfectly connected with the medium physical
propagation from the source to the shore. meters, anal, secondly, describe the
It's known, that non-collapsing wave motion disturbances, moving in the definite
along the deep ocean is rather well described direction. In the case of one-dimensional
by the linear shallow water equations, hyperbolic equations set Riman invariants are
whereas at the wave outgoing to the shallows, the best f.Dr such an aim. The arises the
where non-linearity effects become problem on the complete outgoing of
significant, the non-linear equations shoul. one-dimensional and two-dimensional priblems.
be applied. While solving this problem it's
expedient to divide all the flow region into 2. We describe the obtained boundary
two subregions and on the line, dividing conditions. illustrating, for convenience,
them, to preset the boundary conditions, the problem geometry and shallow water
passing the wave from the "deepwater" region equations by the fig. 1.
to the "coastal" one without reflection. it's Riman invariantz oontinuity requirement
clear, that the question is only abcut at the point X=X, can be written as the
non-physical reflections, caused by following conditions on the boundary X=X
different models "joint".

Problem 2. Let's describe the wave U =U
motion in the bay, caused by the fact, that 2,
on the boundary, faced to the sea,

the wave train is preset as the boundary I1=2[dI(d 2+ 2 )]I/
2 -2(d 2d1 )

112 1
condition. Suppose, that the bay bottom is
such, that the reflected wave, going to meet
the bay entering one, begins to form rather
early. Thus, here the reflected wave out of
the region through the boundary, on which the ' " linear eq. X nonlinear ea.
disturbance is assigned. " -

Problem 3. With the application of tx t +uu+gc=O

finite-difference methods for the wave Ct+(du)x=0 C+[(d+C)Ul=0
processes simulation in the open water
reservoirs the calculation is performed in
the finite region. Thus, here occurs the X = xU X U X
problem on the free pass of the waves, coming
to the calculated region boundary. The ,.

boundaries, possessing the property to pass I
any disturbances wuthout reflection, we
should call "transparent" or "absorbing". x =x,
These boundaries have no physical essence d=d(x)
and their consideration is connected with .....)
the method of the numerical calculations Fig. 1
performance.
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These formulas are considered to be the
basis for finite-difference algorithms
construction while solving the problem about
the solution joint on two mediums boundary.
To construct the boundary conditions for the . ,
problems of the complete wave outgoing , ,
through the outer boundary the auxiliary , "

technique has been applied. Its main point is
the extension of the water filled domain by 3
the channel with constant depth bottom, where
the flow is described by linear shallow Water
equations. This procedure results in the
following boundary conditions at the point
X-X,, where X=- is the left domain boundary:

U! = = 1/2(r+s)

C =r-s+41(gd ) 112 32/(16g) -d Fig. 2

=-(t) -is the height of the wave, given on " '
the input, s=s(xit)-is the value of the . .
S-invariant , describing the reflected wave, ,..,',..,
at worked out approach allows to solve both
the point X=X-. For the case of the free
pass problem the boundary conditions on the
boundary x=-X, situated on the right of

domain,assume the form:

U1, = r/2,

CI =X = (r+4(gd*)"1 2 /(16g)-d,d-=dI. , Fig. 3

where r=r(x ,t) is r-invariant,describing the 1.Engquist B.,Majda A. Absorbing BoundaryCondition for the Numerical Simulation ofwave, which will outgo out of domain bounds. Waves//J. Math. Comp.-I977.-V. 31.-629-651.
The main point in the corresponding 2.Hedstrom G.W. Nonreflecting Boundary

numerical algorithms is r- and s-invariants Condition for Nonlinear Hyperbolic
approximate construction in boundaries Systems//J. Comput. Phys.-I979.-V.
neighborhood. 30.-222-237.

During the construction of analogous 3.Thompson K.W. Time Dependent Boundary
boundary conditions for the two-dimensiral Conditions for Hyperbolic Systems//J. Comput.
problem the assumption of the possibility of Phys.-I987.-V. 08.-I-24.
such approximate flow description,that in the
limits of the small discrete time intervals
the wave "front" should be straight and keep
its motion direction, was made. For this case
the application of one-dimensiona algorithm.
worked out without difficulties, for the
two-dimensional problems was a success.

The series test calculations,
demonstrating the workability of the method
proposed and a good accuracy of the numerical
algorithms, has been performed. Fig.2,3
illustrate the solutions of the problem on
the wave outgoing out of the domain. The
waves surfaces for the sequential time
moments have been shown.
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A VORTEX METHOD FOR BLUFF BODY FLOWS AT LOW REYNOLDS NUMBER

A.P. BURROWS AND P.G.BELLAMY-KNIGHTS
Department of Engineering
University of Manchester
Manchester. M13 9PL, U.F.

Abstract-The impulsively started flow past a the vorticity for the duration of the
circular cylinder in a uniform freestream for computation. DRD is a constant chosen to be
Reynolds numbers. Re from 200 to 500 is the same order as DTH. Next, the velocity
computed by a time splitting method to get field Is computed. Then the known vorticity
the lift. drag. and Strouhal number, field is discretised onto point vortices

which are convected bY Eulerian integration
1.INTRODUCTION for a small convection timestep. DTT. This

procedure is Reynolds number independent and
The discrete vortex method is a long so the mesh and other computational

established approach for modelling the parameters should be invariant as Re ciianges.
convection of vorticity in two-dimensional While convecting. it is assumed that these
problems of separated flow past bluff bodies, point vortices are diffusing as Oseen
See GerrardEl3 and SarpxayaE22. This method, vortices. After a time t. a zero age Oseen
which can now also take diffusion into vortex will diffuse a radial distance
account. has recently been extensively .1836f2t/Re. (see SlaoutiE93) and so as the
reviewed by Sarpkayat33. In the time- vortex spreads, each part of it will move
splitting method. the processes of convection with an Increasingly different velocity and
and diffusion are treated separately. Whereas so become distorted. To overcome this problem
ChorinEL3. and Smith and Stansby[5j use the diffused vorticity of each vortex is
random walk methods to model the diffusion, re-discretised onto new zero-age point
Benson et al. E63 introduced and BurrowsE73 vortices every timestep. DTR. The validity of
developed a vorticity re-distribution method this approach was appraised in test cases
in an attempt to reduce the number of described in C63 and is satisfactory if DTR
discrete vortices required by the model and is large enough to allow vorticity to diffuse
hence reduce the magnitude of the at least two mesh lengths. For a square mesh
computational task. In [63. after extensively of length GS, this gives
testing the parameters of the model at Re=(O DTR > 0.0995.Re.GSZ  

(6)
(based on diameter), the method was applied where Slaouti's result above has been used.
to flow past circular cylinders for Re=20. The vorticity in the flowfield is located
40. 100. and 200. The present work describes in two main areas. Firstly. a wake region
further development and validation of this extends downstream of the cylinder. This is
approach for Re up to 500. conveniently embraced within a grid of width

-5<Y45. length -3<x4R(NR) with square mesh of
2.MATHEMATICAL AND COMPUTATIONAL FORMULATION. length GS. Here. GS-0.2. If. for example.

Re-200. then (6) implies a minimum diffusion
The Navier-Stokes equations for an timestep of 0.8 in this mesh.
incompressible flu.Lj are expressed in non- Secondly. there is a boundary layer region
dimensional form in terms of the vorticity. of high vorticity around the cylinder of

and the stream function' .as follows approximate thickness BL. say at the
S2.l shoulders of the cylinder where

FeeT.R (1) BL - 3.82/ff-e (7)
7 '. = _(See E73). When. for example. Re-200. BL-0.27(2) and when Re=500. BL decreases to 0.17.

where t is the time and u=(u.v) are the Although this region is contained within the
velocity components in ix.yl Cartesian rectangular mesh, a finer body fitted mesh
coordinates with origin at the centre of the allowing more resolution of the diffusion
cylinder and the x-axis in the freestream near the surface and a diffusion timestep.
direction. Assuming is known at a typical DTI sa . lower than for the rectangular mesh
instant, equation (2) is solved for + as is required in order to calculate the
follows. A radially expanding cylindrical aerodynamic forces on the cylinder. In r63.
polar mesh (R1-).TH(i)) about the cylinder is the polar mesh defined for the convection is
transformed into a uniform rectangular mesh also used to apply the redistribution
(TH(i).RD()) by the equation algorithm near the body. This grid has mesh

R(J)-exp(Cl.RD(1)/DRD) (3) size 0.0311 X O.O49 on the body expanding to
where RD(l)O. O.O2 X 0.062 at radius 1.27. Now in timestep

RD(Q)=RD(A-I)-DRD (4=2.3 ..... NR) (4) DTR. vortices in the courser rectangular mesh
There are also NR mesh points in the may diffuse through the finer polar mesh to
i-direction of length DTH. where the surface of the body. To prevent this. all

DTH-2w/(NR-1). (S) vortices within radius 1.4 are diffused using
Then the transformed equation (2) is solzed the fine polar mesh. Since for Re<200 there
for + on the rectangular mesh using the are at least 8 mesh points within BL. the
Poisson solver of Le Bailt83. which requires convection mesh satisfactorily duplicates to
that NR is of the form 2"-l. NR-129 is found treat the diffusion. For Re-500. however.
to be a guod compromise between resolution there are only 5 mesh points within BL and so
and economy. After choosing the vadial e/.temt a new and separate polar mesh for diffusion
of the flowfield. R(NR)-30. saY. (3) i'es near the body is now introduced. It has the
CI-0.03423. R(NR) must be sufficiently large same form as equations (3.4.5) but with DTH
to ensure that the grid always contains all hl.'ed. For equal mesh lengths in the radial
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and circumferential directions, Cl is reduced In [63. for Re<200, good agreement wa. found

to CI=0.024034. This gives more mesh points with other published results, which the

within BL. Then for Re<500 there are at least present investigation also confirmed but the

8 mesh points within BL. Then DTI has a results of C63 were not so good at Re=200.

minimum value of Re/l
4 . This is calculated The parameters of R200VI correspond to those

from (6) based on the maximum mesh length at used in E63 and the present work suggests

radius 1.4 in the polar grid. that the convection timestep is too large.

Now the cost of the diffusion algorithm This results in too large an average Cd and

increases as the square of the number of mesh too small values of the ranges. When DTT<0.l.

points a vortex diffuses in a timestep. For a however, variation of the parameters subject

fixed mesh, this limits the magnitude of the to the earlier described limitations does not

timestep. For the rectangular mesh. DTR is seem to cause significant changes in the

chosen so that a vortex diffuses through no results. Tables 1 and 2 also show typical

more than 3 mesh lengths. Then values of parameters and results for Re up to

DTR < 0.2239.Re.GS
z  (8) 500. Figures 1 and 2 show the lift and drag

Similarly, for the polar diffusion mesh, the versus time and streamlines at t-40 for

timestep is limited so that vortices diffuse R200V5 and R500 respectively.

through no more than 3 mesh lengths at radius

1.4. Now the mesh length is smaller on the

cylinder surface and so for the above L'c ca
restricted timestep, the algorithm must

actually allow diffusion over 5 mesh lengths 0E
near the surface. 00 0 20 30 V
Methods of satisfying the no-slip condition

on the boundary, relecting vorticity from the

surface of the cylinder, calculating the lift ~M 0.5

and drag coefficients and other details are
described in E63 and E73. 0 3

0 10 20 30

3.VALIDATION AND DISCUSSION OF THE RESULTS.

Table 1 shows 6 different sets of parameters

for which the computer code was run for

Re=200. Their choice was guided by the above

considerations. NTH2 is the number of mesh

points in the circumferential direction for

the inner polar diffusion mesh. ".

TABLE 1. PARAMETERS OF THE MODEL Fig.1. Lift, drag and streamlines at Re=200.

Version DTT DTI DTR NTH2

R20OVI 0.2 0.2 1.0 257

R200V2 0.075 0.075 0.975 257
R200V3 0.1 0.2 1.0 129

R200VU 0.075 0.075 1.95 257 10cCa
R200V5 0.05 0.1 1.0 129

R200V6 0.05 0.1 2.0 129
R250 0.05 0.15 1.95 129 , A
R4O0 0.075 0.075 1.95 257 20 3 .0

R500 0.075 0.075 2.475 257

The diffusion in the inner polar mosh takes 5

place every one or two convection timesteps

whereas the diffusion in the outer to 20 30

rectangular mesh is much less frequent due to

the larger mesh length. For the range of

Reynolds number investigated, periodic
oscillating wakes are obtained. The Strouhal

number, St. average drag coefficient, Cd(av)

and range (twice the amplitude) of the drag,

Cd(ra) and lift C1(ra) coefficients are

computed. These are shown in Table 2, with -2

results of Brazer et al. E103 for Re=200.
Fig.2. Lift, drag and streamlines at Re=500.

TABLE 2. COMPUTED RESULTS

Version Cd(av) Cd(ra) Cl(ra) St REFERENCES

R20OVI 1.15 0.10 1.46 0.194 1. Phil.Trans.Roy.Soc.A.0 261,137-162 (1967).

R200V2 1.37 0.13 1.58 0.190 2. ASME J.Basic Eng. 90,511-520 (1968).

R200V3 1.38 0.11 1.55 0.190 3. ASME J.Fluids Eng. 111,5-52 (1989).

R20OV8 1.37 0.13 1.58 0.191 8. 3.Fluid Mech. nZ,785-796 (1973).

R200V5 1.37 0.12 1.57 0.191 5. J.Fluid Mech. 19U,5-77 (1988).

R200V6 1.36 0.13 1.55 0.191 6. 3.Fluids & Structures, 2.39-479 (1989).

Braza 1.3e 0.12 1.60 0.190 7. Ph.D.Thesis, Manchester University (1990).

R250 1.36 0.21 1.81 0.198 8. J.Comp.Phys. 9,440-165 (1972)

R0 1.36 0.22 2.26 0.206 9. Ph.D.Thesis. Manchester University (1980).

R500 1.36 0.32 2.60 0.205 1O.J.Fluid Mech. 165.79-130 (1986).
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NUMERICAL -MODELING SEPARATION OF FLOW
OF VISCOUS FLUID IN THE PIPES

OSTAPENKO V.A. From the point of view hydrodynamics for ari-
Faculty of Mathematics and Mechanics sing separation of flow two factors are neces-
State University-of Dnepropetrovsk sary: positive gradient of pressure and vis-
pr. Gagarina 72 cosity of fluid E1].It is known that in three-
Dnepropetrovsk-lO, 320625 -U S S R dimensional space separation of flow arises in

boundary layer [1,2]. Exactly, the separation
of flow occurs when-nearest to wall of channel

Abstract-It is proposed method for discavering the streamline cames off wall. Therefore the
separation regions of viscous fluid in bent necessary condition for separation of flow is
pipes.That method is based on decomposition of a
full system equations of hydrodynamics of vis- 0 Is, ' (1)
cous fluid and consits in three stages. On the where S is contour of pipeline, R -unit vector
first stage the equations of streamlines are of external normal to surface S, q-normal to S
obtained and time- and space-average length component of fluid velocity. The necessary co-
streamline for given pipeline is calculated. ndition (1) can lead to separation of flow if
Stagnating zones and reverse motions are obta- in the same region pressure p increases to-
ined-as well. On the second stage we construct wards the flow, i.e. is valid condition-
one-dimensional equivalent model of viscous >- 0
fluid motion-along streamlines which takes in- XIS - (2)
to consideration the narrowing of area of tra- The sufficient condition for separation of
nsversal section by stagnating zones and reve- flow is
rse motions.Solving the initial-boundary value iU o
problem for equations one-dimensional equiva- an.S , (3)
lent model we obtain the subdomains of the pi- where u is longitudinal component of fluid ve-
peline at which are valid the necessary condi- locity.
tions for separation of flow. From (I)-(3) it can be seen that to find the

The aim of third stage is the control of suf- sections of pipeline in which are valid the
ficient conditions for separation of flow. For necessary and sufficient conditions for sepa-
that purpose the system equations of hydrody- ration of flow it is necessary to know the ve-
namics for boundary layer of bent e.pes the locity and pressure fields in the pipe. To ob-
transversal section of which is near to circle tain those fields we have to solve the initi-
is derived. For that system We solve initial- al-boundary value problem for the full system
boundary value problem-only in those subdoma- of hydrodynamic differential equations [3].Ho-
ins of the pipeline at which are valid the ne- wever obtaining exar-t solutions of such prob-
cessary conditions for separation of flow and lems is impossible. Numerical integration of
thus check sufficient conditions for separati- those problems even for simple regions demands
on of flow. so much computing time that the obtained re-
The-application of described method permits sults become insufficiently reliable in consi-
to construct the pipelines with small -energy quence or the atd .ulation of errors of calcu-
losses because it is possible to prevent sepa- lations. This situation becones more complica-
ration of flow.The decomposition of separation ted if it is necessary to optimize system pa-
of flow problem decreases considerably the ex- rameters because it demands multiple computa-
penditures of computing time. tions for initial-boundary value problems.

So to solve separation of flow problem we
I. INTRODUCTION propose a method of decomposition which con-

sists in three stages. Main idea of the first
Under some circumstances of the motion of two stages is to represent outside to boundary

fluid in the pipes can occur separation of layer flow as one-dimensional one along stre-
flow and that phenomenon leads to sharp change amlines and with the help of such conception
of pressure, speed and temperature of fluid to find the parameters of outside flow. For
compared with their values without separation. that purpose we construct one-dimensional equ-
Most essential cause Which leads to separation ivalent model or the motion of viscous fluid
of flow is the form -of channel especially in pipe E43.
sharp change of its transversal section [11.
The separation of flow leads to essential in- 1I. FIRST STAGE

crease of the resistance of fluid motion in
the pipes. Therefore constructing pipelines It is known that equations of motion of per-
with small energy losses it is necessary to fect fluid are one-dimesional towards stream-
create such form of channel that separation oi lines. In case of viscous fluid the equations
flow should not occur, of motion are one-dimensional towards stream-
To solve the problem of creatign pipelines in lines accurate to term whi-h takes into consi-

which the motion of fluid occurs without sepa- deration the rotation of velocity field [43.
ration of flow it is not necessary at full me- The full system equations of hydrodynamics of
asure to elaborate mathematical modl ot sepa- viscous fluid .s singularly perturbed one and
ration of flow. In that case is nucessary only if A=0=0, where A and r are constants of Lame,
to answer the question: occurs or does not oc- becomes full system equations of hydrodynamics
cur separation of flow in given pipeline under of perfect fluid. It is known,in the theory of
given parameters of fluid which flows in pipe. singularly perturbed boud,,ry value problems,
Last problem is essentially simpler and its the differens between solutions of perturbed
solution can be obtaind by methods of hydrody- and non-perturbed problems has order O'") or
namics. At present paper is suggeted the met- O(W9) everywhere with the exeption of boundary
hod for solution such problem. layer which thicknesr has the same order.
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On the first stage of decomposition we find transformation =R-r.We introduce as well the
equations of streamlines for three-dimensional transformation to undimensional variables
motion of fluid in pipe. Above considerations (with asterisk) with the help of scaling
permit to find those equations by means of so- x=Iox; 4 = 0  = VV ; V= ;lving initial-boundary value Problem-for per- Ve 0 =os # a=0 4 Y=O ° 0 0 t=t~t ;feet fluid. After the velocity field for per- k=kk ;T=T (5)

feet fluid is obtained we average that one for and conditions of connection
time of activity of pipline, calculate length t"- 0 /V ; pU_ ; = o ; l//j,'V /Vx=
of every average streamline and calculate ave- V o/,I 0 =V/ ; = ; k=RN/y. (6)

rgleghof streamlines in-ieline. )v 0I 0 Z ~ 0(0Z

rage ength fppi. Executing in full system of hydrodyramic dif-
ferential equations all of these transformati-

W. SECOND STAGE ons, evaluating every term and neglecting the

terms which are sufficiently small compared
On the second stage there we construct one- with unity, we derive system equations for bo-
dimensional equivalent model of viscous fluid undary layer (again in dimensional variables)
motion in the pipeline. The length of one-di- . ! =o
mensional region of motion is equal to average J' g
length of streamlines. The main task for crea- 2P - Y __

ting the one-dimensional model is to take into + f "3 jjon do' oe don -Y '9X uo o r
consideration the influence of the forces of O 8f' vVdil, V Ax. _7_X
friction on the motion of fluid in pipeline. -Oil
That model is not ordinary consequence of ?60 VY).=d
three-dimensional motion of viscous fluid un- -07 )- x
der only assumption that all functions which 0 n, vT F ,.
are inserted into equations depend on one spa- O,-j 4 - -

ce variable but is more complite one. It takes vf Ax d'PI i&
into account, in particulari the 4hange of the = / ,

area of transversal section and perimeter of 'L.I8 7/ i--*-j - (7)
pipelines towards the flow (along x-axis)- and Now for the solution of separation of flow
the heat exchange with the walls -of pipeline problem we have to solve initial-boundary va-
and is described by following equations [43 lue problem for system (7) in boundary layer.

J&s@)+ ,, (oV + S ( i V2 The motion of fluid oitside boundary layer
td with the high degree of accyracy can be desc-

- VS)>WO ribed by parameters of one-dimensional equiva-
Slent flow. After solving such problem we can
i//-IoxpVS(2 +Y'} verify the satisfaction of conditions (1) and

(3). If those conditions are valid it means
4 V / h (7- WO =D that form of pipeline have to be changed and

for new form we have to solve again the same

,P f 7IJ(4) problem.
It should be noted that in one-dimensional This technique can be applied as well for

model there are taken into consideration addi- bent pipelines with near to circle cross-sec-
tionally the results of solving of three-dime- tion.To take into consideration of centrifugal
dsional problem on the first stage.By means of forces the first equation (7) has to be writ-
analysis of velocity field in the pipeline, in ten as
particular, we discover stagnating zones and _ ___0__,_____Y

reverse motions and using those results make 840 RX)+A (/- wf)
correction of geometrical values of area of and to right-hand side of second equation (7)

transversal section and perimeter of the boun- must be added the term
dary contour of pipeline. Y
As the result of solving initial-boundary va-
lue problem for system (4) we obtain the valu- where

es which characterise motion of viscous fluid
in pipeline. In particular, with the help of
function of pressure p(x,t) we can discover The method which has been proposed permits to
sections of pipeline in which condition (2) is create packaged programs for analysis separa-
valid, i.e. such sections where separation of tion of flow in the pipes. Using that programs
flow may occur in principle, we can design pipelines with small losses of

energy because of that phenomenon there do not
IV. THIRD STAGE occur.

To answer the question whether separation of REFERENCES
flow really occurs we have to solve three-di-
mensional initial-boundary value problem for l.Chang P.K.Separation of FlowPergamon Press,
full system of hydrodynamic differential equa- Oxford,1970.
tions. However, taking into consideration that 2.Chang P.K. Control of Flow Separation, Hemi-
separation of flow occurs only in boundary la- sphere Publishing Corporation,Washington,1976.
yer, it is sufficient to consider that problem 3.0stapenko V.A.On the putting of initial-bo-
only there,moreover only in those parts of bo- undary value problems for motion of gas in pi-
undary layer where condition (2) is valid. In pelines of internal-co,.bustion engines,"Hydro-
its turn the small thickness of boundary layer dynamics and Theory of Elasticity", Dnepropet-
permits to simplify equations of motion in it. rovsk,DSU,42-47,1987 (in Russian).
Let us consider equations of hydrodynamics of 4.0stapenko V.A.Equivalent model of motion of
viscous fluid in cylindrical channel with cir- viscous gas,"Dxfferential equations and their
cular cross-section of radius R,. Let us int- Applications to Physics",Dnepropetrovsk,DSU,4-
roduce cilindrical polar coordinates r,f,x and 13,1990 (in Russian).
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COMPUTATIONAL ANALYSIS OF THREE-DIMENSIONAL
SHOCK-WAVE/TURBULENT BOUNDARY LAYER INTERACTION

A. KOURTA and H. HA MINH
Institut-de M6canique des Fluides de Toulouse

LN.P.T.- U.R.A. C.N.R.S. 0005
Av. du Prof. Camille Soula, 31400 Toulouse-Cedex-FRANCE

and
Centre-Europ6en de Recherche et de-Formation Avanc~e

en-Calcul Scientifique (C.E.R-F.A.C.S.)
42, avenue G. Coriolis, 31057 Toulouse-Cedex FRANCE

ABSTRACT: IL GOVERNING .EQUATIONS
The topic of this paper is the prediction of If we consider the case of homogeneous -flow exclud-

three-dimensional- flows and the analysis of shock ing chemical reactions or very high temperature effects,
wave/turbulent -boundary layer interaction. For these, a the full- Navier-Stokes -equations- constitute a good physi-
two-step method based 3n the MacCormack scheme has cal model. This model describes conservation of mass, mo-
been -used. The averaged Navier-Stokes- equations -with mentum-and total energy. With the mass-weighted aver-
turbulence model (BaldwiLomax ) were solved numeri- aged Navier-Stokes-equations, a-turbulence model is used
callyin a general-coordinatc-system for three dimensional to relate the turbulent flux terms to the mean flow pa-
turbulent flows. The numerical computation was per- rameters, through the use of an eddy viscosity coefficient.
formed for a 3D- channel flow. The configuration is the The turbulent viscosity is obtained by-the Baldwin-Lomax
same as the one studied experimentally at ONERA [1], model- [4].
(2] in a wind tunnel. It consists- of a bump mounted in
the -lower wall. The countoured portion of the bump is III. NUMERICAL METHOD
at an- angle of 60' with the upstream flow. The flow is The-numerical method is-an explicit version of a Mac-
thei,- highly three-dimensional. The features of this flow Cormack scheme [5, 6]. The predictor and corrector struc-
are predicted. A detailed description-of a_3D interaction ture is- used. For each time step, an explicit increment is
and a complete analysis of the physical phenomena and evaluated by using the forward or backward approxima-
the comparison with the experimental results are done. tions-for the inviscid part and- the central difference for

I. INTRODUCTION the-viscous terms.The scheme is-a finite volume, cell cen-

Several Navier-Stokes codes have been developped'in tre method.

order to calculate two or three -dimensional viscous com- In order to -improve numerical efficiency, the sec-
pressible flows, the three dimensional code is needed when ond order accurate flux splitting has been included in
we have to analyze complex-fluid flows. The study of three the method. The flux splitting was motivated by one
dimensional flow has become a-subject of-significant im- need for a better description of discontinuities and a more
portance in the aerodynamic. rigourous treatment of the boundary conditions. The flux

The purpose-of this investigation is to develop a code splitting used here-is close to the one developed by Steger

based on-a MacCormack- method- for solving the compress- and Warming [6, 7].

ible Navier-Stokes equations -to solve three dimensional
turbulent flows. IV. RESULTS

The aim of this study is to test the capability of this The numerical method, described above, has been ap-
code to simulate 3D shock wave/turbulent boundary layer plied to the calculation of the transonic flow in a three di-
interaction. This phenomena is one of the interest gaz dy- mensional channel. The forth boundaries are:treated as a
namic -problems. The effects of such interaction are the in- no slip boundaries. Given the total pressure and-total tem-
crease of the aerodynamic drag and the possibility of buf- perature, the inlet flow angle and the outlet downstream
fet onset. The natural consequence of this interaction is static pressure, calculations are performed. The same con-
the separation. Hence, experimental investigations[I,2,3] ditions used in the experimental study were implemented.
were done to provide a set of data and to analyse this The total pressure is 92 kPa, the total temperature is 300
interaction. K and the Reynolds number at the sonic state with the

In our case, the numerical computation was per- throat width as length scale is 1.13 * 106.
formed for a 3D tr.tnsonic channel flow. The configuration The features of this flow are predicted. Figures (1)
is the same as one studied experimentally by BENAY ct al and (2) show iso-Mach lines in the longitudinal vertical
[1] in a wind tunnel. The flow is highly three dimensional planes, at two different sections. These plots reveal the ex-
withi the strong shock wave/boundary layer interaction. istence of the lambda shock comprising of a front oblique
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shock and-a quasi normal rear shock. The second foot of [5] MAC-CORIMACK R.W., Current status of numerical
the lambda shock is not very intense-as-it-is in a two di- solutions of the Navier-stokes equations, AIAA Paper 85-
mensional configuration. The-system-of the shocks is gen- 0032, 1985.
erally associated with a strong interaction entailing sep- [6] MAC-CORIMAC* RV.W. A numerical method for solv-
aration. The length of the-separation zone in this case ing the equationb-of compressible viscous flow, AIAA pa-
is smaller than in a two diemensional configuration. The per 81-0110, 1981.
-results are in good agreement-withzthe experimental data. [7] STEGERJ.L., WARMING R.F., Flux 0ector sphtting
The-main difference-with-2D shock-wave/boundary-layer of the inviscidgas-dyiamcs ejuatX.iis witli application-to
interaction is that in a-3D situation, the flow can take a finite difference method, J. Con.p. Phys. vol. 40, n* 2, p.
transverse or crosswize direction, and consequently when 283, 1982.
separation occurs -we- generally do-not observe recirculat-
ing bubble -in the streamwise direction.

Isobar lines on the bump-are shown in figure (3). It
reveals a nearly two dimensional incoming flow which is
turned by a shock forming slightly-downstream of the top
of the bump. In this figure the shock foot is observed. \ I
At the shock foot, interaction with the boundary layer _ I _i.
takes place entailing separation. The three dimensional .
Character of the flow can also be observed downstream of ____"-___

the top of the bump.

Comparison to experimental data is given in figure Figure (1); Macli 11uuLiber contours Y=27.mrn
(4). In this figure-we plot the Mach number profile in one
section before-the shock. The-agreement seems to be good
in the external inviscid-flow. In the near wall regions, the
-calculation overestimates the thickness of the boundary
layers. This is due to the overestimation of-the turbulence .4
viscosity and perhaps to the coarse meshi used. rrr/ 7 -- ~

V. CONCLUSIONS
A three dimensional code based on a Mac Cormack ,.

scheme has been developed. It has been appfied to the
calculation of transonic turbulent channel flow. The fea-
tures of this three dimensional flow were predicted and Figure (2). M 1it t u tubei .oitours Y=89.mni
the shock-wave/boundary-layer interaction was analysed.
Due to the calculation of turbulent viscosity, the thickness
of the boundary-layers is larger than-the experimental one.
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The Theory and Computation of th2 Second-order Water Wave Forces upon a 2-D Floating Body
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Abstract:In this paper,the expressions of the second o Since the floating body is impermeable, we have

order water wave forces upon a 2-D floating body are
derived with the perturbation method,and the numerical Iln=Vn,on the surface of the body
computations are carried out with the boundary element
method at the same time. Compared with the results of Through analysis, we obtain the general free
the experiments and of the calculations done by other surface condition
researchers, the present results are more resonable
and accurate. t+gIy+2hLdJx +21lIlyt+Illxx+IIlyy+21Lxy"ldly 0

I. Introduction At the bottom of infinity, we have

These years, with the rapid development of the Lim ily = 0
ocean engineering~much attention was paid to the
nonlinear water wave theory. This is because that the Besides, a radiation condition should be imposed
water wave forces are the most important loading to at infinity,i.e. the diffraction waves must be
many marine structures such as ships and drug platform propogating outward from the body.
as well as some offshore structures. It is known that
a body will be subjected to linearand nonlinear force. III. Perturbation Analysis
In regular waves,we call the latter second-order
wave forces which include two parts,the steady For infinite deep water, the potential of
drifting forces with frequency equal to zero and the incident wave Hz can be expressed as
biharmonic oscillating ones with twice of the
incident wave frequency. Both are veryimportant i,= ga/(iw)*exp(ky+ikx-iwt)
factors and need fully consideration. in which w,k,a are wave frequency,wave number and

wave amplitude respectively.
Early in 1960,Haruo,n[l] obtained a general Let e=ka be the small wave slope, by means of

expression for tne horizental steady drifting force of perturbation technique, the potential If has the form
a 2-D body,which is proportional to the square of the II(x,y,t)=Re[elsexp(-iwt)+e*e!cexp(-i2wt)]
reflected wave amplitude of the linear solution. His
work was generalized later by Newman[2] and Faltinsen Since the amplitude of Sl(i=d,2,3) are also very
[3], It is reported that there is a good agreement small,so we have
between the results of experiments and of calculations
with this method. But it cannot predict the biharmonic sin(S3)=S3+ O(e*eee)
wave force which also covers a considerate proportion cos(S3)=1-0.5S3*S3+ O(e*e*e)
in the total second-order wave forces. Thus,

In 1980s, a more direct investigation was carried X = Sl+X-YS3-XS3*S3/2+0(e*e*e)
out by Kyozuka[4]. With the boundary element method, Y = SZ+Y+XS3-YS3*S3/2+0(e*e*e)
he had obtained the solution of tne diffractional and Similarly
radiational problems in regular waves. Recently,the n,= an_rS3-n,S3*S3/2
problem of a fixed 2-D body in regular waves was n,= n+_S3-&S3*S3/2
studied by Liu & Miao[5J,they introduced the Dirac Since Vn=Sln,+S2n +S3(xnL-yn)
function to the inhomogenous free surface condition ( where tne ovtindot-denotes the xn rivaton about the

and found a complete and consistent solution for thc time t.),Let the instantaneously wetted contour of
second-order diffraction potential. the body be C(x,y,t) and in still water it takes tne

In this paper, the problem of a free body form of Co(x,X). Following the same procedure, the
floating in regular waves is investigated. It is an free surface condition can oe written as
pofound research which is an extension of the previous [Hnc=(Ixn +Hyn )c ,i.e.,
work. The problems are solved respectivelywhich (Hnll jvQi ni...,
include the second-orderdiffraction of incident waves (ln )c=Q3(i?1(x,y)nx-Hy n,)-(Ql-Q3 Y)[dxx nl+A, n2J
and the coupled effects of the first order motions of -(Q2+Q-x )Tiy nT+h'y n2]=frx,y) y
the floating body on second-order wave forces.

where Si=e Qi(x.y) exp(-iwt)
II. The Governing Equation and Boundary Conditions Le t =H+ti*,j, (i=l,2,3),in addition it must

As depicted in Fig.l,the two Cartesian coordinate include first order diffractional potential

systems are related each other by the following The equations of different orders are
expressions: 15t:-id=O,jn fluid domain

X=SI+Xcos(S3)-Ysin(S3) d,
Y=S2+7Xsin(S3)-:Ycos(S3) HIdy-kIH=O, at y=O

where SI,SZ,S3 are,respectively, th3 excursions in X iiAn=-Hxn, on Co(x,y)
and Y directions and rotation of the body about the
origin 0. Lira 1l1y=0

i e assimed that the fluid is imcompressible and
invicid, the flow irrotational; thus the motion of the lim (lldx+ikld)=O
fluid can be described by a velocity potential it,and and
tae governing equation is the Laplace equation: Ji=O, in fluid domain

V'A i6(x,y,t)=O
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Jiy-ikJi=O, at y=O ATb=fc. x Ydy, A is the submergerd area of the body
Jin~i, o COLaiid Iw is the moment of inertial of wetted section

Ji'i o oxX) about the x axis. ~,OF
Lim Jiy=O0 Since T =Re[ e F exp(-iwt)+e*e(0F exp(-i2wt)1

Lim(Jx~iki)=Oand F = -pl c (HI +gy)nidi,- so the expressions of
forces with different order will be derived easily

The first order problem can be solved with the and is not listed here,readers may be referred to
Frank method numerically. (7].

2nd order:
'e1R =0, in fluid domain V. Results and Conclusion

lily -4k II. =-0, at y=Ov As depicted in Fig.2, 11=2.0(m), h=0.8(m), A=0.76
Yg--0.031,Iw=0.667,I=OB.30,k=l-.0(Im),M=77.52(Kgm)

[Hln ]c =~f(2E,y)-112n-IIUn, on Co(x,y) p=102,g =9.8l,Yb=O.82Z9.

Lim Ilily = 0 The computation results are showed in Fig.3 and

Lm(iflx kII - Fig.4. It was .carried out on the vax-1l/750 digital
Urn - A k 11) mOcomputer in Shanghai.

= 0, n flid-dmainFrom these computation,we may clearly found out
112y 4k12 =-PI(x, -at-y=0 that th -e present results seem agree rather well with

LimlI~ = , yappoaces nfiitythe experimental ones. Thus,we may conclude that
Outgoing waves--at infinity 1. The magnitude of biharnonic forces have the same

order compared with the steady drifting
V 113 = 0 , in fluid-domain £orces,further more, they reveal the oscillating

113y - 4k113 = -P2(x), at y0O nature of high order forces.
lirn 113y = 0, -y approaches infinity 2. The presen theory can be used to predict the wave
Outgoing waves- at infinity forces in irregular waves combined with Fourier

wher P=iwI )[ V1+ ) "( 47 i' )] and analysis and application-may also be found in 3-D
g r y calculation by means of method- of stripping in

P1= -4ik*kac[11W -ff'd/dnJexp(ky'-ikx)-dl, x~f-B/2 seakeeping theory.

pl= 0, x~r -13/2
and

p2=p-pl-I4 1

It is clear that III will. he found out with the same-
process used in 1st. order- once the potential 112 and -113
has been solved. Here are the solutions of 112 and 113 Fig.l i.
(The process was omitted for brevity) P. f'~
H12 =-sgn(x-J32) (PI/4k)exp(4kyi-i4k x+B/2 )-rPlI4k 1.0-

+Sgn(x+B12) (P1/3.1416) -- ~ a,
f[mcos(my)+4ksin~my)]/(m +l6mk) exp(-mnx+B/2).dm 0.5- -- eriment

where sgn(x+B/2)=-l,r=l, when x'-B/2 * -present I.

sgnx+B2)4 r0, henx'-12Fig.3 2nd order drifting Faig.4 2nd order-heav-
112 approaches -Pl11813.14156 when x approaches -0. force( Steady )ing force(biar.)

113 = Re-(1I3.1416)jP()s PV xp-vzjs Reference
/(v-4k).dv -irj2(s)exp(-4jkz+4jks).ds] 1. 1,iiaruo, The Drift of a Body Floating on waves, J.

where z=x+jy and PV. denotes Cauchy principle Ship Res.,Vol.4, No.3, pp.1-10, 1960
integrates. 2. J.N. Newman, The Drift Force & M~oment on Ships in

Waves, J. Ship Res., Vol.11, No.3, pp.20-29,1967
IV. Equation- of 1st order hotions 3 ~'ihle, ioin o ag

Accodin to heoem o Netonwe aveStructures in Waves at Zero Froude Number, Symp.
Accodin to heoem o Netonwe aveof the Dynamics of Marine Vehicles & Structures in

H (kI -Yg S3)= e Fl Waves, London,1974.

M S2 = e FZi- pgA - Mg 4. Y,Kyozuka, Experimental study on 2nd-order Forces

I S3 -Mg Yg '93 +,M(gSl- Yg SI1) = e F Acting on a Cylindrical Body in Waves, 14th Symp.
on Naval Hydrodynamics,iiichigen,U.S.A. ,Aug.23-27,

where H and Yg are mass and coordinate of the center Session III & IV, Preprints pp.73-136.
ofgaiyi Yxsad1fc.(x YM f h oy 5. Liu Y.Z. & Nino G.P., 2nd-order Water Wave Forces

In still watwr,the body is in equilibrium, that on a 2-D Body, Chinese Ship Building, No. 3, ppl-
means gj g =pgA. where p is the density of fluid. By 14, 1985.
using pressure equation we finally obtained 6 ioGPScn-re aeFre naClne
-w M+D11)-iwGI1, 0, 1w(3-]g-w~ of Large Diameter, Chinese Ship Building, No.3,

0,-w (H+D22)+pgfl-ivG22,0 pp.12-34,1987[ D3j.j~)i~3 0, -w (I+D33)-iwG33+pgwpgYb.Y.) 7. Tang L.,Miao G.P. & Liii Y.Z., Second-order Water
-0WW13ig)il, __ ave Forces on a Floating Object, J. of Shanghai

*jlQ,3=pET1,T2,T-3iT University of Technology,Vol.Lt, No.6,1990.

whee ij+(lw)ijpc~njd ,(~j42,3 & Lamb it., Nydrodynamics,bth Ed.,Cambridgc Press,
tj .r+il )(iw)njdl,D~ij and Cij are called the19.

added masses and coefficients of damping.
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ON PERMANENT CAPILLAR-HEAVY
WAVES IN FINITE CHANNELS

NABIL MOUSSA
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The American University in Cairo, P.O. Box 2511, Cairo, EGYPT

Abstract-This work is based on the constructive exist- We have xzX+ct, y=Y with c the speed of propagation of
ence prUof of solutions of a comprehensive class of the wave in the sense of Levi-Civita. The free surface
nonlinear free boundary value problems of plane hydro- yo(x) satisfies
dynamics by E. Zeidler (5] and a general computational
method for constructing the solutions numerically given (1) yo(X) = Yo(X); Yo(X+ Yo(X);
by the author [3]. The case of permanent capillar- X/2
heavy-waves in finite channels will be considered. (2) f yo(x)dx = 0

-X/2
INTRODUCTION AND NOTATIONS The flow potential W(z)= +i in x-y system will be

normed through
After formulating the boundary value problem in the

stream plane in section 1, we apply Levi-Civita confor- (3) W(iyo(O)) = 0
mal- mapping to get a nonlinear boundary value problem As the free surface and the channel ground are flow
on the circular ring and transform the problem to an lines, then
operator equation in the Banach space CV in section 2.
In section 3 we formulate the statement of existence (4) O(x,yo(x)) = 0; O(x,-h) = -00 < 0
and uniqueness. The general computational method for with p , 0 the flow in the moving system.
constructing the solutions will be used in section 4 0
and in section 5 the solutions in different orders will For the velocity F1'=u+iv let us assume, as Levi-Civita
be computed, proposed, that
For the function f(p,o) defined in the open circular (5) W'(z) eiw , w o + iT, a
ring E-1={;:q<jlI<l:4= peia), the symmetry behaviour where o(p,)) = 0

will b2 denoted by c c ao(eT( )) +02(r))
fcC:f(p,-0) = f(p,a); feU:f(p,-a) = -f(p,G) (6) w i zn(W'(z)/E)

with f(l,o) = f(o). o = arg(u+iv), el = /u2 + v2

For the Fourier series of f(a) Consequently, we have the following boundary value

problem:
f a + Z (ak cos ko + bk sin ka) Find yo(x) satisfying (1) and (2) such that in the flowwe huregion G=fz:-h<y<yo(x)) there exists a holomorphic func-we have the closure condition tion W(z) = + ip satisfying (3) and (4). This func-

o /'f do = tion satisfies also

-T (7) y = -h: Im W'(z) = 0, i.e., e = 0
Further we define the following operators (see [I]): on the ground.

a Along the free surface the Bernoulli's equationTf = f - ao(f) ; Jf = T I Tf da ; ()gy )+ iI(zI+p K
0 Y = Yo(X):gpyo (X) + jpIW'(z)l2 + p, = Ko

Kfa cot e (f(a')-f(a))d' ; (8) = - do

qk is satisfied, where v is the density, B is the surface
q = f sin k(a - o')f(o')da' ; tension constant, pi and po are internal and external

T k=l I - pressures respectively.
W 2k Id 2. Conformal Mapping and Back Transformation

q f r sin K(a -')f(a')da'q 'IT k=l I -; Due to periodicity of W(z) we consider the strip

Xqf = Kf+ Wf ; O<q I G -A , -h<y yo(X)

and the following Stoke's parameters It follows that

Sk = q-k +q ; = q-k qk G:- C0
I + q2k - q is -t
1 U k ; wk(q) = k tk(q) is the conformal mapping using W(z).k I - qq Then we map the strip G, using

Or(oT ) will denote regular power series with power =ei e. 2
-TiW/c xgreater or equal to r in o. =  =g. Problem Formulation 

to the circular ring q = e 2n ,//cx  J14,j1 with a cut onthe negative real axis (see Figure 1).To describe permanent capillar-heavy waves of an ideal The back transformation will yield the free surface
homogeneous incompressible liquid in a finite channel, F

we follow the method of Levi-Civita (2] by considering x = - . clc i e-T() coso(a)d
the two systems of coordinates: 0
(i) The noving x-y system in which the surface seems (9) 0

to rest; y - c/ e-'(0) sino(a)dg + yo(O)
(ii) The X-Y rest system in which the liquid is rest- 0

ing on the ground (see Figure 1). where yo(O) is to be determined using (2).
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The Bernoulli's equation (8) will be transformed in see [5]).
rc-plane to 4. Construction of-the Solutions

(10) P(YoO)- 0 e-T(C)sine(o)do)+Juc 2e 2T(0)+pi=Ko Using the Method of Zeidler 15 we apply the operators

0 0 T and J to the functional al(e,T) to get
which is equivalent to

(20) a'=-1 + a E-1 + z s
sl(IzI=l):b do = el~aeT)-peTfo e - sineodo zl

1o 0 Our problem can then be formulated as:
(11 q(Izj=q ):O(q,o) 0 0 = pJX o 1 bJ20 + JN*(O,r); ao(N*) = 0

with (21) with q

C g 3 .c/Z3 ,a = 2(,y()p- 0  ; 2.6B N*(8,T )=p(T-sinh- Ct + b(e Je sine - Jo)
p rC2  U ZMC Let p~pn,bq+c* The pseudoresolvent R ~~ will then

As OCO, 'reC, we apply the operator T to the inteprand be given as
and get - do= eT+ a-e' - be R .e- sn b=(I l -PnbqJq b2 -n_

Si: =~(e' + 'rJe'rsine(22) witqh ~ bq
Sq :O(q,o) =_0 Pno = bn (O)sin no

(12) withc a paf ersn d) It follows that

b n 2 0 0 = nlbq if
b=(gX2pj/4r20)(c2/E ) (23) with

The transformed boundary value problem will then be: f= -C'r + N (0,T)

Find a function w(;) = + irCC(G) with ecU, 'icC and We set (20) in (23) to get
the norm condition ao('r)=0 which satisfies (12) on Sl (24 fI
and Sq.(4 f ~= E f
A necessary condition for the solution of this bound- andZl

ary value problem is -~(25) 81 Rn~~ if x 2,3,...

0= ot~e'r+ a'r - e' J siel5. Computation of the Solutions
whih ieds2b a o(e~' ' ie 0 er We consider the case n=1 of primitive waves, from

(13) a' - 0T which we can calculate the non-primitive waves nl.
p a 0(e'r From (22) we have

Replacing the constant a' in (12) by the functional -k(dk+l + d k.l)ak(f)
a'(e,-r) and integrating using the operators T and J, we kil:bk(Rbq Jf)= dklk)(b+dli-(k)
get the operator equation (26) klk1(-)dkl(~)kb

(14) e =pJXqo + bJ20 + JN(e,r = Xqe) and b1(Rl~bq Jf) = -al(f)

where N(e,'r) is an expression of the form 02(0,'[). The algorithm consists of two steps:
The linearized problem (i) As ao(N*(O,'r))=0 and ao(r)=0, it follows from

2 (23) that(15) e = pJXe + bi
has the solution (27) ao(ft) 0

(16) p =- n2 + b si-o =,,. from which we compute a -
Pn,b,q = 'FT 

0 ' = siOnnl,,. (ii) As b1(e) = s,Zwe have

3. Statement of Existence and Uniqueness (28) b1(0.. X 0, 1 2,3,...

Given~I n(qq withT 0 (q) n b~ from which we compute Cr1Givn ~q~ wth0 -q an br- n -kZ there Expanding f(o,'r) to the third order gives

exist numbers r0,so 0  such that no gie- swt f=-c'r- P 2 z'-bJOti-bTJO + 2 (- +
IsjLso exactly one soution ecC,(U) of (14) exists (29) r T- r +- ~
which satisfies the condition T

1 .1 ~+ bTJTo +b-J
11ell, I r0 , bn(O) = S, IP-Pnb,q' n2bwt ~,+c d/l(~)+

For s/0O, p is uniquely determined: Pn 2+bq -w weP cosie th firsts1 three orders of the

while for s0O only the trivial souto o= xit solutions: P
Thesoutin anbe ivn a a solutn con0eexist (a) First Order. From (29) we have fl= f-a 1 . From (27)

Thesoltio ca begivn s a aboluelyconergnt we have a,=O and we already know that the linearized
seres n C(U problem has the solution

(17) 0 = s sin no + 7 5' 0 (0 ,=sn, T oiwt ,d

AS Tt _Xq". the series (b) Secoad Order. As r-l=O (£cm.l=0), we have
SPO- = Po_ bf, 3bil

(18) T= - U-s cos n-t + Y s4 r, fz- T 2 bJa1' -b1 J~1  - 1 -2 -7 - -2-- COS 29
-2 ~Fromi (27) we g~t a2 -b-,1/p0  , consequently

converges absolutely in C,,(C). Also f2 =-3f14( 2,1). Using (23) we get

(1) P = n,b,q + zyS#

is absolutely convergent with w ~~ (for the proof
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0 2 = 62 sin 2a, 12 y262 -cos 2a y
(31-) wi th 3(s3 + 3s,.)b

62 2(d3(brZ) - 3d1(b+2)) ' 'f2 s21d2  z x

(c) Third Order. From (29) we haveV

f3 -c2r1 - T_- a3 2 7 - bj(e0g 2 + 02)-bT 2Je1
bT1 Je2  + bJ( -- 1 - = + TJ I + bZ 21j e -=

After rewriting--all products in terms of trigonometric
polynomials, it is sufficient to consider the cos
terms:2

3 k Y1l
f3=Cos a (c2yl - T~ y162b i + u:)

Beside those terms there will be constants and terms in x
cos 30.
From=(28) we get al(f 3) =0 which yields

(32) 3 - 6 b-- b _Y1

The solution of our problem will then be

0 s sina + 62 ) i a (
(33) T = -YlS -cOSo - Y26s2 Cos 2a + 0(s) *= '+2

1l+ b 3 b YI 2 4 _ _ _ _

P=7T7+ (i 62b Vyl -8'-) s + Q(s )- - * -

This -result agrees with-our result in--the case of in-
finite channels when-q+O (S-ee [4]).,--
Through back transformation we can-get all physical

=parameters as well as -the --equation of the free surface
YONx-.
Simple integration -will yield

(34) yo(x) "1 cs x+ 6+ r 2  4-.r +
Cos L x + (62+-)s Cos-x

+ 0(s 
3)

';=exp(- iW
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(1] Fatou, P.: Series trigonometriques et series de
Taylor, Acta Math. 30, 355-400 (1906).
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COMPUTATION OF TRANSONIC FLOW BY PASSIVE BOUNDARY-LAYER CONTROL ON AN AEROfOIL.

by

R.K. Cooper, S. Raghunathan and J.L. Gray,
Department of Aeronautical- Engineering,

The Queen's- University of Belfast,
Belfast, Northern Ireland.

Abstract - A computational method used to calculate ,hocKs .vith an extendeJ interaction region. This
the transonic flow o.er an aerofoil with passive will reduce the wave drag. The suction downstream
boundary-layer control is described briefly. Both of the shock can also reduce separation and therefore
the computational and experimental results show reduce viscous losses. The porous surface and the
that passive control can reduce both viscous and cavity can also damp pressure fluctuations associated
wave drag ofraerfoils in transonic flow. with shock wave boundary-layer interaction.

1. INTRODUCTION The conservation form of the two dimensional
comnressible Navier-StoKes equation in cartesian

Transonic flow over an aerofoil contains super- co-ordinates without bouy forces or external Leat
sonic regions embedded in a subsonic field. The transfer con be written as
supersonic flow invariably terminates in a shock u @E 3F (
wave. The formation of shock waves cn an aerofoilat+ L+ L= 0
gives an additional pressure drag (wave drag) to F

the subsonic pressure drag. The sLack wave also where the vector eq ation comprises conservation
imposes Rn adverse pressure gradient on the of mass, momentum and energy.
boundary-l aye,-.

The anproximations mcde to the above equations
A control technique which appears to show some to reduce computational grids and time in the order

promising results for a substantial drag reduction of reducing accuracy are (i) thin layer
in transonic flow is the passive control of shock- appr .4ations (TLA), (ii) parab)lised Navier-Stokes

boundary-layer iThis paper (PNS), (iii) Euler equations, (iv) full potential
brsntaabrief review of co(PCSB). appape flow equations and (v) small perturbation equations.
treses a compuaion appache Whereae (i) and (i=,) resolve viscous terms in the
to the solution of transonic flow with passive flow to some degree of approximation, (iii) to (v)
b y y nneglect the viscous terms. The viscous terms can

2. THE CONCEPT OF PASSIVE COTROL OF SHOCK-BOUNDARY be resolved by coupling (iii), (iv) or (v) with

LAYER INTERACTION equations based on boundary-layer approximations.

The concept of PCSB as originally suggested by 3. COMPUTATION OF TRANSONIC FLOW WITH PASSIVE CONTROL

Bushnell and Whitcomb (see Ref.l) consists of a Some of the methods mentioned above have been
porous surface and a cavity or plenum underneath Se o te thodsonioned ove a een

located in the region of shock bcundary-layer inter- used to compute transonic flow over an aerofoil

action (Fig. 1). It is suggested that the static with passive control. These are described briefly

pressure rise across the shock wave will result here.

in a flow through the cavity from downstream to
upstream of the shock wave. This -s equivalent 3.1 Transonic small disturbance approach

to a combination of suction downstream and blowing
pstream of the shock. The cavity would also The equation describing two dimensional invicid

increase the communication of signals across the irrotational transonic flow around a thin aerofoil

shock wave. These efiects would lead to a rapid in transformed &, n co-ordinates in non conservative

thickening of the boundary-layer approaching the form can be expressed as

shock which in turn should produce a system of weaker K y -+l 142 -2 c= 0 (2)

M=I.3 L St¢O Shock

Separated 213
(a) Tu,bulent oirtow where K = (l-M )/'r

b cnd = i(cv,), ' tic, = x/c

Amfot,. withoujt Pam3Iv conltrol. y~c =

M4. IWek.gocs where b is velocity potential, c is aerofoil chord,
M--- "I/3 A is thickness ratio, M~ free stream Mach number.

(a) Turbulent / t otow The boundary condition on a solid surface is
boundary toIAtdhdi 

h ck e s r toMoere 
s ra ac u br

Plenum (3)
Porous surface creates I eCrc.tifl OIrf IOw

on inler.o ; communication acros$ the s c. ",oves
AertfOlt v POssive conOtro

Fig. l.The concept of passive boundary-layer control
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The equation can be solved by a successive line
over-relaxation procedure with a central difference Typical results obtained from these computations
scheme in the subsonic region (elliptic) and upwind are shown in Fig. 2. The computational results
difference scheme in the supersonic region agree qualitatively with the experimental results2

3 4 adso oeo h etrso rnoi hc(hyperbolic) . Savu and Trifu used this procedure and show some of the features of transonic shock
to calculate the flow field around a porous aerofoil wave boundary-layer interaction with passive control.
assuming that the normal velocities in the porous The porous surface splits the flow into a X shock

obey c' law with the leading edge of the shock system anchoredregion Darcys to the beginning of the porous region. This has
v = op o = 5/(p V ) the effect of reducing entropy changes acress the

shock and therefore the wave drag. It has also
been shown that passive control can alleviate shockwhere 0 isthe porosity factor. oscillations in the transonic flow.

3.2 Full potential flow approach

Subsequently Chen et al used full potential
flow equations with the same boundary conditions -48
used by Savu and Trifu to solve this problem. The
results of the computation agreed qualitatively -06
with those of Savu and Trifu. Further, it was shown
that passive control can not only reduce drag but Cp -04
augment lift on an aerofoil.

3.3 Interactive boundary-layer approach -02

Refinement to the above solutions was achieved 0 _2 4 1.0
by introducing viscous effects. These include for 0 .2 X-
the flow around an aerofoil with passive control, 02 /c

thin layer approximations by Chung et al , coupling 04 solid
full potential outer flow to a boundary-layer x10-4  -- porous

equation' near the surface by Chung et a16  and 30r
coupling transonic small perturbation theory to Fig. 2. Pressure distribution r = 12% circular arc

7boundary-layer equations near the surface by Gray M = 0.83, R = 2 x 106, a = 0.03
The viscous flow near the surface of the aerofoil

and wake can be expressed by the following non
dimensional non conservative steady two dimensional References
boundary-layer equations in transformed &, rl
co-ordinates. 1. Bahi, L., Ross, J.M. and Nagamatsu, H.T., Passive

shock wave/boundary-layer control for transonic
aerofoil drag reduction. AIAA paper 83-0137,

(o 09 + (pv) 'x =0 (4) 1983.

2. Raghuanthan, S., Passive control of shock
boundary-layer interaction. Prog. Aerospace

P{(uE x + u nx) + v u1 n} = Sci. Vol. 25, 1988. pp 271-296.

3. Murman, E.M. and Cole, J.D., Calculation of
plane steady transonic flow. AIAA Jl., Vol. 9.

a P p Cx + (I u nny)) ny (5) Jan 1971. pp 114-121.

4. Savu, G. and Trifu, 0. Porous aerofoils in
pcp{U(T + T nx) + v T n y = transonic flow. AIAA Jl. Vol. 22, No. 7. 1984P X T y pp 989-991.

Ou p 9x + (k T n +1 (Uq y)2 (6) 5. Chen C.L., Chow, S.Y., Holst, T.L. and VanSk T 11 n (u ) (Dalsem, W.R., Numerical simulation of transonic
flow over porous aerofoils. AIAA paper, 85-5022,
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PRECONDITIONING OF 1)ISCRETIZED PARABOLIC PROBLEMS
ON TWO--LEVEL GRID)S WITI. LOCAL REFINEMENT

Richard E. Ewing Panyot Vassilevski
Department- of Mathematics, Chemical E-iginecring, Department of IMatheinatics

and Petroleum Engineering University of Wyomng
University of Wyoming Laramie, Wyoming 82071

Laramie, Wyoming 82071

Abstract-We describe an efficient preconditiuninig technique fur soiv- lI cie Lhlilu~ok Aj-circspoviidb tW a standid Liiustepping 1Jou.duru

ing time dependent problems wvith lucal-rfeiieiiat both Ii Lillie dud ul, the bULdoilift 0 2 A (41.+1 That is, to suhe ~systwii dcfinied by
ink space. The preconditiuncer niahes use of sobers onl regular grids At, c Lan USiiy availablc 61Iiib4Lpp!ig'codu oni t rectanigular grid.
only, hence it can be easily incorporated-iriiexistig , odes fur solvinig The prewonditionier, oiigindlly proposed Ii Brandble ct al. 121 fvi~cl
pdrabolic problems baised onl stndard Liniesteppang. The difficulty iplt. probleil with~ local rcicociAii ttiided fur Lilie dojpciidcit
that arises in local imestepping is that- suc~h a. disixetization alwvays pileins Ii Ewling ct-a. [3 5;, is coiisti uLe fur the ruduced problem
leads to nonsymmetric matrices. However, itz turns out that we can prc-
condition these problems with generalized conjugate gradient (G;CG) SXc = bc - CAfBf,

typemethds n-anoptmal ay.where S - D - CA7 1B is the reduced Schur matrix. Consider thle

1. INTRODUCTrION piroblem onl ihe original coarse-grid (i.e., without any local refinement
in eithecr space or time). Then we have a coarse-grid matrix kzdefined

We describe ant efficient solu.,un techinique based onl Doiiin De- fui the coarse grid atitht. time level t -
t ,+*1i I'orinaly, using the samie

composition (DD) ideas for solving tune-depejident diffusiuii problemis. DD) idea, we, cank partition A inl 2 x2 block formi as followsb
We consider the following mnodel problcm A f 2

9P V L1 im-lC 10, t~o > 0j )11i x{t+

%%1tl appropriate boundary arid iiti,il conditionis. The dlhcrctization where 112 is a block-miatrix corresponding to a global tilinestepping
of the problem c.-n be done inl the fiatricivork of the discontinuous but-for thle subdomaimt_% only. Note that Ii this c A-is bylliticf
Calerkin method, (cf. Thioiiie4 [6]) where iwe have a global time stepi and positive definite, hence its reduced Schur matrix S D- C 2B6
7c. in the time interval ( t, , = nr,, n 2: 0, in regions 01 c Q is also symmetric aiid positive definite. The preconditiomier for the
of sprecial interest, we introduce a- finer time stcp 7j = 7-,m for sonic reauced p~roblem we choose is S. Note that in order to solve a systeni
m. > 1. We also couple this withi local refinement in space on the with S-, we canl use-solvers for the niatrix A, hence we can use any
subdomain 0~2. Sec Figure 1 for a one dimensional domain Q2. Then available soffware-for tiniestepiug p~rocedures on rectanmgular grids.
we-have intermediate time levels in,, t,4, + irf, 0, in..,7 Ink Ewing et a!. ([1 it was shown that using an approximate S in a

C;CG-type mu.:iod (since S is nonsymimetric) will give an optimal
coiivergeiit method. The convergeince properties are indepenident of
p~ossible jumps of thme coefficient k/pi and thle coarse-grid sizes. For

In+) __ -- o i~torc details and some numerical experiments we refer to Ewving et
id. [4I,5]. For application iii industrial reservoir simulation codes, see
Boyett et at. P]J.

in4, REFERENCES

1. B.A. Boyett, M.S. El-ifandouhi, and R.E. Ewing, Local grid re-
finemnent for reservoir simulation, Hathmeratical and computa-

fir r f12 Xtional Issucs in Geophysical Fluit! and Solid Mfechanics, SIAM,
flm 1 f 2 Pliiladehihia, PAk, (to appear).

Figure 1. Grid with local refinemnt in space and in tuie. At tile 2. J.I. Bramble, R.E. Ewing, J.E. Pasciak, and A.H. Shiatz, A
interface r' x (1,, .+i] 'slave' nodes (denoted byv x) are preconditioninig technique for thle efficient solution of problems
introduced.

By using a variational formnulationi (for details see Ewing ct a!, with local grid refinement, Comp. Mlcli. App!l. Mech. En. 07

(51) or by cell-centered [inite difference approximation of thme above (1988), 149-159.

problem, cf. Ewing et al. 131, f.ne can dcrive a corrposite gridl problni .3. ILL. Ewing, R.D. Lazarov, and P.S. Vassilevski, Finite difference
for the nnknomms between twoc glbal timie .4ps 4, and t ,+i- We schime oi grids with locaL refineiieiit Ii time amid space for
obtaini a linear algebraic piroblem of the forml, Ax = b. Note that, tlic parabolic problems 1. Derivation, stability, and error analysis,
composite-grid matrix obtained in this way is always nonsymnietric, Comzputing 45 (1990), 193-215.

but as coeciv symetrc pat.I. R.E. Ewing, R.D. Lazarov,amid P.S. Vassilevski, Finite difference
schemes on grids with local refinement iii time and in space for

II. WO-~tlI PRCONDTIOE~tparabolic problems 11. Optimal order two-grid iterative methods,
Proceedings of the 1'fth G,D1,iJM Seminar on Parallel ilethods

Using the following DD) orderinig of time niodes in the tine slab foPDsW.Icbucd.,Jnay 9-,190Vew,
N itn~mJ x R, X XI QX 4+1Wiesbaden, 70-93.

[xi )1 2 X (',,+, , 5. R.E. Ewirig. R.D. Lazarov, J.E. P'asciak, and P.S. rsiek,

weoti h floia2x 2blc }formx tofiA Finite ecmndnt method for parab~olic problems with time steps
we otaii t~e fllowng x 2hlok fom o Avariable in s~pace, (in preparationi).

[A1  B~ 6. V. Tllime", Gaherkin finite elemeunt imethods for p~arabolic prob-
[ C DJJ leis, Ica. Xvirts om 1fath., Spmriniger, 198.1.
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A DOMAIN DECOMPOSITION PROCEDURE FOR PARABOLIC
EQUA'rIONS

CLINT'DANVSON Here (',')A denotes the-LI(A) inner-product,
Department of Mathematical Sciences
-Rice-Univcrsity D,(U", v) =(VU, Vci)n, + (Un, O),

houson, X 7751-192 US.A.and 01 W' = (Un-Un"')/AI". Note that once B(U"-') has beeni calculated,

Abstract A domain decomposition procedure for solving parabolic partial U" can be cumpuited on S1 and Q2 '0IhipletelY indcp~endently
differential equations based on explicit/ implicit, Galerkin fiite elemient dis- Iii uider tu statc an crrur estimatc fur thc above algorithmn, ld t4 C Al
cretizations is presented. Error estimates are stated, aiid numerical results be the elliptic projectiun of u, defined fur each t E [0, 71 bLr
on-a parallel processing machine are discussed. 2

I. INTRODUCTION ZDi((W - ).t,, ,vG .(8)

Domain decomposition procedures have-received much attention in re- Let F1 = u - W. The following theorem is proved in [2].
cent--years as a way of numerically solving-partial differential equations onl
parallel processing- machines, see, fur examlie, [I]. Mmuf thiab woik 1"Ls Theorem 1 Sapposc that thesoitatwn u s baffiacutlq binvoth a,,diiat C' E
been directed at elliptic equations. These tedhniques are often cxtwindibk .. M is taken to be W( U4). Let It iiniax,, At". 7hcn thot; exists a cwil-stanit

implicit time discretizations of parabolic equations, since an "elliptic" equa- C, Independent of the spaces M,, such that
tion-must be solved at each time step, generally resulting-in-an algorithm

requiring iteration between su~oanproblems and interface problems. InII j
2 ~

from the-previous time step to-cal.culate fluxes along an iiiterface between
subdomains. These approximate- fluxes are-then used as-boundary data for provided that At <-L-
implicit subdomain-problems. Thus, the procedure is noniterative and uses - -4

nonoverlapping subdomains. For-the method descr~bed here, a Calcrkin 1he-algorihn can- be extended -to doimains Q E Rd with jtuccowa' oum-
finite element discretization-is -used in each subdomain foemly smooth, Lipschitz boundaries, where the interface I' is-a uiiifviiiily

It. ALGORITHM DESCRIPTION smooth,-(d - 1)-dimensional manifold. Moreover, different functions other
than 02 may be used-im the flux approximation B, which give-higher order

-Let 11 denote a spatial domain iii Rd. Denote by )I"'(S) and W.,(fl) thle accuracy-in 11. In particular, suppose (X) = .s(( - 1/2)IH)!II, where

standard Sobolev spaces on Q, with norms:I.II, and ii I,,,respectively. (z (- 2)/12, 1 < x <2,
Let LP(f), p= 2-,oo, denote the standard Banach spaces, with-11,11 denoting-5 +/6 0 z ,
the-L2 norm, 11i- Ile. the L' norm. () - 54+76 : 51

Let, (er,fl] C (0,21 denote a time interval, X = X(fh) a normed space. To -x+27/1, -1 x 0,()
incorporate time dependence, we use the notation 11 Ila,,( sOx) to denote
the-norm of X-valuod-functions!f with the map t -+ IIf(L)lIIx belongimig to m~0 otherwise.

First, consider the case d =-2, and 9 = (0, 1) x (0, 1). Decompose 11 into InI this case, for 0-five times differentiable in x,
two subdcmains,-Bi = (0, x (0, 1), and 0 2 -( 1) x (0,-1). Let P' denote
the interface between these two domains,J' -x (0,1), and let-u satisfy -B(O)(1. y)1- CH'l. (0

ug - Au +u=0, on S1 x (0,7'], (1) The-proof of Theorem I relies omi tie following coercivity property of the

u(Z, 0) = "?(x), on B1, (2) method. Namely, for 0b E M, let

ou= 0, on onx(0,7'], (3) 2 1 ,,~ *11 ~JI,(1

where tn~ is the outward normal to OB1.ji
Our domain -decomposition procedure -relies on calculating an approxi. where 1 0 1 [) 0)

mate normal derivative of u-on r. Let O(Z) = 02((X - 1/2)/1I)/Il, where rI r*]f2 -(()[P)t
If- is a parameter, 12 > 11 > 0, and Then, under the assumptions of Theorem 1, it can be shown that

f 0 Z'OX<1, /

0I . otherwise ,()iIn 2-cC7 ~ +(()[]m).(2

For ip a smooth function, define an approximate normal derAvativc. of 41 al. In general, assume that fur somne I1 0, B is a linear map of L 2 
(i) into

each point y on r' by L 2 (r) and that it satisfies the following four conditions.

1 (i) There is a constant Co such that

2 0/z~~~~z 1110111Il2 S Co (D(O, 0) + (B(o), [(0])r), (13)

and note that (ii) There is a constant Cm such that

Let G = to -t < .< Of~ = T' be a given sequence; At"L' - t-1. (iii) There is a constant C2 such that

Wec approximate u at time in by Un, where Un In, r: Mi, and M, is a finite lIB(0,)112 :5 C21lf1111I..(5
dimesnsional subspacc of 1J( 1 .Let M be the subspace of L2 (fl) such that(5

if v e M, tIn, E M,, and let (v denote the jump ia i uction values of r (iv) There is a constant k ;' U and a constant C3 which depends oil thle
across r (which is well-aefined). The approximations U',..., Ulf1 are give.i solution u such that
bymir I

'J0U,),DjiW',v))+ (B(U )lm'=0 E Hfor 0:O< T.' where Ou/Dy is the normal derivative or u ol Ir, iii the
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We note-that for Q = a, f the unit square on R2, and r = { ) × (0; ., Decomposition CPU (see) C.-G. iter.
-Co = 7, C1 = 2, and C3 = 2. For 4 = , Co = 1.64, Cl = 3.14, and
C2 = 8/3. 2xI 110.608 43

In general, assuming conditions (i).(iv) hold, we have the following The-
orem-[2]. 2x2 49.391 42
The6rem-2 Suppose that u is sufficicntly smooth and that U° = W(.,0). ,x2 25.435 42

-Let At-=-max, At". Then there exists a- constant C, independent of the .
spaces M i such that, 4x4 9.696 33

- axII(u-U")iI- C (At+Hk++ IIi(.,t)JIdt- H- Table 2. TIMINGS ON AN Intcl iPSC/860. PROBLEM-2

provided- with

H
2

At < (17) 0u 1, on {0) x (0,1) x (0,71,
-1, on (1/4,1) x {0) x (0,1, (23)on 0, otherwise .

III. NUMERICAL EXAMPLES

We have implemented the algorithm outlined above on a 32 processor This problem corresponds to having a heat source on the left boundary of a
Intel iPSC/860 at the Center for Research in Parallel Computing, Rice Un- and a heat sink on the bottom boundary. The results in this case are given
versity. We now present some timings which demonstrate the parallelism of in Table 2. For this problem, the average number of-conjugate gradient
the method, iterations varied from one subdomain to the other. In Table 2, we present

The first problem tested was the maximum of these averages. This is the quantity which controls the
problem, since data cannot be passed from one subdomain to another until

ut - Au = 0, on Q x (0;21, (18) the linear algebraic problems in each subdomain have converged. As in the
u( , 0) = cos(Wx) cos(-ry), on 11, (19) previous case, the computation time is reduced by a factor of two with each

ou doubling of processors. A factor of greater than two is obtained when the
= 0, on Ofl x (0, 7], (20) number of conjugate gradient iterations decreases.onn

-with f0 the unit square on R". This equation has solution u(z,y,t) REFERENCES

In our domain decomposition procedure, once the interface fluxes are cal- [1] T. F.-Chan, R. Glowinski, J. Periaux, and 0. Widlund (editors),

culatedra system-of linear algebraic equations must he solved within each Domain decomposition algorithms, Proceedings of-the 2nd International
Conference on Domain Decomposition Methods, Jan. 14-16, 1988, UCLA,subdomain. Preconditioned-conjugate gradient with diagonal precondition. -Publications, 1989.

ing was used to solve-these subdomainproblems. SIAM

-In Table-i, we present timings for-runs with different-types of domain [2] C. N.-Dawson and I. F. Dupont, Ezpicit/rphcit, conserative,
decompositions. In column 1-of-Table-i, the notation "m x n" refers to a Galerkin domain-decomposition procedures for parabolic problems, to
decomposition of R into-m subdomains in the z direction, and n in the y appear in Math. Comp.
direction. The decomposition was done so that the subdomains contained
the same number of unknowns. In these runs. At = .0025-and 11 = .10.
The final time T = .10. The approximating space in each subdomain was
the tensor- product of continuous piecewise -linear- functions in z and y. An
underlying rectangular,-uniform, 80-by-80 grid was used. We present both
the CPU time for-each case and the average number of conjugate gradient
iterations. The latter-number was computed by-summing the number of
conjugate gradient iterations (per subdomain) required to "solve" the linear
algebraic system at each-time step, and dividing this quantity by the nur.
-her of-time steps. ("Solving" the linear algebraic system meant reducing
the residual below 10-s.) In general, this number is subdomain dependent,
however, for- this particular problem, it was essentially the same on each
subdomain. Not surprisingly,- however, the number varied with the decom-
position. The timings presented in Table Iindicate that, for a fixed number
of unknowns, the run time essentially decreased by a factor of two when the
number of processors was doubled.

The second problem we considered was

ug-Au=0, onflx(6,1, (21)
u(x, 0) = 0, on fl, (22)

Decomposition CPU (see) C. G. iter.

2xl 106.650 41

2x2 55.010 48

4x2 27.819 47

4x4 10.642 37

Table 1: 'IIMINGS ON AN Intel iPSC/860: PROBLEM I
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ABSTRACT

Computing Sparse Linear Algebra problems on SIMD massively par 2 Sparse Matrix Computation on the CM-2
allel architectures is an important and major challenge for-the future

of these machines. In order to obtain goodperformance when solving On many iterative linear algebra methods when the matrices are
many large sparse -linear algebra problems, we use a-communication spa ny t e ratrvec r algebra to s then thmpation a
compiler which permits-to obtain a good-speed-up compared to clas-
sical global communications. We studyAn this paper a polynomial manipulates sparse objects [4]. Tihus, we first focus on the massively

preconditioned conjugate gradient method to solve a symmetric pos. parallel sparse matrix-vector multiplications.

itive definite very sparse-linear system on-massively parallel archi. Methods to compute the multiplication of a sparse matrix by a
tectures. We evaluate performance obtained on CM-2 with respect vector on massively parallel architectures principally depend on the
to a few very sparse matrices. We conclude that to solve some large matrix and vector mapping and on the number of processors Let us
very sparse matrix linear algebra problems we can -now rely on CM-2 assume that n is the matrix order and C the degree of row that we
performance as fast as could be obtain on vector machnes for dense suppose equal to-the degree ofcolumn Tius, with Cn processors
problems a few years ago. we can map the sparse matrices with scan class as described by P.

Kumar [3), with only one element of the matrix by virtual processor,

1 Introduction- see (7] for detailed implementation on the CM-2.

The-idea is to compute all the floating point multiplications of

Researches in massively parallel algorithms are-numerous. Especially the matrix-vector operation in massively parallel mode and to reduce
since the introduction of the Connection Machine 2 (CM-2) by Think, with addition the other operations in-a log2(C) theoretical complex-
ing Machines Corporation. Sparse computations are not yet very de- ity. But we need two different mappings to do that efficiently. Then,
veloped despite the supercomputer target~applications developed on we-need to change tile mapping during-the matrix-vector operation.
such problems. The multiplication will-be done with a mappinig in whch the element

a(i,j) will be mapped on the virtual processor (ic,j), ic = 0,C - 1
The sizes of the concerned sparse matrices are sometimes very and j = 0,n - 1, where tc is the row mndice on the Compress Sparse

large and the degree of row (resp. column), ;e the number of nu zero Column ((,bG) format representation of the matrix, see [5] for the
elements by row (resp. column), is often omall. Many scientific re description of the sparse matrix formats. Then, if we want to reduce
search fields generate now very large linear algebra problems with row with additron, along only one dmm n, the partal reults n a log
degrees smaller than one per thousand of the matrix order. Thus, in arimic complexity, we need to re-map the patial results, stored on
scientific computing we often need to solve a linear system starting virtual processors ttc,j) to tile virtual processur (jc,t), where jc is
with very large sparse matrices. We-shall study in this paper un the column indice of the element a,,, on the Compress Sparse Row
structured very sparse matrices, i.e. with very small degree of ro% tubt) format representation. Itus, the complexity of this column
and column, oriented sparse matrix vector multiplication is 1 + lo92(C) operations

Iterative methods are often used to solve these problems on SIMD plus one global one-to-one general send operation
massively parallel machines. These methods often use 3-major op With time general GM-2 router, the tme to do these irregular
orations. sequential- scalar operations, reductions (principally inner Communications is really a strong uttlenec1, except for very well
products) and matrix vector operations (principally matrix vector adapted sparse matrix patterns. FAt blarse 4,iputaton is really
multiplication). Scalar operations are often made redundant on each impossible on the CM-2 without usiing balical tvoul tu optimize thesc
processor to optimize communications bethwen processors. one-to-one general communicatmons. Denn. Dahl diehloped such a

tool [2] which permits ui to obtain more than aspeed lip of 10 comn-
'This research was supported in part by the Direction Recherches t

Etudes Techniques, French Department of Defense, under contract pared to the CM.2 general router [7J. Then, we can really do sparse

20.357/91/ETCA/CREA while the authors were in -residence at the computations on the CM-2.

Etablissement Technique- Central de l'Armement (ETCA). It is an important and difficult goal to propose test sparse ma-
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trices to evaluate the performance for massively parallel algorithm 1 _________________0________

computations. In this paper we (10 not propose special application
patterns, We try to find bounds on the performance. These ones 10perturbation of C-diagonal -

depend principally on the global send and especially on the distance go0 C-diagonal -
C-distributed-

between the diagonal of tile sparse matrices and the C non-zero el- 8
ements. Then, we take matrices with C non-zerok diagonals around
the main diagonal (0-diagonal matrix pattern) and we perturb at NifoPs 70

random them with a given probability q, which is-a parameter-of the 6
evaluation. Thus, it is nothing but the exchange of non-zerok elements 50
(i,j) of the C-diagonal with the elements (i,j-and), where ji-and is ________0____________________

a random integer number between 0 and n - 1. Each of these pertur- -301 _______________________
bations of the C band matrix is done with-the probability q. Hence, 0 0.2 0.4 0.6 0.8 1
we can study the performance with respect to q. We also use matri- q
ces with non-zerok elements uniformly (distributed all-along the rows
and columns, with a non-zerok main diagonal (C distributed matrix Figure 1: Polynomial -Preconditioned Conjugate Gradient perfor-
pattern). In the first case we will obtain close-to-peak performance mance on the CNI-2. C = 4-andirn = 128K.
when q = 0, i.e. without perturbation of thle C diagoinals, for this
algorithm and in the other case wve will have the lower performance. ~ C nlso

But, this tool uses the CM-2 as a hypercube of the vector accel- We show that sparse -com putations are possible onl massively paral-
erators. As we have just one vector accelerator per each 32 physical lel architectures. We assumie-inx our method that Cn > p) to have a
processors set, for examp~le on a 16K 0M2 we have 512 of these

floaingpoit fst nits ca weconlud tht itis lwas mssiely vpr > I but we (1o notzneed n >-p (where p is the iiumber of physical
flotin pont astuniscanwe oncudetha i isalwys nasiucij processors). Problems from fluid mechanics, quantumnciemistry or

parallel computation? biology generate such-problems. For demise-or sparse coinpu tations,
parallel machines will become more and more powerful. Teraflops

3 Algorithm and Implementation peak performdnice and giga-aurd ii,auuries %,ill uuti allow" us to c
cess a miew area of scientific computing. Trile challenge wvill be to pro.

We are interested in tile coiijugate gradient-method for tile resolution pose efficient parallel algorithm,% for these machines. The researches
of thle linear system Ax = b where Af is a very sparse symmetric presented in this paper are a step in this direction.
positive matrix. 'ro-iniprove the conjugate gradient method, it is
possible to combine it with a polyniomial preconditioning, see [ 1] and References

The polynomial s we chose-for the preconditioiiing, is given by 11] S. Asin i, T. INAN TLL FF EL AN D P. SM coa, A Taxonomy for
the Neuinan-serie Conjugate Gmaient Mfethods, SIAM, J. Numner. Anal., Vol. 27,
s(A) =1I+B-+ -- -+ Bn where 1? = I -A and 11111< 1. No.6,1990.

(21 E. DA Il, Mapping and compiled commiunication onl the Goninec-
The through-put. ilk tr ill of Megaflops (NMflupsb, does, imt- depenid taon Matliuic igtdc, i fth DuLrirubtcd Me~Cumnputiiig

on thme coefficients of-thme polyiiomial but on the degree. Conference, 1990.

13) IM. MISRA AND P. KU~MAR. Efficient IL'I imipleientation of
We map the vector- and scalar on a 2 D C x n grid compatible itcratiec. solutiorib tu qspac lincar t-picina, Terlh. Report 246, In-

with the mapping of the matrix and-to optimnite comuninatiuns. We stititte fur Rxoiiotisad Initelligenit Systems, Umliiverbity of South-
often compute with redundancy -for example thme iiiier p~roduct is ern California, 1988.
computed on each row of processors and distributed on cachi proces-
sor. And, we do-not compute the polymiommal directly but we use the [4] B. P11ILIPPE A ND Y. SAA D. Solving larvc Qliarsc cigenraluc prob-.

matrix-vector mnultiplication to compute .s(A)x at each aeration of lems on supcrcompmtters. in lit Parallel and Distributed] Algo-
th algorithm. ritliins, C. et al. ed., Nortli-Ilolland, 1989.

151 Y. SAA D, SPA1 11SEIT: a basic tool kit for sparse mnatrix coin-

Likewvise the matrix-vector multiplication, we take the same test Puitationas, Tech,. Reptort 90 20, IlACS, NASA Amnes lte.sea,It
matrices to obtain the performance of thme algorithm. Figure I shows Center, 1990.
the performance on a 16K CM-2 when the dhegree of the polynomial 11Y AD rcia ico oyoilpcouiin~g o h
is 4 and thre matrix coefficients are real. We observe that the per- c[ juat g.SAD rala u e etof SoyiAM ia .1 Sd. S tat onmpuL. for~ 6.

formance decreases as q increases and~ that time uniforimly distributed] co.jgt gridiri mehd.SA .. Si.-5. opu. ol

pattern matrix is really a lower-bound. The performance looks like
the matrix-vector multiplication performlanice. The performiance %w J. SALT/, S. NAME"io. A. IlithiN. AND If. BLhIWi~MAN, J'c-

take, proves that the cmnpumtativiial raute imcreaseb with tie dlegree of fCommci illou-h' ofI guu og.,,,"n., Pratitc,, OILM"
thle polynomial. ,it-ely Parallel ihbittipircsors, Jouriial of Parallel and Dis-

tributed Computing. 1991.
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4I. For cachi eigenvalue A, comnpuite the corresponding elgenvector

PARALLEL IMPLEMENTATIONS -FOR SOLVING by-inverse iterations (this iiiiphes thu fLitturiLtiokl of the Iiiatrix
GENERA7LIZED EIGENVALUE PROBLEMS- ARISING FRO-M C - Al).

STRUCTURAL MECHANICS 5. M-reorthogonalize-groups of cigenvcctors corresponding to close
eigenvalues by using tile Modified Grain-Sclunidt procedure (2].

Bernard-PIIILII'1PE and Birigitte VITAL The-algorithims; of Steps 2 to 41 may be found-in (5]. They have been

352ISA - Cmude FReANCiE njeinented-in the subset of Lthe routines which- re (devoted to banded
350.2 Ienns Cdcx FRNCEmatrices in -the DISPACK library.

Let us consider eachi stage with respect to p~arallelisim and operation
counts. Thelhalf-bandlwidth ofeA is dlenotedi p.

Stepl I is easy to parallalize-since it only involves vector operations
Abstract - We coimpare thireeatlg-orithmiis-to solve the sparse syns- (componenitwise' vector multiplications with vector length, p). More-

metric generalized cigenvalue luoblemn onl vector and lparallel compuit- over, its-complexity is lowv (2np operations).
ers. An-efficien-rt vectorization-for tridiagonalizing a banded mnatrix-is In Step 2, the tridiagonali/ation process involves vector operations
defined. Finally, we pr~opose a (decision tree for thle p~rocedlure selection. but with vector length (decreasing fi p to 2 (luring the procedure

with a O(n2p) complexity for scalar opierations. The algorithmn is
1.ITOUTO based on a sequence of iotations which gives rise -to recursions. It

The purpose here is-to-solve onl a piarallel computer Lte following is essentially sequential.
generalized eigenvalue lprobilem A parallel algorithmi for Step 3 is studied in [3]. Its efficiency is

usually almost optimal but the low complexity of the step limits its
Ax = AA~x ,I impact oin thle overall process.

Step 4 is intrinsically parallel since Lte inverse iterations may-be
where A and Af real synieitric miatrices of order n, such arise lin independently performed.
Structural Mch-lanics. T'he assnimoms imnply real eigemivalues and In -Step- 5, two levels of parallelism may lbe exploited :between
Lte existence of-a M-ortliogonal basis of eigenmectors. The iiatrices .1 different groups of vectors and witin the ortliogonalization of one
and-Al, which are-usually-obtained fromi a discretization, are assumed group). The imlenientatictll is studied in JJ. lo ortlmogoliahzea agroup

'to be large-and sparse. Typically, their bandwidth does not exceed of m vectors, 2rnZ21 operatioins must be performed.
n/10. In -fact, Al is-either diagonal or with thc same nonzero pattern In conclusion, Step 2 appears to be tile bottleneck for parallefizmng
as A. For nron-diagonal -matrices, we consider three possible storage the whole process. We propose here it fle%% version of the-algorithmn
techniques :banded matrix, pirofiledl matrix or sparse matrix with which-allows efficient vectorization. flicreticalb%, whenever vectori z-

an nsrucurd ~ateri.Inlall- these Sitnlatiolls, S%~ nit ri matrice ing is possible, parallelizmng should also be possible. Hlowever, on thle
are onlyV lialfastored. Since the large size of the matrices prevent the computers considered here, we were not able to obtain adequate speed-
comnputation of thie entire spectrum. tie uiser must sperif% which part up~s. Hlence, we resti ict ourselves to Lte use of one-vector processor.
of the spectrum lie is willing to-compute. lie miay Specify it either by

liiigteinterval of the eigenvalues sought or by looking for a givenl 2.2. Vectorizing the tridiagonalization of a banded mnatrix
linmbiler feteilegevli Time successive eliminations-of entries of the bandled matrix C are

Tile algorithmns considlered Ieic are designed for parallel coinput- ordered as follows :diagonal by diagonal, starting from the outer-
ers with a shared commn memory such as the CRAY or ALLIANT most onie. and oii oiie diagonal, fromi top) to botton,.. Therefore, the
computers. Three algoritlnns a.re developed dhep)enin~ig on thke type of co utio-isritir(by-tolelop
storage used for thle matrices. After a dlescriptioni of eachi of them, F do q = p, p- 1I.,2
we compare their lierforminaice onl sonie test problems and (draw some I do i = 1.2 .. n - k.
conclusioiis- ' ut, the muethod of choice for each situation. [ eliiminatioii of A(i. ih +)

All die. ,ki p~roblems are dhefinedl oii matrices which belong to the
IIA16VELL set of tcest miatties. Siilut pFr&l iiiiiiiis,tion HiatY be ifhere eliminatioii of At j. t t uule qLsene oIL t q~! Giteiis
(dine at -very small (vt. tiin profie of t ~ lidjcs s itiuiiiit dIi rotations 1l(k, 1,0) thdt aic borcesbi~ieh .upjpiud to A

all caes. A := R(k, 1, 0 )T. R(k. 1, 0), 1.= 0, -.. I!- 1. (3)
2. REDUCTION TO A

STANDARD BIGEN VALUE PROBLEM The sequence of rotaitis conies froiii tie fatt that elimiinating anl
(A :baiided matrix. Al ;(liagonad imatrix) enitry gives rise to a new mioiero ciitr% lo%%er dto%%n on tile side of thme

band. This miew eiitry wvill have to hie eliinated later. Therefore,
2.1. Analysis of Lte sequenitial algorithml elinmiiiation of Atzi + q) is iipleimeiited .i a tuo-level loop

Since Al is aplositived(liuiite mati ix, the prolem defined by Equa-
tioii (1) is equivalent to the-followving- standard eigenvalue problem [1 do = 0, I.-,/. -

= A~, = Dy.(2) I coinlu tatioi Of J?(k, I, 0)

whr -j~2adC AV DID (2) loop for computiing A A R(IkI.0)
whr __ 1Y n D .Siei hsscin sabne loot) for computing .1 := IkI.0)7 *A

mnatrix-and .11 is (liagonial. time inaMix C is easily' coimpumted- It has At the begiimiig of the p~rocess, tie '.ectorizcd inner loops of are
thle same band as thme originial matrix .1 Therefore. given an interval efcinifiebdislr.hoerviuiliiimtugetrscoe
[a, 14, all thme eigenivalues of Elie origma' problemi which bv'omug to th'e to the main diagonal. the numnber of rotations is hugh and at thle same
interval and their correspoidiig eigenvectors can be coniputed by ti 0 time the vectors beiing miaipu~lated aure i'r% short. lit this Case, a
following ilgoritlmni vectorizer will imot yield elficieni code(. -1 hi,, problem canl be rectified

1. Comnpute the matrix c definmed mu Lquat ion t2). b% commnuting thc innier aid uttc rolo 10015.b is peritted when tile
coimplutationi of all the rotations fl(k.I.01) inay lie taken out of body

2. Compute a tridiagomal nmatrix 7' iuilarily Aiiiiliur to C., using of the 1lo1). This cran le done by - r(eiiriniali rompmites thle sinles
Giveiis transformations. adcsnso h oain f

3. Compute all , ie( eigen ities Ofr '1 mirli huebimgi it, . bi bv itera We~ comiparedh I liese t%%o ine hiod, of uto i.i tiuii %N i h a third Comt-
tive bisections of thle interval. bined method. For ever pair (q. :3. th limplemnentatlion selecis tile
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best strategy between the-original -one (strategy A) or the strategy * denae coinputatiwis betaveu blu~hz, uf VULLU&5
which-is obtained by permuting the loops -(stratcgy 1B). The efficiency 9 premultiplication of a block by ill'
of the approach is described-in Table -1. *tridiagonalization of 7' and computation of the "igenpairs (not

s = vector speedl-up at-each-iteration)
half-bandwidth W(11 7--1 50 11100 eM-reorthogonalizatiou.

Only (A)- s =_ 0.8-8 s =1.51 s=18
I Only (13) si = 310II s =1.85 s =1 27 I se of-blocks provides an obvious way to jiarallelize the algorithmt
switch between s = 2.93- s =2.49 s =2 49 by performing the transformation.% on the columns of a block jindepen-

(A) and-(B3) deatly. The tridiagonalization was iiot pai allelized but oid) -vectorized

assen in Section 2. On a problem of order nt = 1173 where A stored
Tabl 1:Vecoriatin o th trdiagnalzaton n Cay (n00, by sparse diagonals and AlI is a profiled mnatrix (p = 62), the-program
1CPU)was run on '1 processors of a% CRAY 2. The time required-to compute

the 20 largest eigenpairs was 31.38 seconds (block-size : I -_ 20). The

3. MULTISECTIONNING corresponding speed-up was 2.9.
WITH-STUItM SEQUENCES

(A;: profiled matrix, Al. diagonal or profiled mnatrix)5.CMAIOS ND OCL IN

3.1. Presentation of the algorithm The domn-ain of appilicability of each of the three presented algo-
X~he A nd l ae pofied atrceswit th sae pofie, ~me rithms is- different, depending on the position of in the spectrum of

problem defined by Equation-(I) can be solved by iteratively parti- th ievle ogtado h mti 1.Te aeas ifr
tioning the interval [a, b) in -which the eigenvalues are sought. Unilik-e ent mnemory requirements. The highest icquirenient comes-from the

the case in the previous section, the Sturm sequences are computed Mfultisections which require the storage of one profiled matrix per pro-
fro th oigialmatice. he alulaionimlie L- D- T fatr cessor Hlowever this is also the algol thin w hich yelds to the highest

izations of matrices A - Ufl where A E-[a, b). A factorization involves speus.Tco arthmtodc eetlnintmsfrto
vector operations with a vector length equal to the half-bandwidth p. dfeetpobesi al
Parallelism is obtained by computing several sequences concurrently. *Polm()a=12,p=5,A sio ignl
For that purpose, we adopted a Strategy similar to the strategy used *Prbe(1)i=103p=62ilisdaon.
in-the-tridiagonal situation (3),-namely : *Polm(I 03 2 li ignl

It is clear that, wheii app~licable. Lanczos method is thme-method of
1. -Isolate the eigenvalues-by-nultsectmons of order improc, the num-

ber of processors (a amultisection is-a synchronous computation cuoie. Tedcso refrteagrtm slcini ienFg
ofaprocSturm sequences). This step results in a list of intervals ue1
enclosing single eigenvalues is obtained. I lnh,. comnputed -Rfeduction iiltisections jLanczos

2. Extract the eigenvalues from their interval and compute the cor- I igeripairs Istandard pb
responding eigenvectors. Hlere, Sturmi sequence computations 1'b. (1) 13 - 50 76 13.69
are asynchronous. We selected-ZEROIN as the root-finding pro- b I) - 82.27 4 32
cedure [1). Eigenvectors-are computed via inverse iterations. 'Tab,!e 3: Ruening times (seconds) omi CRAY 2 (4 processors).

3. M-~reorthogonalize the groups of-vectors corresponding to close
eigerivalues. Extrazal olgonvaluos ?

3.2. Parallel implementation
We illustrate the behavior of thme algorithm -on a problem of order

it = 817 and where the half- band widtht, _p, of.-A is equal to 18 but where
Al is diagonal. The number of cigenpairs sought is 16. The speed-ups H diagonal ?

on ALLIANT-FX/80 are displayed in Table 2. For 8 pirocessors, the / "1
proportion of time spent-in Step 1, Step 2 and Step 3 are respectively rxmcos r aucx TO STRIAPMs ,gLm1SEcTzOims
12.3%, 87.0% and 0.6% of the total time.

nb rocssrs 1 2 418 Figure 1: Decision tree for .lgoritlin 2election.

Table 2: Multisections with profiled matrices on an ALLIANT FX/80 References
(T otal tim e on one processor : 234.6 seconds)[ ) . .B s . .D k e . T o Ei c en A g i ih ti G a n c d

4. METHOD-OF LANCZOS Coarcrgenccfor Finding a Zcro of a Function. ACM Trans. Math.
(A uniistructured sparse mantrix, Software, vol. 1 , pp. 330-3,1.5, 1975.
Al dingonmal or-profiled mnatrix [2] Golub. C., and Vani Loan, C.. Ma~trix computations Thme Johns

extrmal igevalmos)Hopkins University Press, Baltimore, 1.983.

For solving Problem (1), we consider the Lanczos method with thme (3] S. S. Lo, B. Philippe, A. Sainih .A ntpm-occssor algorithm for
following characteristics :block version with full reorthogonalization symnietric tridiagonal cigctrttc problcm. SIA.N 7 Stat. Scient.
and dyniamic restarting process. The algorithmn is described in [4)]. The Cornput., 8 :2, 19-87.
iterative process builds ain l-orthogonal system of vectors V, -and[ a
banded matrix , = V~TA V' -it e'ierv ,,tep. At ever) iteration, the [4] B. Vital. Etud( dr jqucpic. mwuths &c ruolmution dc prohlcmcs
following steps are performed lmneamrcs dec grat- 4 t'ml sur irlttprocrsscur. Thesis, UniversitC

* premultiplication of a block by A o ens1 00

* premultiplication of a block by Ml [51 J.Hl. Wilkinson. C. lleinsch. Hfaiadook for Automatic Comnputa-
tion. Vol. 2, Linear Algebra, Springer Verlag. lNew-York, 1971.
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THE LANCZOS ALGORITHM FOR THE GENERALIZED SYMMETRIC

EIGENPROBLEM ON SHARED-MEMORY ARCHITECTURES*

Mark T. Jones and Merrell L. Patrick

Mathematics and Computer Science Division Computer Science Department

Argonne- National Laboratory Duke University
9700 South Cass Avenue Durham, NC 27706

Argonne, IL 60439

Abstract. The generalized eigenvalue problem, Kz -Aj1z,-is of shared memory architectures, thus allowingat least asuperficial-leset

significant practical importance, forexample, in-structural engineer- of portability.

ing-where it arises -as the vibration and buckling problems. The The parallel LANZ algorithm is presented in Figure 1. Its various

paper describes the implementation of a solver based on the-Lanczos computational components and their parallel- implementations are

algorithm, LANZ, on two shared-memory architectures, the CRAY discussed in the following subsections. Explicit-global synchroniza-
Y-MP-and Encore Multimax. Issues arising from implementing linear tion points in the algorithm are denoted by the-term "SYNCIIRO-

algebra operations-on a multivector processor are examined. Porta- NIZE." Other synchronization points are required by particular op.

bility-between a multivector processor and a simple multiprocessor erations, for example inner products, and are not explicitly denoted

is-discussed. Performance results from some practical problems are in the algorithm. To avoid extra.synchronization, each processor is

given and analyzed. responsible for computing a fixed-subset of each vector computation.

For example, if at-step 21 processor i computes the first m elements

1. INTRODUCTION of q.+,, then at step 22, processor i would compute the contribution

The generalized symmetric eigenvalue problem, Az = AJfz, is of the first m, elements to the inner-product, thus avoiding a synchro-

of significant- practical importance, for example.on. structural engi nization between steps21 and 22. In these discussions p represents

neering-where it arises as the vibration and buckling-problems. In the the number of processors, n -represents the order of the matrices, b

problems of interest, a few of the eigenpairn closest to some point, a, represents he block size in a block algorithm, and -7 represents the

in the eigenspectrum are sought. The matrices,-K and M',-are usu- current Lanczos step.

ally sparse or have a narrow baniwidth. Because eigenvalue problems

arising in structural enginee,,ng are often very large, it is natural to 0) I = = o 21) =-

attempt-to use parallel computers to solve them. In Section 2-the 1) Choose an initial vector, guess 22) q,+i = 9 7q,

parallel LANZ algorithm and its implementation on shared-memory 3) Orthogonalze 23) 9)1 =P 9+ - ,i

architectures with a small to moderate number of processors is de- 4) SYNCHRONIZE 25) -

scribed. In Section-3 results from the implementations are given and 5) p O = Mquejs 26) , = q9 + ,+ - 77,-1
6)- SYNCHRONIZE 27) oj = ;;j'qi+i

analyzed. 7) 93 =(K - af)-'j 28) qi+i =qi+ -aiq
8) (factorization occurs here) 29) SYNCHRONIZE

2. ALGORITHM AND IMPLEMENTATION 9) SYNCHRONIZE 30) pj+s= ,q,*I
10jpm=,Ifq, 31) a, = aj+&

To speed convergence to desired eigenvalues, a shift-and-invert I)f, = T 32) P,,i =(',( ,q,+,)"

Lanczos algorithm -similar to that described in (8) is used. On se- 12) Orthogonalize 33) Calculate eigenvalues of T
13) qj gi IP/ l 34) Count the converged clenvalues

quential an& vector machines, this algorithm has been observed to 14) pI=l/ 35) Othogonalize

be superior to the subspace- iteration method that is popular in en- IS) For j= 1, 36) q,#1 = q'+1/0'+1
gineering 196 [2). To-mantain the desired semi-orthogonality among 1) (K - , 7 37) (requires use of critica seetions)

17) (only matrix solution here) 38) p ,+ =pi ,/Ij

the Lanczos vectors, a version of partial reorthogonalization [14) is 18) SYNCHRONIZE 39) End of Loop

used. Extended local orthogonality among the Lanczos vectors is 19) norm=D q, z II 40) compute ntz vectors

also enforced [71 [12). if eigenvectors are found before executing the 20) (ifexternal orthogoualization)

Lanczos algorithm, an improved version of external selective orthog-

onalization[1] suggested in [2) is-used to avoid recomputing these Fits. 1. Parallel hJl-and-,neert Lanczos algorithm

eigenvectors. Although the discussions in this paper assume that

Af is:positive semi-definite, the computations remain essentially the 2.1. Factorization

same when M is indefinite. Factorization takes place only once during-the algorithm, at step

The Force, a Fortran-based language for parallel programming 7 Because the matrices, K and M, are sparse (or have been re-

(), was used to implement LANZ because it is asaplable on several ordered to have a narrow bandxidth), the parallel implementatiun of
direct factorization and solution methods must be carefully consid-
ered. Jr. this paper, only the case in which the matrices have been

reordered to a narrow bandwidth, j?, will be considered. llowever,

*This research was supported by the National Aeronautics and Space the limitations on parallelism in factorization and forward/backward

Administration under-NASA contract nos. NASI-18107 and NASI- matrix solution that are imposed by a narrow bandwidth are similar

18605 while the authors were in residence-at ICASE. Additional sup. to those imposed by sparse matrices.

port-was provided by NASA grant no. NAG-I-466. The first author

also received support from the Applied Mathematical Sciences sub. Two situations may exist when factoring (K - c,'). (1) (I -

program of the Office ofEnergy Research, U.S. Department- of Ln- a,11) is known to be positive definite, and therefore it is desirable
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solution subroutine described in [13] his been parallelized fvr use -it are not-as fast as zaazpqs, the-paralki computation of a shot. in-

LANZ. In the second case, a block algorithm for banded matiice5 ner product is adversely affet ted by swichronizauton delays, and the

based on Bunch-Kaufman factorization is used [31. block size may not be-evenly di~isible by p, and therefore a load
imbalance may result.

LANZ was initially written for vector architectures, and there-
fore careful attention has been paid to achieving good vectorization.
With small-to-moderate vector lengths, it is desirable to perform not a concern when implementing this algorithm on the Encore, and

ax py operationst as opposed to inner products, as wel as to cor- therefore better parallel speedup from the forward and backward

pute more than one axpy operation at a time. 2 On multivector solution algorithms can be expected than on the CRAY Y-MIP. The

ratio of computation to synchror.ization, howeer, is still much worse
processors, however, good vectorization is often at odds with-par-

allelization. In the factorization algorithms, this conflict between than for factorization, and good speedup cannot be expected.

vectoriation and parallelization occurs in the computation of the 2.3. Other Computations

pivot column(s): the pivot columns(s), vectors of length PO, must be

split into vectors of length 91p for ea.h processor to compute. On the The parallelization of other computations in the algorithm, in-

CRAY Y-MP the benefit of parallel computation of the pivot column clud ig sparse matrix multiplication solution of the small tridiago

is outweighed by the resulting inefficient short vector operations and onal eigenproblem, Rtz vector computation, and orthogonalization

the cost of the added synchronization; therefore, this computation and discussed more fully in 1.].

is not parallelized. However, on a simple multiprocessor such as the

ultimax, thiscjpnflict does not occur, and the computation of the 16- 4

pivot column is parallelized. The dominant part of the calculation
is the updating of-the uneliminated nonzeroes by using the pivot - 12- 3

columns: the updating is implemented by distributing Q extended o
sax py's to each of the processors to compute. The extended -saxpy's .
parallelize- well because there is sufficient work for each processor,
and the vector lengths are unaffected by parallelization. 4 1

2.2. Matrix Solution

Forward and backward matrix solution is required at steps 7 and 4 8 12 16 20 1 2 3 4

16. The conflict betueen vectorization and parallelism is much worse Number of Processors Number or Processors

in these operations. This discussion will be limited to the forward Fiu. 2. Speedup curvcs

and backward solution algorithms that take place after a Bunch-
Kaufman factorization in which the block sizes vary ar.1 are selected 3. PERFORMANCE RESULTS AND ANALYSIS
according to numerical criteriarather than the number of processors. 3

As a demonstraton of its performance, LANZ was run on a
The following discussion will assume that the lower t:iangular factor, d si enproblem f strtrangeeriNg wsru th t

L, resulting from the Bunch-Kaufman algorithm has been stored by les eigenpr we fo stesfur rocer ChAY

row.4 Because of the order in which pivots are performed, a saxpy- lowest eigenpairs were found in-22 steps on a four processor CRAY
Y-NIP A smaller probleml6 was-run onl a twenty processor Encore

based algorithm for the forward solution must be used, and an inner Multimax in which the ten lowest eitenpairs were found in 22 steps.
product algorihm for the backward solution must-be used.

It is clear from the speedup curves in Figure 2 that a speedup plateau

The time-consuming portion of the block forward solution algo- occurs. The main cause of this plateau is the poor speedup realized
rithm is the b a-length saxpy operations that can be combined into in the forward and backward matrix solution algorithms. The prob..
a single extended sazpy operation. The only practical way to paral- lem caused-by the matrix solution algorithms is exacerbated as the
leize this operation is to split the vector into p shorter vectors. This number of Lanczos-steps increases, because each Lanczos step re-
approach, of course, significantly reduces the efficiency of the vector quires another forward/backward matrix solution, taking more and

operations. more time as compared to factorization, which speeds up well. This

The time-consuming portion of the block backward solution a]- plateau occurs later on the Encore than the CRAY because the En-
core does not have to contend with thc conflict between vectorizationgorithm is the computation of b j3-length inner products. Two types and parallelizatiozr --octer lengths decreasing as the number of pro.

of parallelism are available here. (1) two or more processors can co- cessors increases I owever, both implementations suffer from the

operate to compute a single inner product, and (2) individual inner poor rae H v bomputation sufe fom the

products can be computed independently. Even though both meth- poor ratio of computation to synchronization in the forward and

ods are used, the algorithm is still inefficient because inner products backward matrix solution algorithms.

If problems with larger bandwidths were used, better speedup
from these algorithms could, ofcourse, be expected. It has been the
authors' experience, however, that if the bandwidth arising from a

T 'hevarpy operation is define-i as u, t Y. where w, y, and i are vetors structural engineering problem is large, then most likely many zeroes

and a is a scalar, est inside the band, and therefore sparse methods -re best used.
2 Performing more than one .aspy at a time, called ant extended eszpd in bete

paper, is defined as w = y + Ef. a, , and is often implemented via loop
unrollir.g. This type of operation reduces the ratio of memory Aeferences to
computations. Fing the uibFiton mode aug mode shape of the finte element modei

3 The situation is sflghtly better for the positive definite case in which the bloek of a iaing t hela modes a o h s o the ee
sizes can be selected based on the number of processors rather than acording t circular cylindrical 3ell [1 In ts problem n - 12054 and the averape
ounietical citeria, semi-bandwidth is 394.

' If it were stored by column, ihe same limitations would apply, but the dis- m Finding the rk.e lowest buding mode and mode shapes of the finite element

cussion for the forward solution would be applicabie to acxward solution and model of an I stiffeaed pone. Ia this problem n - 4i74 and the average semi.

vice versa, bandwidth was 207.
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A DIVIDE AND CONQUER APPROACH TO TIlE NONSYMMETRIC

EIGENVALUE PROBLEM

ELIZABETH R. JESSUP
Mathematical Sciences Section
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P.O. Box 2008, Building 6012
Oak Ridge, TN 87831-6367-USA

Abstract Serial computation combined with high communication
costs on distributed-memory multiprocessors make parallel imple- TI-and-T2:

mentations-of the QR method for the nonsymmetric cigenvalue T
problem inefficient. This paper introduces- an alternative algo- T = (n + 7 :i,+) - (2)
rithm for the nonsymmetric tridiagonal eigenvalue problem-based T2

on rank two tearing and updating of the matrix. The parallelism IfT1 and 12 are nondefective, we can compute theelgndecmpo-
of this- divide and conquer approach stems from independent so-
lution of the updating problems. sitions T = X1DIXI- and-T2 = X2D2X*'. Substituting -these

decompositions and abbreviating a = cc gives the matrix-product

I. Introduction

The eigenvalues and eigenvectors of a nonsymmetric matrix A T CC + 7+
have traditionally been computed by first reducing A to Ilessen- X2D 2X 2j \

berg form II and then computing the eigendecomposition of fI by Di h,
the QR method. The serial nature of the QR method coi tbined [ l + 12 X-', (3)
with the-high cost of-data transfer on distributed-memory- mul- D2 V2

tiprocessors has-made parallel implementations of this approach where
inefficient [7]. In this paper, we outline an alternative algorithm
for the -nonsymmetric eigenvalue problem. The algorithm uses
a divide and conquer technique and follows from methods that A 2

have performed well both serially and in parallel for-the symmet. = P.X-'em, 2 = 7m+lXj'tc, hi = ,,XTc,.., andgh 2 =

ric tridiagonal [4] and-unitary [2] eigenvalue problems andlfor the #m+IX2Tl for canonical vectors cl and c. of appropriate length.
bidiagonal singular value-problem 110]. (The algorithm can be reformulated to account for defective ma--

The-method is presented here for-nonsymmetric tridiagonal trices by-replacing the cigendecompositions T, = XIDIXj' and
matrices. Matrices of this form arise directly from certain appli. T2 = X2D2X!' with ones including the rank deficient left and
cations (1-and from reduction of general matrices to tridiagonal right eigenvector matrices T = X1DIYL and T2 = X2D2Y2.)
form [5]. We expect ultimately to extend our divide and-conquer -We permute the elements of equation (3) to form
technique to general matrices.

Throughout this paper, unless otherwise specified, capital Greek T _ D2 ~+ vlX -1 4
and Roman letters represent matrices, lower case Roman letters 2 + 0 -  4
represent column vectors, and lower case Greek- letters represent I I

scalars. A super,:ript T denote- -transpose. The vector ej is the with ' !)
j-th "canonical vector" with all elements equal to zero except the X =

j-th which equals 1. Xi

and rewrite the interior matrix of equation (4) as
It. The Algorithm

Let T be the following n x n real, tridiagonal, irreducible, non- (D 1  I i (1 v'
defective nonsymmetric matrix M = 22 h" (5)+ 0

72 02 03 Thermatrix ,1f is the sum of adiagonal matrix and a rank two non.
T= .. .. ' ... (1) symmetric matrix. The igenvalues of the matrix l" are the ige n-

n-I oo- P. values of T. The left and right igenvectors of M postmultiplied
by XT and X-1, respectively, are the left and right eigenvectors

By splitting off two superdiagonal elements P, and #+, and the of T.

corresponding subdagonal elements 7. and 1,mi-, we, can %g t.. The pruoedue fut cumputing the agenvaiues and eigenveetors
thematr:xTin termsof the trid'agunal nnusnmetricsubmatrmcs uf Al fuiis ha, sbm atepa. masi ty thuac ful the e;gcndcwmpusi-
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tion of a diagonal plus symmetric rank one matrix developed in As in the symmetric case, we expect the divide and conquer

13,8], but because M is nonsymmetric, the details differ in several method to be a good parallel method. The rank two tearing of

important ways. Let 61,...,b6.denote the diagonal elanents of equation (2) can be applied recursively to tridiagonal submatri-

D. If no eigenvalue A of M equals a diagonal element 6,, then the ces T1- and T2. Parallelism arises both at the subproblem level

eihenvalues of M are the zeros-ofzthe rational equation (computing T= - XtD1Xj7 and T = X2 D2X
1 in parallel) and

at the rootfinding level. Both levels can be exploited in shared-

g(A) = (A - a) + ( ) =0 (6) memory implementations of divide and ronquer-algorithms [4,10],

it. 6i - A but no implementation on a distributed-memory multiprocessor

which may be solved- ry a complex rootfinder such as Muller's has attempted to parallelize the rootfinding tasks [9]. As in the

method [11]. Because-they are also the eigenvalues of a submatrnx symmetric case, the nonsymwetric divide and conquer algorithm

of the real tridiagonal matrix T, the complex eigenalues of M can be pipelined with redurtion-of a general matrix to tridiago-

occur in conjugate pairs. nal form by the algorithm in [6]. As soon as asubmatrix has been

Once-the eigenvalues have been computed, it is a straightfor- formed, its eigendecomposition is computed. Once additional sub-

ward matter to compute the egenvectors using the expression for problems have been solved, rank one updating can begin.

the matrix A'. Let A be a computed eigenvalue of Al. One expres-

sion for the corresponding right eigenvector qT = (4 T, ) comes References

from the relation [1- G. AMIAR, D. C;IInG, W. DAYWANSA, AND C. MAR-

(D v)(4) D4-+tO -v (4) Tis, Identification o,' linear systens by -Prony's method, in
khT  a) j z + e- VRobust Control of Linear Systems and Nonlinear Control,

Specifically, if the-matrix-(D-- A)is nonsingular, the right eigen- 1990, pp. 433-188.

vector is given-by [2]-G. AmMAR, L. REIr!nEL, AND D. SORENSEN, An imple-

mentation of a diride and-conquer-method for the unitary

= 1Q) =_(( A) (7) cigenproblem. To appear in AC.%FTONS.

where is selected to make qTq = 1. A similar expression can be t3l J. Bfti.i, C. NXi.L rm, A D D. So.b.% Rank-onc mod-

derived for the corresponding left-singular vector. ification of the symmetric cigenprobem, 'urer. Math., 31

To this point, the derivation of-thedivide and conquer method (1978). pp. 31-IS.
for the nons -imetric eigenvalue problem requirvs that the matrix (4] J. DONCARRA AD D. SoREtsmv, A fully parallel algorithm

(D - Al) be nonsingular. For this to be the case, no eigenvalue of for the symmctric cigenralue problcm SIAM J. Sd. Stat.

H[ may equal a diagonal clementof-D. Equivalently, no element Comput., 8 (1987), pp. s139-s154.

or v can be zero, no element- of It can be zero, and no diagonal (5] G. GEisIr, Reduction afa generalmatr, to tndiagonalform,

elements of D may be equal. We now show how to deflate the Tech. Report ORNL/TM.-10991, Oak Ridge N-ttonal Labo.
problem in exact arithmeticso that none of these situations arises. ratory, 1989.
The deflation rules not only produce a correct form for the matrix

Af'but also reduce the amount-of computation needed for solvIng (6] G_ GEIST, A.Lt, A D E. WMchs rass, Stabilized reduc-

its eigensystem. tion of an arbitrary matriz to tridiagonal form, Tech. Report

First, if the jth elementof a is zero, then cTA! = ArC where ORNLITM 11069, Oak Ridge National Laboratory, 19S9.

e, is the jth canonical vector of length n. Thus, A, isan eigenvalue 171 G. GEIST AN.D G. DAViS. Finding cigenrulues and ezgen-
of M and e1 is its correspondirg left eigenvector. Likewise, if the~rectors of unsymmetne matnces using a distriliteid-memory
jth element of h is zero, then le. = A.e, so that (X,e.) is a right multiprocessor, Tech. Report ORNL/T.1093, Oak Ridge

eigenpair of M. Rows and columns of the matrix Al' having all National Laboratory. 198-.
zero off-diagonal elements can be removed from the matrix and
the eigenvalue problem deflated. (8) G. Ga1,11, Some modified matrix eigcnrclae problems, SIAM

When-& = 4, we can apply-unitary similarity transformations Reiiew. 1 (1973). r'p. 31R-Vt.

to redu-e hi = eTh to zero and-deflate the problem. Let 1 1- s A I. JessuP, Solrinoy the symmetric tridiagonal

7 12  + (hi 2. c L = L., eigcnralueproWn on the hypcrcub.SIA ItJ. Sd. Stat. Com.
7 7 put.. Vol. 11, No. 2, (100). pp. 203-2 ".

then the matrix is transformed in the following way

,e -3 0~ 8- 0 'F, 0~ ISjE ~ 'ADB S~NyAprle Orih ~ o
s 0 .ing lhr singlar r0luc !ecrnp~ti,,n aja nti. Te0hni0cal(0 0 1) \h, h, lep-rt ANLI..CST.-I2. Argonne .atlonal Laboratory.

After transformation, 8, is an eigen-alue of .l with right rigenvec- I '.

tor e,. Note that the zero structure of the deflated M guarantees {I1) J . l.i ALgnuc Eirnla¢ PraSlem. Claren.
that the n x n matrix A' - At has rank at least n - 1. Thus. o . e
has distinct rlgenvalurs and a-complete s"t of-ignveeiors.
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A PARALLEL VARIANT OF GMRES(m)
ERIC DE STURLER
Delft Universityof Technology tions in one step are all independent. As the innerproducts

computed on each processor are strictly local, these local coeffi-
Faculty of Technical Mathematics and Informatics cients must be accumulated over the processor grid to compute
*P.O~box 356, NL-2600 AJ Delft, The Netherlands the global coefficients. This is done blockwise by the routines

Abstract In -the usual implementation of GMRES(m) J3] the accs(arraylen), which sends the array to Occam and returns
computationally most expensive part is the Modified Gram- so-that Fortran can continue, while Occam performs the actual

Schmidt process- (MGS). It is obvious, that the MGS process accumulation-in parallel, and accr(arraylen), which receives

is not well parallelizable on distributed memory multiproces- the accumulated values from Occam. The MGS process is im-

sors, since the inner products act as synchronization points and plemented as follows (locally on each processor):

thus require communication that cannot-be overlapped. Fur- do i = 1,m - 1
thermore, as all orthogonalizations must be done sequentially, nbl = max(l, (m - i)/2)
MGS generates a large number of short messages, which is rel- do k = i, i + nbl - 1
atively expensive. Especially on large processor grids-the time h(k, i) = vTvk+I
spent in communication in the MGS process may be significant. accs(h(i,i), nbl)
For -this reason a variant of the usual GMRES(m) algorithm do k = i + nbl, m - 1 [concurrent with]
is considered, called modGMRES(m), which first generates the h(k, i) = vTvk+I [LaccumulationI
vectors that span the Krylov space and then combines the MGS accr(h(i,i),nbl)
steps for a group of vectors. -It is shown, on real world prob- i+ i = Vi+1 - h(i,i) * vi
lems,-that the modGMRES(m) method can yield a considerable h(m,i) =-V

gain in time per iteration. Numerical experience suggests that accs(h(i + nbl, i), m - i- nbl + 1)
the total number of iterations remains about the same as for do k =-i + l,i + nbl - I [concurrent with]
GMRES(m). vk+1 = k+i - h(k, i) * vi j accumulation=]

Introduction accr(h(i + nbl, i),m - i - nbl + 1)

As-described in t2] at SHELL's KSEPL the reservoir simulator do k = i + nbl, m - I

Bosim has been-parallelized on a Meiko Computing Surface, a Vk+i = Vk+i - h(k,i) * V,
trarisputer based parallel computer. The parallelization is based h(i, i + 1) = sqrt(h(m, i))

on-a 2-D domain decomposition, where the reservoir is-divided vj+i = h(i,i + 1)-i * vj+

among a 2-D grid of-processors, in addition there is a master In this implementation communication is mostly overlapped and
processor, which-handles the initialization and input/output. In also time is saved by combining small messages, corresponding
Parallel Bofim the largest part of the computation is done in lizations, in one large-message, which
Fortran. On each processor, the Fortran program runs in par- saves startup times and Fortran-Occam communication.

allel with an Occam process. The Occam processes on different he star ation F ort an thmmni lon.

procssos frm aharesstha taks cre f te comuncaton. The generation of the vectors, that span the Krylov space,processors form a harness that takes care of the communication. can be handled in two ways. If the condition number of the
When Fortran on a processor-has to communicate, it sends the preconditioned system is sufficiently small and m is also rela-
data to the local Occam process and then continues until its next tively small (e.g. 10 or 20), the vectors can be generated as
communication. Meanwhile, the Occam processes concurrently tiv sall (.g. 10 o re 0) the eco ndbe nerd a
take care of the communication and see to it that the data is Vj, Av1, A A'v 1 , where A is the preconditionedmatrix;r e tthis will be referred to as version 1. However for larger m and/orreturned to Fortran on the receiving processor(s). In this way a preconditioned matrix A with a large condition number, the

communication and computation can be overlapped. Within this matrix A will b srl condition e th
Parallel Bosim package the GMRES(m) and modGMRES(m) matrix [vi, Avi, ... , A'vi] will be so-poorly conditioned that

orthogonalization with the MGS algorithm will not produce a
method were implemented and compared. In Bosim the conver- set of sufficiently orthogonal vi and consequently will result in
gence in the linear solver is checked by a separate routine, which an inaccurate-representation of 1

'm+i Therefore the v, might
needs the residual vector. Therefore the convergence in the lin- enerated as follows:
ear solver is only checked after each complete (mod)GMRES(m) g
cycle, do i= l,rn

The modGMRES(m) method vj=k - dA0, (i V)

Let Ax = b be the preconditioned system, and let r = b - Ax where the d, are parameters, which should be chosen in such a
way that the condition number of the matrix [VI,02, ...- - Dm+

be the residual. Let v1 be the normalized residual, then from Vi is sufficiently small. This will be referred to as version 2. The
a suitable set of vectors D2,... ,Vm,+l , which span the Krylov computation of the di can be based, for example, on the cigen-
space, is generated (see below). Then in the MGS process these values of "m.d' The exact computation of these parameters is
vectors are orthogonalized. Because the Krylov space is gener- however outside the scope of this paper.
ated in a different way, the-Hessenberg matrix H,+i = VTAV
must be computed from the coefficients of the MGS process, Computational and Communication
where V is the matrix fvi,v 2 ,... ;Vm+.J] The rest of the method Costs of GMRES(m) and modGMRES(m)
is analogous to the GMRESkm) method. See however also [1]. The total computational costs will bc expressed in terms of the

In the MGS process the vectors V, 2,..., LMi are orthog timings of the main cornputatiundl kernels. The computational
onalized in the following steps: costs for GMRES(m) on each processor are given by:
1. orthogonaize- 02 , Vm+1 on v1, normalize D2, which gives v2  1 1
2. orthogonalize 03,... ,,,+,i on V2 , normalize 03, which gives v3 gmreo = (m + 3m)Tdd,, + 1(m + 3m)T +

(m + l)T7so + (m + I)T,, +
Each step can be done blockwise, because the orthogonaliza- (m + 1)7 ,,¢ + o (1)
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The computational costs for modGMRES(m) version Lon each Inserting these timings in (1) and (4) for GMRES(m), in (2), (5)
processor are-given by: and (6) for modGMIRES(m) version 1, for m = 10 or 20, and in

1 2(3), (5) and(6) for modGMRES(m) version 2, for m = 50, leads
g,1 ( 3m)Td,+ (m2 + 3m)Td.,py + to the following tables:

(m + 1)Td,.1 + (m + 1)Tmat + im -time (ms) time diff.
(m -+-l)Tprcc + Tlincon +t Thess(m) (2) - -modGMRES(m) -GMRES(mn)- N%

10- 126.12 138.49 10

and-for version 2 by: 20 313.43 385.91 23
50 1390.2 1832.-3 32

1 (M2 + 3m)Tdd 1 + (m + 5M)Tdaxpy +12 2m efficiency (%)
(m+ d)T,.10 + (m + 1)T mt +I- modGMRES(m) GMRES(m)-
(rn +-I)Tpoo + T,,non + Theos(m) (3) 10- -66 60

20 66 54
where lincon-is the routine that checks whether convergence is 50 63 47
reached and ess is the-routine that computes Hm+i in modGM-
RES(m). The communication costs for GMRES(m) Are-given These theoretical efficiency figures arebased upon the modelde-
by: scribed above, with 13500 grid blocks, a processor grid of 150

processors and one master processor. The numnber of commu-

1M nication steps for accumulating a distributed value is 24 and
+ 3m)T , (4) the maximum number of blocks on a processor is 105. Further-

where acsum is a -Fortran routine that sends -one number more communication costs, other than in the global accumu-
to Occam, waits for Occam to acmulate the values oe te lation of distributed values, are neglegible. For GMRES(10),to cca, wit fo Ocam o ccuulae te alus~oer he GMRES(20), modGMRES(10) and modGMRES(20) the overall
processor grid and receives back the global result. The~commu- im res od etermi nd mentally on the sero-nicaioncost fo modMRE~m)-re ivenby:timings were also determined experimentally on the busiest-pro-
nication costs for modGMRES(m)-are given--by: cessor, which leads to the following table, containing the average

CZ. = 2mT. + 2mT. + Tovh(m) + T, (5) time periteration:

m time (ms) time diff.
1 ImodGMRES(m) GMRES(m)

T0 h(m) = 2roT,+ -n To,, (6) 10 126.09 137.13 920 314.58 383.94 22
where Th indicates the-time overhead measured in thedaxpy's From these tables it-is obvious that the modGMRES(m) method
and ddot's which overlap the accumulation, -T,. is some constant can yild a substantial improvement i time per iteration. Fur-
time and T,,gives a time increase-per number. T,,, indicates thermore, for these simulations, there was no difference in-the
the cost of non-overlapped communication/accumulation, total number of iterations between GMRES(m)and modGM-

- uRES(m). With respect to the (theoretical) parallel efficiency,
The GMRES(m) and-the modGMRES(my-method were coin- it can be seen that, for increasing in, the decrease in efficiency
pared simulating a real reservoir for:a large number of iterations. of modGMRES(m) is much less than for GMRES(m) This is
As the simulation had to be done on a fairly small machine (1 explained by the fact, that the communication costs increase ex-
master and 24 gridnodes), whereas the modGMRES(m) method ponentiall with in, and these are awch higher for GMRES(m)
will only be really advantageous on a relatively large processor than for modGMRES(m).
grid, involving 100 or more processors, a small reservoir was
simulated on-a ID (line):processorgrid. This gives 24 communi- References
cation steps for accumulating a distributed value over the grid,
which compares to a processor grid of some 150 processors. The [1] Chronopoulos A.T., Gear C.W., s step iterative methods for
number of unknowns in this problem was 2138, which gave a symmetric linear systems, J. Comp. Appl. Math. 25 (1989)
maximum of-105 unknowns on a-processor. With an average of 153-168 North-Holland
some 90 unknowns per-processor -and 150 processors this com- 121 van Daalen DT., Hoogerbrugge P.3., Meijerink J.A.,
pares to a reservoir with about 13500 (active) gridblocks, which Zeestraten R.J.A., Publicatin 924, Koninklijke/Shell Explo-
is a medium scale reservoir model. Thi produced the following ratie en Produktie Laboratorium Rijswijk, The Netherlands,
average timings on the busiest processor: Shell Research B.V. 1989

-computational time 1-communication time

costs (ists costs is) [31 Saad Y., Schultz M.H., GMRES: A Generalized Minimal

Tdazpy 0.30594 TcUm 0.62041 Residual Algorithm for Solving Nonsymmetric Linear Sys-
T dd,, 0.24707 T, 0.16000 terns, SIAM J.Sci.Stat.Comp 7 (no. 3) July 1986
T dsca 0.12354 T,,. 0.06400

,2.8251 T: 0.35625
Tp, 2.4320 7'.,pn 0.16293
Tuino 3.0336 , 6.9964
T

he,,(10) 12060
T

h,,,( 2
0) 7.4160

Th0..(50) 96.046
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PERFORMANCE OF ITERATIVE METHODS FOR DISTRIBUTED MEMORY MACHINES-*

D.C. Marinescu, J.R. Rice and E.A. Vavalis
Purdue University

Computer Science Department
West Lafayette, IN 47907, U.S.A.

Abstract: We consider the-performance of the Jacobi SI itera- solid. PDEproblein with 33 x 33 grid (about 1000-unknowns) on a
tive method applied to linear systems-arising from partial differential nonrectangular domain (see Figure 5). Two to 128 processors
equation problems. The-E/T methodology is applied to experimental used.
data from a 128 processor NOUBE 1. The observed performance of
the implementation is seen to be poor, reasons fur this are presented dash PDE-problem with 50 A 50 grid (about 2500 unknowns) on a
and remedies suggested. square. Four to 64 processors used.

1. INTRODUCTION The names solid and dash refer to the lines used in the graphical data
given below. The communication procedure used is to sendrall data

We describe the applications of the Event Thread of Control (_/i) from one processor to all other processors (broadcast). This inherentl)
methodology for parallel performance evaluation to iterative methods ipffiriont-qchnle was used because (a) the mapping of subdoinains
iuplemented on an NCUBE I (a distributed nmenmory mactime). Te to processors was not known, (b) the system utilities for multicasting

/I methodology is to collect traces of events and front their general do no0 work properly, (c) w wanted to guaraitee that the converges
behavior infer certain aspects of program performance, see [2]. Several properties of the iterative method remain the same. Time ls ieasured
kinds of events are traced, of interest here are Read and W"rite events in units of a tick which is about 0 1 isec. Five iterations were made.
as-they relate to the communicationand synchronization delays that 3. MEASUREMENTS AND DISCUSSION
occur in parallel iterative methods.

The key item in the B/T methodology is the characteristicfunction
g defined by E = g(P) where-E is -the-number of events and P is the Figure 1 shows the most basic data obtained in the E/T method-
number of threads or processors. The-methodology uses assumptions ology, -tme characteristic function E = g(P), the number of events per
of conservation and monoticity of work to derive various relationship thread (or processor). The average (expected) number of events per
among performance measures, e.g., speed up, work, load balancing, thread are shown as a function of P using solid and dash lines for the
A typical result is: If g(P)- is increasing and convex, then the work two experiments. The 95% level confidence intervals as computed from
per-thread, W(P), is convex. -Let P" be the-unique solution of P = the experimental data are shown by + (for the solid case) and x (for
[W(i)/O+g(P)]/g'(P), then-the speed up is a maximum at P*. Here 0 the dash case). We see that g(P) grows linearly with slope about two
is the additional work required of a-thread-when an event occurs and on this sem-logarithmic plot so 9(P) _ 0(P2 ). It is known-(2] that
is characteristic of the hardware and operating system. such a computation cannot exploit high parallelism well.

The iteration considered is the Jacobi ST method applied to the
linear system that arises from solving an elliptic PDE in two dimen- +
sions. This iteration is inherently parallel and can be summarized on 220-
a P processor niachim as follows: +
Initialize 490- +

For NITER. = 1 to LAST Events 160 -
per

For NPROC = I to 1) Thread 130 +
Do all iterations on my equations
Send my boundary variables to neighbors 100-
Receive neighbors boundary variables

End
I I -A I I "I IEnd 1 2 3 4 5 6 7

Number of Threads of Control-1o92l(P )The actual computation is complicated by steps to test for conver-

gence and to adapt iteration- parameters. These steps require global
communication. Figure 1: The expected number of events per thread of control and a

The NCUBE 1 used has 128 processors with bot communication 95% confidence interval for it.
and computation handled by the single processor at each node. Com-
mniication is expensive on this mnachie relative to compuation. Blocking is aii important source of low performance, we illustrate

the phenomena in Figure 2. At time t processor P executes a READ
and at time t4, the requested result is available. The time t2 - t1 is

2. EXPERIMENTS AND MVONITORING algorithiic blocking, the time spent waiting iecause processor P, hasnot yet computed the data P requests. The time t3 - t2 is propagation
delay, the time spend waiting for the WRITE operation to be exe-

The TRIPLEX tool set [1; ib used to culhlvt the tra.i dita, for two Cuted and the time t4 - t is transmission dCu. The propagaton and
comlutations: transmission delays on the NCUIIBE I are much larger than the ones in

*This research supporttd in part by NSF grant CUR86..19817 and by thcStrate- second and third generation hypercubes, but it is usually algorithmic
gar Defense Intiattic thgough ARO grants bA1 tiu .b6-h.u,-ju an.. 0.,%ALU .5-'- blocking that causes serv poor performance. The total time t4 - ti is
0107. often called synchronization delay.
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Figure 4: The expected-coinpuing time as fraction of the non-blocked
time per thread.

Fig-ire 2: Communication involving blocking. :'

Figure 3 shows the expected algorithinic blocking time as a frac- 0-64
tionof the total blockigtine for thesetwo PDE computations. The 

611most obvious fact is -that algorithmic -blocking increases strongly as
the number of processors increases. Note that thme irregular behavior 05

0.55 1313of these two curves-are-similar-and -can- be explaine'Ifrom-a detailed 0.5 11analysis of the characteristics of this computation-f3]. 0.43 1 niFigure 41 shows the computing time as a fraction of time total non-o.5 IsA Alblocked-timec per thread. Itecre time is-partitioned into blocked (bee0.1 ,lu$Figure 2),-performning 1/O- (Read or Write), and( comnputming (pre-sum- V-A111ably the-useful- work). -We See tOWL -thle fraction of computing-timie 14Sal
decreases~rapidly with increasing P, in an ideal case~ one hopes for this .*is1 1'to-decrease-much more slowly. 
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temiato C Often, ON thi resultste inec,.ut evenrsty Meoorer hefonnc (nctoth

relaiveinelicemiy o thse omnutamoma fr . ditri~ut~l enmr 21 D.C. Mfarinescun and 31t. Rice, OilHh Efevseo Coaracunization
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PARALLELIZIIW- ITPACKV 2D-

DAVID R. KINCAID ard INALATIII RAZNDAS
Center for Numerical Analysis National Instruments
University of Texas at Austin 6504 Bridge Point Pkwy
Austin, Texas 78713-8150 USA Austin, T'exas 78731 USA

Abstract. ITPACKV 2D is a research-oriented numerical software packag, of itern.tive
algonthos, for solving large sparse systems or linear equations deseloped in tile ,emer- l'is apprvadi has the adiantagc hat th: '.ector lengths are I erg (equal to
for-Numerical Analysis, The-bnsvernity of Texas at Austin. The intent of this paper a, tile order of tilt systeili) and ",l maxas batlimr upc-rativiu, .. k requtired.
is to report on the project of-parallelizing thins softisare on the eight-processor Cra) Ience, there are fetter vcctor start-up costs compared to die ori& sal format
Y-MP supercomputer using its advanced mnultitasking facilities. Model polm nto
dimensions and three-dimensions are used to test the performance of the parallelized usdithsacae
%ersion of the package usinsg one to eight processors, Numnerical results aire used for adadBcwr ovs owr/Bcwr o- so
comsparing the performaace of the routines in this package, for deternining the speedup 13. Forwadt dBcwr Sle.Eradvakadalsuo
ratios for them, ad for drawing general conclusions sriith regard to the efficiency an sparse triangular- matrices arc a major conponent of the SOR ai~d SSOR
parallelizability of ech of the methods, routines with the natural ordering. Since these routines do not vectorize in

this situation, the unknowns are re-organized using -a-wavefront ordering.
I. -Introduction. The ITPACK Project-was started over a decade ago Several authors 1, 2, 3, 16] hta~c noted that this ordering can effecttvely

in-the-Center for Numerical Analysis of The-University of Texas at -Austin vectorize the forward solution process of a 5.point, fluite-difference stencil
to conduct basic research on iterative algorithms for solving-!arge spa~rse
systems-of linear algebraic- equations The-emphiasis-has been on de-vel- on a rectangular grid.

opig,-tstngan-ealatig ofwae for solving linear systems arising Although this concept of wavefront ordering is applied in ITPACCV 20 to
fopinareting, dfetand eauatin swretie sn iiedfeecsado vectorize the SOR and SS0:'. routines tin thle case of natural ordering, thle vec-

finite-elements. Several ITPACK packages-have been developed, modified, truetinsar tl uhsotrta.o h aoio ieRdcdSse

improved, and changed through various versions.,otns
In the ITPACKV 20 package, the basic -iterat ve methods- (Jacobi (3) Mirtskn.T'bacprleiigtchquueditoar

Reduced System (RS), and Symmetric Successive Overrelaxation (SSOR)l t111n do-loopskinsgm . Thispartitioning ischdone y e into n pan-

are-combined- with two-acceleration procedures; namely, Chebyshiev (SI) outer dloops hato efinets paTios panditiassis the bitovialrodces-a

and onjgat Grdiet (G) lso inlude indiepactgeis ~meSuces- sors. The beginning of a parallel do-loop is marked using acontrol command
sive Overrelaxation-(SOR) method. The package uses adaptive procedures directive.
for the selection of the acceleration parameters and for automatic stopping For example, thle computation of a matrix-vector product- kss-~ + Gu
tests. These routines work best when solving systems with iqmmetric pos- is shown below.
itive definite or mildly nonsymmetric coefficieiit matrices.

The basic iterative routines available in the package are as follows. CHIC$ DO ALL SHARED (-ttask,l,=5xlz,u,5,rhs,coef,jeoef),
.JCG Jacobi Conjugate Gradient CHIC$* PRIVATE (xc,i,j,ist,ied)
JSI Jacobi Semi-Iteration do 25 kc = 1,ntask
SOR Successive overrelax-Atioa as ((k-I)*n)/ntask-+ I

SSORCG Symmetric SOft COnjtbgate Gradient jed-= (ksn)/ntaskc
SSORSI Symmetric SOft Semi-Iteration do 10 i ist,ied
RSCG Zeduced System Conjugate Gradient w(i) =rhs(i)

ESSI Reduced-System Semi-Iteration 10 continue
Two orderings of the unknowns in the lrmear 3ystemi are available: the nat- do 20 j = Li ma=n
ural (lexicographic) ordering and the red-black (checker-board) ordering, do 1S I= ist, jed

II 'Vcoiain ITPACKV 2D018,10] is amodified version of ITPACK v~)= mr(j) + coef(i~J)*u(jcoef(i~J))

2C [11) with enhanced vectorization cap-hilities. The primary changes made iscontinue
for the-vectorized- version- (13] -arc 20 continue

1. changing the storage format for the coefficient matrix from thle 25 continue
"Yale sparse storage-format" (4) to-the "ELLPACK-matrix storage
format" (15] since thle latter-is more vectorizable, and Hlere ntasic is the number of avai~iblc pocessors. The CHICS DO- ALL direc-

2. using-a-wavefronf orderirg- (ordering by diagonals) to enable SOP tive enables parallel execution usinl several processors with each computing

SSORCG, and SSORSI routines to vectorize uinder natural ordering. a range of rows determined by Ihle vzriables ist and jed. For this directive,
The primary vectorizable and parallelizable opserations in the iterative algc - the slope of each variable (shared and private) used within the region must

rithms in ITPACKV 20 (7J1 are matrix-vector-multiplications, forward solves be &E~.ied. Notice that no synchronization is needed within the loops. For-

and backward solves, ware and backward solves are also parallelized using the same basi. idea of

A. Matrix-Vector Multiplication. The Yale sparse matrix form.., partitioning the outer loop.

[1, as used in IPACK 2C,-is-a row- wise-storage format using fllr" liI.I'i For the iterative algorithms under red-black ordering, the matrix-vector
&rraysa, ja, ja. With this data strtucture, a amatrix veef or tnulliplirati" mm.tiplicatios can be partitioned in such a way that all thle red points are
of the-form Au results in operations where the maximum iveetr longth i'; aildated tin parallel and then all the black points. Ihius, a single syncliro.
equal-t~o the number of-nionzero eleincnts in the-r-'mt. wLi-i~ ma)~ I., emai siizetivn point is needled. In the Reduced System method based on the black
for sparse matrices. points. for example. the compuitation iswnm - cn+Fnup, ic'p - CD+FBwR

In thle ELLPACK sparse matrix storage format a rectangular -art% ~nd it can be carried out as showis in the displayed code below.
coef stores the-nonzero elements of the scale toefficient matrix A in a
row-wise fashion. (The original linear system Ar =b is initially2b soa .yt CHICS PARALLEL SHARED (ntazk,nr,nb,n:axnz,u:,rhz,u,coef,jcoef),
the diagonal D = diag(A) with (D-112AD-11(DVWX) = (D'1 b ota CMICS. PRIVATE (Ic, ±,j~,is led)
it assumnes the form (I - G)u = k. The entries in coeol are also re-ordered CHICSD PARALLEL
when the red-black or wavefront ordering it used.) Another inctangmlar do 25 kc a Iintask
array jcet stores the column numbers of the corresponding elements in 1ta(I-)n)nak+a
coof. If ra-,nz is the maximum number of nonzero elements per row, in A leid is (k~nb)/ntasc + nr
and nis the number of columns, then the matrix-vector product tv '-LNGu do 10 1 ist,iod
can-be computed with this data structure -s follows. =~)i rhs~i)

do 20 j = 1,maxnz 10 continue
do 10 i=1,n do 20 J st 2,naxnz

is(i) is rhs(i) do 15 i is ist,dd

10 continue VW1 = is~i) + coef(i~J)sufjcoef(i~J))
do IS 1 a I,r. is contin'ue

g(i) = Wi) + coel(i'j)*u(JCoel~i~J)) 20 continue

continue 'b eot~u

20 continuel CHICS END D3
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CHIC$ DO -PARALLEL Thle speedup ratios obtained for the larger problems (both 2-1) and 3-D)
do 45- --- 1, ntask were better- than that- obtained for the smaller problem. Under natural

ist =-((k-1).nr)/ntask + I ordering, the JCG and 3SI routines gave good speedup results while the
ied = (ksrx)/rntask SOR and SSOR routines performed quite-poorly. In general, the wavefont
do-30- = ist,ied- ordering used for these routines resulted in short- vector -lengths -and also

w(i) = rhsfi) required the-processors; to synchronize too-often. However, the-SOR and
30 continue SSOR routines-had improved speedups under the natural- ordering for-the

do 40 j = 2,=axnz 3-0 problems. This was due to the fact that there were fewer wavefronts for
do 35 i = istied thte-3-D) problems in comparison to the-2-0) problems. This minimized-the

uis~) = W(i)-+ coei(i.j)*W(jCoef(i~j)) number of synichronization-point5. Under-red-black, ordering, all-roamtsne
35 continue had good speedups. For-both -ordering, the speedup ratios obtained for-the
40 continue 3-D problem were not as good as those obtained for the 2-D problems.
45 continue Since the -largest speedup- does not -imply the fastest procedure, the
CHIC$ END-DO recommended-routines in this parallel package are ESCG when the unknowns
CMI1C$ END PARALLEL can-be re-ordered-into the-red-black ordering and JCG otherwise.
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ITPCKV20 inc ths sftwre asthepotntil fr pralelim near-Systenus. SIAM J.Aff. Disc. 3411L. 7. 9-112.1i9W.parallelizing (TAK Dsneti otaehs h oeta o aa~ls 10] -Kincaid. 0. IL. Oppe. T. C., Young. , M, "t.ITPACKV 20) Usees Guide.*
more at the do-loop-level. The basic priii.lss followed in mi,.rotasLina Report CNA-252. t..enser for vuumcncal Analysis, tLnssersisy of lexs-at
this package involved partitioning -thle loops into equal segments-that- are Austin. May 1989.
assigned to available processors and-combining do-loops into long-parallel (III Kinea,.) 0. c. ~spess, J. IL. Young, D. M., Grimes, R. G., 'IPACK 2C. A

FORT RAN Package fI" Salving Large Spars Linear Sys.c'ns by Adsptiveregions, wherever- possible, in order to reduce parallel startup costs Accierated-Iterative.%Methods." AC.1I Trans. uia. Soft-rare 8,.0-2,
The model problems in 2-D and 3-0 given above were used to test the September-los.

performance of the rnicrotaskcd version for-varying number of processors. it2 Kintaid. D. IL, Youing- D. MI., 'A Binef Review of the MTACK Pmjet.- J.
The maximum number of processors used was eight. All the tests were run Camp,. and-Atip. .iiai. 74. 33-54. toss

inddct oe ienumerical results are presented in rl1 [3 Opp, T. C.. 'Alie iterative tolution or Large Sparm linear ,ysrem Usingin~~~~ .eiae moe Tecctoriamnputers. flepor.Ch.A-24i. Center for thumencal Analysis. Unti-In comparing-the timings between the uni-processor version and the versity or Texas at-Ausin,. -ebruvy 10W0.
sequential version, it was observed that. the .;eqiiential code w-as faster than 1141 RAnv~as. %I.. 'Phasllilir fTrACKV. W0 for the Cray Y-mP,' " A_ Report.
the uni-processor version of the parallelized code for most all of the routines University of~exas at Austin. December1W-0. (Ahot, Report CNA-24'0. Ccii.

Irfor viumeneAl Anaivis. University of Texes at Iutm. Fcbniary 1901.)This is dise to the overhead costs associated with the loop partitioning in uS)5 ftice . Boisvmr. It. f. 5okns-n Lilipic Foiers using ELLrAv(R.-
the parallelizeel-code. Springer-Verlag. New York. 1oss.

With regard to overall speed, SSORCG and SSOPSI were the fastest rou- iiVi dcr Vet. It. A.. (M)ICCG fit 20 1'rollesnsoi Vettorcompuiers. Report
No. A-I7. Daita Processing Cnter, Kyoto Unit~nity. Kyoto. Japan. lose.tines using onhy asingle processor fo., the smaller 2-D problem Hlowever for it- YoungD MT, Iterative Solittow o /ALrse LinereSvirens, Acalemic Press. tiew

eight processors, JCG was the fastest due to its superior parallelization, For York. 197.
the.-larger 2-0) problem, SSORSI was the fastest on a single-processoir and
JCG performed -the+ st-for eight processors. The fastest routines using one
processor for the smaller 3-1) problem were JCG-and SSORCG under natural
ordering. For the larger problem, SSORCG wvas the fastest routine. For eight
processors. JCG; gave the best result for both problems since it p'trallclized
very well. Uticer red-blac ordering, all the routines performed reLAsnahsly
well with thf. P.sC being the fastest routine for all the prohihensc fm-r any
number of processors.
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Rectilinear Partitioning of Irregular Data Parallel Computations

David M. Nicol*
Departmcnt of Computer Science

College of William and Mary
Williamsburg, VA. 23185 USA

Internet: nicolgcs.wm.edu

Introduction- Two dimensional Partitioning
This- paper de ribs -new mapping algorithms for domaift-vricnted data- The-heart of our 2D partitioning algorithms is an ability to optimally par-
parallel, ?mputations, where the workload is distribute.I irregularly through- ttion in one dimensiun, given a fixed partition in the other. Suppose a row
out the domain We-consider the problem of partitioningthe domain (rep- partition R ;b given. We can compress workload forced iby R) to reside on
resented as an-n in array of execution weights) for an N x M array of a common processor into super-pieces, thereby creating an 1 x m load ma-
locally connected parallel processors, in such a way that the workload on the trix. This matrix can be viewed-as N one dimensional chains, a common
most heavily loaded-processor is minimized, subject to the constraint, that partitioning of theit columns will produce a 2D rectiiinear partition.
the .artition be perfectly rect:linear, as illustrated=b Figue 1. The total The prublem of finding an optimal-column partition can be approached
executioD weight of a processor is the surt of all cxcLutivn weights assigned through a iiiiur mvdificatin to the iD probe function. Ihis modification
to its rertangle Data parallel computations terd t havLc localized data de- ra.ss th. cost ,f calling probe to Q(A At log mi, plus an Oknm, preprocess-
pndencies, rectilinear- partitions ensure .hat all om.nuriiatri ,nduts b i ,ng t. Otherwise, the condtonally optimal problem is solved in the same
localized iata dependencies is between local processors, this algorithm vvill way as the the ID partitioning problem, in Okmn -t- AM A  log? m) time.
be part irluarly useful on architectures %here there is a high differential be- WAk may apply the conditionally optimal partitioning algorithm in an it-
tween the cost of-local and global communiation W % wllri not exp1iitl crative fashion. Suppoe that a row partition R, is given. For example, we
;nel,.d commur ication costs in our model- Ou implitt assunption is that iighLt consiruct an initial row partition as follows. sum the weights of- all
r'oinmunication c-stswi!l be minimized when locality is ensured, work pieces in a common row, to create a super-piece representing that row.

This paperi ovides an improicd algvrithm for=finding the optimal par- Find an optimal ID partition uf those super-pieces onto -X -processors. Use
titior in or.e di- en ion new algorithms for partitioning, in two dimensions, this partition as R1 , assume it to be-fixed, and let C be the optimal column
and show,4 that cptin a partitioning in three dim-asions is NP-c mplete. We partition, given R1 . Let-:, e -. tR, Gi) be the cost of that partitioning.
d'scuss-our applicatiLa of these a'gorithms to real problems. Next,=fix the column partition as C1 , and let -R be the optimal row parti-

tioning, given C1. Let ;r2 = 7(R2 ,CI). Clearly we may repeat this process
as many times as we like. We have shown that the sequence ri ,-.., is
monotone non-increasing, and that eventually the computation converges to
a fixed row partition I?,. and column partition C.. We have also bounded
the number of iterations required for convergence by O(aim 2 (n + m)). Far

--I- I f fewer iterations are required to converge, in practice. The talk will discuss the
I I A- I Ii ! use of this procedure on highly irregular 2D grids used in fluid-flow problems.

_____ _ -Three Dimensional Partitioning
Finally, we consider the complexity of the 3D partitioning problem. We have
already seen that the ID problem can be solved in po!ynomial time; it is

Figure 1. RetilinarParttionng of wo Dimensional Domain not-yet known whether the 2D problem s tractable. It turns out-that- the

problem of finding an optimal rectilinear partition in three dimensions-is
NP-complete. The proof shows that the monotone 3SAT problem [2J can
be reduced to rectilinear partitioning in three dimensions. The-key idea is

One Dimensional Partitioning to construct a domain as a function-of the 3SAT clauses. Each literal is
given three rows, or columns in the 3D weight matrix. The intersection of

The rectilinear partitioning algorithm in one dimension has been extensively rows and columns for hiterals xi,7j,xk is a 3 x 3 x 3 volume. This volume is
studied as the chains-on-choins partitioning problem (1, 3, -4, 5]: we are to be partitioned among 2 x 2 x 2 processors, which -ssentially forces each
given a linear sequence ofwork pieces (called modules), and wish to partition literal group to divide into one of two possible partitionings. The partitioning
the sequ--ice for execution on a linear array of processors The best known choice can be interpreted as the assignment of a truth value to the literal.
published algorithm to date finds the optimal partitioring in OMm log m) The volume is weighlted in such a way that-its partition has bottleneckvalue
time, where Al is the number of processors and in is the numbuer of modules. I if and only if the partition corresponds to an assignment that satisfies the
This solution repeatedly calls a probe function. This function accepts an clause. This shows that optimal three dimensional partitioning is as hard as
argunient-II, and uses a greedy workload assignment algorithm to determine the monotone ISAT problem, which is known to be NP.complete.
whether there is a partion that assigns no more than W work to each
processor. probe is usei in conjuction with a search, in order to find the References
minimal IV for which there exists a feasible partition. The cost of calling
probe is O(Af lugmj. Prevous solutions nave invled calliiig pirobe Uti ' S 1I. Bokhan Partitioning problems #a parallel, pipehned, and-dis-
times. Wel havea new scaching strategy that reduces the caiiig frcquency to tributed computing. IEEE Trans. on Computcrs, 37(1j.4& 57, January
O(M logir), thereby-reducing the complexity of one-dimensional partitioning loss.

to O(m+ A log? i)1 [21 M.IL Garey and D.S. Johnson. Cornputcrs and Intractability. W.l. Free-
man and Co., New York, 1970.

[3- .MA. lqbal. Approximate algorithms for partitioning and assignment
problems. Technical Report SG--O. ICASE, June 1086.

'This rese-arch-was supported in part by the Aimy [-I MA Iqbal and SAL Rokhari. Eflieientalgorithms for a Plass of partition-
Avionics Research and D~vdelopr~t Activity throngh inm problems. Technical Report 0O0.19, ICASE, July 1090.

NASA grant NAG.Ii t_ in psut t-f NASA grant N '.G- (51 DM. Niol and DiIL O'llallaron. Improved algorithms for mapping par-
1-1132. and in part by NSF Grait ASC 841#373. ale' and pipelined computations. IEEE 1rans. on Computers. 1991.
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Applying Chain Mapping Algorithms to Flowgraphs*

David R. O'Hallaron

School of Computer Science
Carnegie-Mellon University,-iusburgh, PA, 152 13, USA

Abstract Such applications can be modeled by a floizrr.phi e call a trel'lis. An
example with four sensors is shown in Fi;- 2.

We-identify two useful classes of flowgraphs that can be compiled onto
distributed-memoty multiccmputers using chain mapping algorithms,
and whose performance can be predicted accurately. ( C

1 Introduction C 

Flowgraphs: have been used for years to model digital signal processing f) (f ( f'
(DSPalgrituns A fowgaphis-a collection of nodes and -aics,

= where nlodes represent computations and-arcs represent FIFO queues. CC
Each-node iterates aninfinite number of times;-each iteration, a node
consumes a vector of data items from each of its input arcs, perforis~a 2c 3Cf O~ on
computation on the inpai vectors, and produces a vector of data items -

on each of its output zr;s T1he sizes of the input and output vectors are
indicated by integer arc labels.

There- is -much- puiblished -research -on -the-probless of compil- Figure 2 -A trellis.
ing-flowgraphsonto -sequential -machines -and onto shared-memory
multiprocessors[3]. -Lttle attention hasbeen given-to date on the Pie n ris~are -te~i sfliise fl fugrapi ta
problem of compiling flo~graphs onto distributed -me.-or) mulzicorn Lan be used to buid ra.ppi..,atiwns. Forz example. aunai adaptal..
puters; some recent work can be-found in [5, Si beam interpolation .uu the 2DTFT .an each be modeled-as a pipe of

In-this paper-we identify two useful classes of flowgraphs-that we two trellises.
call pipes and trellises. A pipe models apipelined seq~uence of differant
operations performed on a single data stream. A trellis models a single
operation performed in parallel on different data stream s. Pipes and 3 Applying-Chaini Methods
trellises-are interesting-because they-can -be compiled efficiently and
optimally using-chain-mapping algorithms, and because their perfor- Chain mapping agonthmstl, 2, 4J compile a chain of Umodules onto

mmc ca beaccratly redcte. chain-of -P distributed-memory processors, typically with P -zM.

These-algorithims are attractive-because theay are efficient, requiring

2 -Pipes- And- Trellises time polynomial in Ul and P, and beccause they are optimal, minimizing
the maximum load-on any-processor, subjeet-to the constraint -that

A common DSP application is to pipeline data from a se, sor through two contiguous modules are- mapped or.-' the-same proc "sor or its
a sequence of filtering operations such as FIR filters andT FF~s. Such neighbor.
applications are modeled by a flowgraph-wc call a pipe. An example Pipecs-and trellises havc the n'ce propcrtyihat they are eaily trans-
with 4 filtering operations is shown in Figure-1 formed-into a form-suitable for-chain mapping methods. The-trans-

formation of pipes-is trivial; each node-in the flowgriph becomes a
module for the chain mapping algorithm. Thiis-is shown in Figure3.
The transformation-for trellises-is also straightforward, as shown in
Figure 4. Each of the dashed boxes becomes a module for the chain

2 c ~, c17 c(7\mapping algorithm.

Module 0 Module I Modute 2 Modute3
Figurel:. A pipe-

-In another common DSP application, -data -from multiple sensors _
is distributed, processed independently and combined in some way. -- --

Teresearch -was supported in pint by Dcrens Advanced Research ProjectsFiue3Trnfmaonfa rAt4
Agency (DOD) monitored by OANRPAICNIO under Contract %1D,%9.90-C-o3S iue3 rnfraino reM=4
and in pant by the Office of t'hval Research under-Contract iN0004.9041.19319
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I Graph ~7 ~ T, PrdedE csuc;

-pi.peL 1024 55N 4% 40%

ModulcO- Module 1 bforJule2 Module 3 P-P-2 1024 231, 2  99% 99%
K -t rcllist 2048- 42N 34% 34%-5 j

- : : rdllia2f 2048-1 41lN+562.(N/K) 2 1 80% 0 /

* a a a a .Figure 5: Predicted and measured efficiency on iMarp

a a a a a a a a5 Discussion

aa, Ile :p.ia results are somewhat startling. In each case tGiep..auicted

a Lru performance was within -one- percent ofthe measured-performance.
aomncain avereadwas restricted La the unavoidable cost of

a..-, *~ . -,physically transferring data between the communications network. and
memory. There waS negligible ov~rhcad due to waiting &f.- daa.

The accuracy-of the- model -allows- us to make- strong- predictions
Figure 4:-Transformation of a trellis, M- 4. about performance for various vaalues of i, N, and T,. rForexaitipica

if r could be reduced -from 40 to 4, which-is qu-te possible for i"Varp,
4- Predicting-Performance then the cfficienic of the trellis I flowgraph ir:-Figre 5 would rise fronm

340,% to 84%.
We Have seen that pipes and trellis ca~n-be compiled onto-distributed-
miemory multicompurerm using chain mapping methods. Another nice
quality of these flowgraphs; is that their performance can oo predicted References
quite-accurately. A common performance-measure:for flowgraphs-: [1]-S 11. Bokhari. Partitioningproblems in parallel, pipeclined and dis-
speedup. denoted -by -S -and -defined- by S = E;P, where-EB denotes tit
efficiency. Ve dcrive- an expressio n. for the efficiency -ofpipes and -triod mputing- IEEE Transactions on-Compurcrs, 37(1):48.
trellises-under the-following- assumptions: (1) All modules consume 57, Janu~ary 1988.

the same number of cle-ks per-iteration. (2) The number of modules (21 -vi.-Iq~bal. Approximatcalgontlins for partitioning and assignmient
M is an integral multiple of the number of processors-P. problems. Technical Report 86-40. Ins-titute for Computer Ap-

Let- T= T, + Tdbe the number of number of clocks per iteration per plications-in-Science and Engineenng, NASA-Langley Research
modcle, where T. is-the number of clocks-spent doing computations Cetr -nptuA.Je196
and-Z7 is-any -additional clocks-required -because -of interprocessor nt-,H poq VJue 96

E-A Le-n D.-.2Icsabnt. S .. hcdular-_U
coninlun ication, .ese .an be czouGs speiit waiting rot-data or .xatualiy L~.a E.Aae-adD . .~... ..

tronsferring data-bet ween- a -immunuiatioris -network and n-emory. --hrunvo iaia.daia' fai piuciaamnb fu digaiai aigija promcassinji.- ILLL
Udrteeassumptions, efficiency is simply Transacions on Comiputers, C-36(i,.24-35, January 11987.

T 1 () (41 P.-M.ANicol and-D. R.-0'Hallaron. Efficient algorithms for map-
7T+T, I +TjT,. piiigpipelined and parallel computations, 91 oapa nIE

If thecompu atos asoiatJ-with-each-node in the flow graph-are; .r'sactions on Computers.
daM~ndeendnttrue for most DSP oper2tions, thcn-T can be-pre- J51 H1. %W Prin!7. Ainiciaic Mapping-of Large Signal-Processing

di-ted precis;.ly for a-giiren parallel computer and-compier ysr -a i'arallcl M"achine. PhD thesis, Carnegie-Mellon,
On--the otlhizd, -Tr may-be more difficult to predict-accurately Jnay91I- becauce _it-could- include: time spent-waiting for data-to arrive. For

our mod,.: wec will-assprie that T, = 2-.N, where N-is-the nurnbc. t6J S. Borktaxct.al. iWarp. An integrated soltinon to luhil-speed p;aral.
of inliuts-(and-outputs) for each moiu!c. and . is the ..vcrhead (in lel ,.Omputuiig. In Supci-tnnmiuung &8, Kissimmee, FlNuonber
clocks) r~sociated wittasrcr.-ing awo-d betwee-nthecomrmunicatIioni 1988.
network trnd meriory. 'Notice that r is-constant for a given, parallel
rna~hine and-Lcumpiler. Nouiae aio-that -this exprcreaon for 1Tr is-a- "J SIore ctida.S xrnssi:Ladzcu .iiuf,.Uw
lower b-3und that-ignorca-an1 clocks-spent vaiting icr da:a- atrsivc. In 'Walp. III7, /"Seu1 Ifltcinaraajnal Sbflipusau tinrn COArpudci
While this-is unrealistic in general,. empirncal cvidence %U-gcsls that Arilicaumj. ICEC Comlpiitt -Soiety-aridACM. Nsv-1990.
this is~reasonzablcfor pipes-and trellt'54. Given theczxpressioa for-Tir, pjG. C Sih and EL. A. Lee. Scheduliny-to account for intecrprocessor

effiieny beome conirucation withn iritcon a cii-consira-iicdlprocesor n.-t-

E = I M ,(2) works;.It Proceedings ef tile 1988 InternatIoral Conference an

Wetested -the model in-(2)-using -four-different pipe and trellises Prl!Pt-~ig uut19)

runin on a 64-processor :Warp computer at Carnegie Mcllon[6. 7J.
eh-iflowgraph was compiled using-a r-hain nmappinv olgodthlm.an Ai

thcresulting chain was embedded in thciVaup's 2D. mesh. lI'm rev.-ltsI- are shown-in Figure 5. Predliet.-d efficicncy was computed using (2).

For ai~tests, P 64=-=64, and - =40. MecasuredA efficiency was
obtained by measuring the speedup S-and then applyingr thie lidetity
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A MPPNGALGORITii FOR HETEROGENEOUS
MLTIPROCEVSSORARCHITJECTUE

Todd-P. Carpenter Sudhakar Yalamanclili
Horieywell-Systems-arid Research Center -School oElcialEgneing

3660 Technollcgy Drive G ria Institute of Technology
Mpls. MN-5-5418-1O23 USA tlant, - A 303-0250, USA
ca-rpeint@src.hoh1ev-reLcorn su~dh .@eecorn-.gatech.edu

Abstract-Resource -managernnt-is-an-integral !acet of rpresantng ge he nature-of the coniputati;on, -e.g., -float-
-the design ,develoqziient, an47appliti'nx ,kf-multiZroce.- iog. Point, symrbolic, etc. Ass iganentsb must now maintain

sorarciteturs. hispaper -sconcerned-with-one-spa- :airpatibility Letween-typs Ie a.nde-of a-certain type
_afi -iap xt of he prohle l assigimit of concur- is corst!ae teecte on only- a subset-of processors.
:rently ;x e' utable (within precedcencc constia:nts) tasks to We 'ropose so compiite assignments-based-on an adapta-
the processors. Naive-ziisignments cea lead ta- e.u.fie -tion ef sirauied annealing -a combinatoria' optimization

'dfoxiac daaio du otecnpert..eha rozedu a i-hal realizes a probabilistic search of a discrete

in inter-task ciifrniuni cation ani synchroaz.at~on. ln-par- -state space [.'], TLe-process starts from some initial state
-ticula -we focih 6Z heterogeneous arch:'ectares c.~,prisedar -whic -is nerturbed. The riew- state -is- evaluated based on

fdstctp;5esr -types,-distict o-mhzuricat',oa-m! - an- objecct.ve functio n-(as known as the energy function).
dia ad mnay datatypes. SS -g Ifti I!_t-Such sytemrs- are- becoinig -fti state- i "bettce ias measurediby- the- value-of the

inresigl wdeprad prtcuary in-special purpose zrergy-function it is acceptrd; If not it ia probabilistically

applications -aand distributed- systems. Wert add:e.,s -the accepteL -ItiS--this latter 4andorn-behavior =that enables
probcri ofstaicaly appng -ro~awstoszc~ ijnij- te search process to-4vo:l -being- trapped- in local min

processors. ima. Simulated anneali.tg has found wide application in
. INTRODUJCTION a number of combinatoria optimization problems. A sim-

Examples -of -~rjnos apIain -icueds lified-Iview of the-pro,.ess is shown below, and-each step

-tributed enavJrnm entr-; differ' rt pr ocesr platforms, mixiii~ elaborated in the following.
afwork slations, mini-,:niiue ,ronfan cop s -Lomlp 1mf doze
-. They -eptesent- ifferent i rcf sr o-x'aying -per- sitate ~perturbatioxi;
iorman -cea ardcompiieis ray6- mayji6o, cxist-ror all lan- ctate-eva1laton

guages-onV alnahne.Fu cr, -each -application- mod- state-acceptance/rejection;
~uie unji diferin Bpe dsidx~rig proccssors. Each -n4_ 1oop

pair- of proce~irn mayzommiunicatt at different, rates.
For insti.nci, heterogeneous env rOnMent might consist of A. State Perturbationh
-Apollo, --SUN- -Decst-aions, Vak.en-and-Amiqar _,Ietforms. Given aa, assignmneit of tasks to processors,- tis step
Alteint~l~eiae ap1ct-sole-e potd modifies. the assignment(s) of task(s). The change may

by htcrgenousmnuiprcuso arIi ecires toreaize be 1ased-on architectural characteristics (e.g., limited-to
high- pirformance.- Pir~exam?'ei Tb c IntelI-IPSC/2 -hy- adjacent processors) -or -may be based on the structure

perube.~. a~iiab~ ~Z: ixe 4pec s.rstrri uing~Z8O f ailgorithm (e.g., limited-to communicating tasks). In
and 80396-processors, Pacxagng constraints often lead a-single iteration, multiple tasks-may be moved simnulta-
to systs-where mubieubes -of a hypercube residing in dif neouly-corresponding to- large upf ntesaesae

rfln-zacksa iuimuiciatec over different -media (C-g, CP- or one-task -may be moe atatm.Frtetepr
lic fiber) -. han-processora vithin-a rack. Special purpose tubto srtgies may change-over time to adapt to

-multip-rocesor architeCtLses- for 3ignal processing have the behavior of the s.:arch.inlythprubaosae
becn deeigue-it iicrarchiceclly 91ganized-inazcon nec- -governed by tyjpe constraints-i.e., between tasks-and pro-
:tion-2etworbs-r-with ringcxostjdelay characteristics at cessors.

-eh-levei. -- B. State E-valuation vl
7 The -roblerriof mapping parallel programs onto homo- The energy function maps states to real or integer vl

geapous architectures: usa suffciently complex combina- ues. The value of the function is a measure of the qual-
toriti problem-in its-own right(il.- The presence of addi- ity of the mapping represented by that state. For the

tion1-eoe~rin~~cf-rocesorand rocssin tyes~ad mpping problems we are considering examples of appro.
varm~bh- cmmuicaiondelys ake th prbler. ven priate energy functions include maximum processor load,

mor d 4ul-- thi ae-a eciea-apoc o maximum inter-processor communication load, variance
mre .,izin s Iichcssignments. Thiscprohisb a p ta-f of processor loads, etc. The more complex the energy

tio o aaprch w ucsflyipe ntdoron- munction the longer the run-times, or the smaller-num-
.puting assignments when the target architecture (and the ber of states evaluated per unit time. The goal is to find

comptaton~ ar hoogeeous(2] Ths wrk nlynp- a state that maximizes (or minimnizes) the value of the
compta~lioo-a~- hmogeeou (21 Ths wrk olyrgy -function-

-Thlee to thgtti rsinmnt -problem. We do not yet Cl poseaenergy function that we have success-
addisa he rcrediffcul dyamicmaping-robem. fully used when mapping onto homogeneous architectures.

Ii. ODELANDnIETODSThis function consists of two components - a load bal-
The -mpping problem is eddressed in the ccntext. of ancing; component and a inter-processor communication

exploitiog-medium-coarse grained parallelism in message component. It Is typically desirable to maximize the
passing, m ultiple instruction stream multiple data stream first and minimize the second, and can be represented
(MIMD) architectures. The applicatilon and and architec- as, E ._. wuj Y. LB t~ w,.x C where w~b w, are the weight-
ture aire d escribed in terms of atributed, d;-ectc-i graphs. ;ng factors for load baianci:ng and inter-processor com-
Node (e!ge) weights represent computing (corrini."nica- munications. The individual coi.,ionents are computed
tion) _icquiremencrts. Nodes are also labeled by a type as follows.
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Load balance is a measure of how e enly the plicessing computing the optimal assignments for comparison pur-
load is distributed among-the processors. The objective poses, we apply the mtpping algorithm to problems with
is to distribute the processing load as evenly as possible. -known-analytical solutions. For example, we apply the
The value of the expression LoadBalance shown below is mapping algorithm to the problem of finding assignments
minimized when theloa:dis evenly distributed, of-hypercubes onto hypercubes, or meshes onto hyper-

Define: cubes. Such an approach runs the risk of of not accu-
P = number of resource elements rately representing the perfornance of more general cases,
T = number of tasks mapped to element however our implementation makes ure of no information

about the structure of the target architecture-or algc-
Tw,i = the weight of-the jth task mapped ritbmR. The expectation is that comparable performance

to resource element i is possible with relatively unstaructured cases.
Pwit=, = the weightfor resource element to We have also experimented with heterogeneous systems,

perform iype-task including bus based and hypercube based systems. The
Tti,, =-the type of task j mapped to ele- bus based system consisted of a serial backplane, and 10

ment i and processing nodes. The hypercube consisted- ofhetero-
LR - The number of resource elements geneous communication links and processors, where sub-

with nonzero loads cubes have one communication dimension faster-than the
.... ~d a~n e _ x ._.-)) other dimensions, and each sub:ube consists of a different

___aa__a____ X __"_---"_- --- type (throughput) of processor.
hol Applications mapped to these hardware resources in-

The-expression Commur. tion shown below is a inca- cluded airplane flight managements control systems,
sure of how the inter-proce.-.or communications load is sonar beamforming, and various benchmark examples
distributed. The load is-afunction of the distance be- such-as weighted hypercube and binary tree graphs.
tween communicating tasks, the data volume, and link
throughput. The value of Communication is minimized IV. RESULTS
when all tasks are mapped to the same processor. There- The results of our experiments have been very encourag-
fore this expression is-at odds with the load balancing ing. For relatively small systems (<- 32 processors) based
term described above. on regular, symmetric network topologies such asthe hy-

Define:
T =-number of tasks percube, globally optimum assignments were computed

Toj =number of outputs of task Ti over 90% of the time in less than 106 movers. The adap-i = the links from resource to which tive schedules we have employed consistently-outperform
Task i-is mapped, to the resource for annealing implementations without adaptive schedules.
task j The point at which it is desirable to change froradaptive

Tij =-the-amount of data from Task i to to non-adaptive schedules is currently unknown.Tk t, aWe compared the performance of this mapping algo-
Task i rithm to the manually generated schedules produced in

Lk reciprocal of throughput of link-k the design of a current real-time flight management-sys-
Amount of communications band- tem. The target architecture was a heterogeneous bus
width potential based system. Manual generation of schedules makes it

_rui -., 0i w E s, 1 Tc- x Lk possible to modify the software to change load distribu-
Communications tion,-inter-processor communication, etc. (i.e., effectively

C. State Acceptance/Rejection alter- the weights on the graph) to meet operating con-straints. As a result, the manually generated- schedules
New states are accepted or rejected based on the value were superior, but took on the order of hours- to da -to

of the energy function. We deviate from traditional an- generate compared to seconds for the tools to-return so-
nealing implementations with respect to this decision pro- iutions. Furthermore, we were dealing with relatively few
cess. The following acceptance/rejectio, Lechniques were and large tasks creating high (e.g. 98%) system loads.
employed in our study. Note that although we can accept As the number of tasks grows (due to decreasing gran-
worse states, we do maintain a record of the minimum ularity or more work) we expect th- gap between auto-
state found.

9 Annealing If AE < 0, the new state is accepted, mated mapping algorithms and manually generated solu-
and is used as the starting point for the next itera- tions Will close rapidly.
tion. If AE > 0, the new state is accepted proba- V. FUTURE WORK
bilistically according to P(AE) e- .where k is This work is part of a larger effort to develop a mul-
the oc a he t;..perature, iproessor system toolkit to support the conception, de-

* Kappa Sequence If AE < 0, or if . cunt;guous sign,-analysis, and development of large scale, medium-
states have been rejected, accept the new ate. The to-coarse grained multiprocessor architectures. Future
value of x is increased if AE < 03 and is decrteased if research- will expand the role of the mapping algorithm
x states have been rejected. This functiur contains to consider its effect on reliability, and the feasibility of
some notion of history, and modifies the L,aviot of computing assignments that optimize other performance
the search based upon trends. attributes such as response time.

* Lambda Sequence If AB < 0 accept the new state, * S. H. Bokhari, "On the Mapping Problem", IEEE
or accept the new state based on a probability dis- Transaction on Computers, March 1981.
tribution function A. After ic states, A is modified
based on computable trends in the sequence of states. * S Yalamanchili and D. T. Lee, "A Mapping Algo-
This is an adaptive acceptance function which mod- rithm for Multiprocessor Architectures", 2 6

" Aller-
ifies its behavior based on some history of movement ton Conference on Computing, Communications, and
within the state space. Control, 1988.

Ill. EXPERIMENTS 9 S. Kirkpatrick, C. Gelatt Jr., and M. Vecchi, "Opti-mization by Simulated Annealing" Science, vol. 220,
A major difficulty with mapping algorithms is in evaluat- no. 4598, M lay 1933, pp. 671-682.
ing their performance. With no known general method of
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Abstract One of the key -objectives of the Applied Research 13ranch 2 Parallel Machines at NASA Ames
in-the Numerical Aerodynamic Simulation (NAS) Systems Division-at
NASA Ames Research Center is the-acceLerated introduction or highly 2-1 Connection Machine
parallel -machines into a full operational environment. In this- report The Thinking Machines -Connection Machine Mo4CM-2 is-a mas-
we summarize -some-of the experiences with the -parallel testbed ma- sively parallel SIMD) computer consisting ofmn0 hcanso-i e
chines at the NAS Applied Research Branchi. We discuss the-perfor- rial data processors undier the dir-ction of a rond ofite The
mance results-obtained from the implementation of two Computational system at NASA Ames consists of 32763 bit serial processors each- with
Fluid Dynamics (CFD) applications, an-unstructured grid solver and wihI- i of memory-and operatingat 7 Mhlz. The processors anda-particle ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~wt siuain onteCnncinMahn-M- n-teItl
aparclesmlton8nteConcinMchn M2an.h n memory are packaged as 16 in a chip. Each chip als, c-antainis the rout-

iPSword:pre arhtctrs00.lelagrihs ing circuity-which allows any processor to send and eccive messages
Keywrds paalll arhitctuesparalelalgritmsfromi an , other processor in the system. In aaditon, there-are 1024

A'_%S Subject Classification _76-08, 65W05, 65\219- 64- bt Weitek floating-point procatorb-9 vhzi are fed from the-bit se-
CIL Subject ClassificationfG.1.8, J.2,C.1., C.1.2. rial processors- through -a special purpose Sprint chip. There is one

Sprint chip-connecting every two CMI chips to a Weitek. Eachi Weitek
pr-ocessor can execute an add and a multiply each clock-cycle thus per-

-1 Introduction formiAng at 14 MFLOPS and yielding a peak aggegate performance of
14 GFLOPS for the system.

The Connection Machine can be viewed two ways, either as an
One of the key tasks of the-Applied -Research- Branch in the Numeri- 11-dimensional. hypercube connecting the 2048 C11 chips or a 10-
cal Aerodynamic-Simulation _(NAS)_Systems Division a: NASA Ames dimensional hypercube connecting the 1024 processing elements. The
Research-Center is the accelerated introduction of highly parallel and first view is the 1iedwise model of the machine which has existed
related key hardware and-software technologies into a full operationalsnc titrdco.Tisveamtsothexsneofalat

enionet(se()) rm 90 190atete fcltyh Vben376S physical-processors (when using the wholeo machine) each storng
established for the develo)pment and demonstration of highly parallel data in fields; within its local memor. The second is the mnore recent
computer technologies. Currently a 32k processor Count- -ion Mahn %smise model of the machine which admits to only 1024 processing
C.1-2 and an -128 node Intel iPSCIS&O-are operated at the NAS ApR elements twhen using the whole mnachine) each sto.ring data in slices of
pled Research -Branch. This testhed facility is envisioned to consist .32 bits distributed across the 32 physical processors in the processing el-
of successive generations of increasingly powerful highly parallel sys- ement- Both models allow-for 'virtual processing', where the resources
tems that are scalable to high performance capaliffti es beyond that of of a single-processor or processing element may be divided to allow a
conventional supercompute"s. greater number of virtual processors.

I s recognized within the scdentific computing community- that the Regardless of the machine inodei. the architecture allows intfrpro-
most promising-approach toward achieving 'er-aC* imprOvemlenti %n cc communicaion to proceed in three manners for very general
computing performance is through -the aplication of highly par2elp- communimatiou with no reguiat pattern. the router deterines the des-
architectures. To meet the future processing needs Of the aerspa tiato of unesages " run lime a. directs the moessages accordingly.
research community, the Applied-Research Branch Supports a research This is reerred to as genc"a router commiunication- For communica-
programn aimed at achieving the best match of paralle pr-cessing tech t;0: With an irregular but &tau. pattern, the message paths may be
nology to the most demanding research applicat:ons. In the last two p -omp:ed and the roure: will direct taessas acording to thc pre-
years a number of large scale computational fluid dynamics aprllcatons *enie aths. thi is -eeri to a opcd communication and
have been implemented on the two testhed machines. And the potential!a be 5 times faste than gsme'ral router commonicarnn. Finally : for
of the parallel machines for production use has been evauated. Beyonc-d %iuaaio hch is pfe4reguiar and invo,-vs only shifts -.A -Ag
that, a systematic performance evaluation effort has been 7daated see0 g~mi am.* the ssc zofiare opimizes the -as ikyout, b--. ensuring
(.4)), aid basic algorithmn research has been continued, s.riU;lY ncarrs; oembAlK communication ana uses its own pre-ompied

In this report we will first givwe a brief descriptio of the cavpabltic. paths. This &s teerred -4 as NLIVS Jft orhsts-u comn-
of-the parallel machines at NASA Ames. Then om saldlcssam of A";,scdcosie nncsoni o restricted
the research carried Out in Vtie mplem taiofl Of C o naF.QJ 60 Z~so. fit'&. Aii.Z op 411 JAm A us1a.. NLIW itl gsmay be
Dy.namics (CED) applications onthese paralllmachines Wifixus here apre.NEWS cm niato ate fastest.
on those applications where w ae more detaied Vadcbcueo ie O1-0 auiscnc~ to tie data. pr.mcesom tuough an 110
our own involvement. an explicit 21) Ea' ki soievt frus canetr g.dsues. Arn a,0 c",auwe connecr to 64# pruumesrs through 256
and-a simulation based on paxtirle maethos. Other app .atflus ba&sd 10 Ll~ies TLCIC .4 Qone anq oiu rata c-sp, but the cauller can o~
on-structured grids will be mentioned brie5ry. as %4l as the rNAS L arZn and mmst, urav its JIprocessorb a
in-parallel benchmarking. In a final section we offe ic Gi "~r a ls .4nk 441ah LAch4 hO ttaolt usaanus!e tau,.. of up
conclusions on the performas'r of cur-eat pasaZe! macLinca P,% CFI) to 46l M B p,- se-knd.n in add.La- to An10 cona-cr thre can be a
applications, as well as-the potential o. the dhffrcnt acietrs& Lc 'a n a2;- g._.c Qutputk. actvni'et 1, _-connctmd di reiY
production use in the future.t Another aummary of Aonic of t&L-esr irm r & jlt aih L lt h r-_ th~~e J1, 0 bus the frame-huffrm
from NASA Ames is given by D. Baliy in '34 caft rec-twe data :'r- t!-.- C,1 processo at 256 'MR pet second. The
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system ,t N"ASA Ames has two frame bufferb .tanected to two-high hyperiabe nodes and initialing execution. At present tile SRM is a
fesolution color monitors and-four I/O controllers conecied tv t 20 serious bottleneck in the bsytem, due to ,ts slewrness in compiling and
GB DataVault mass storage system. linking user codes. For example, the compilation of a moderate-sized

The Connection Machine's procesborb are used only to store data, application program often requires 30 minutes or iore, even with no
The program instructions are stored on a front end computer which optimization options and no other-users on the system.
also carries out any scalar computations. Instructions are seque.,d During 1990 the iPSQ 60 has been thoroughly investigated at NASA
from-the front end to the CM through one or more sequencers. Each Ames. A first set of benchmark numbers, and some CFD applications
sequencer broadcasts instructions to 8192 processors and can execute performance numbers have been published in [2]. A more recent sum-
either independent of other sequencers or combined in two or four. mary-is given by Barszcz in [5]. As documented in [5] from an overall
There are two front end computers -at NASA Ames, a Vax 8350 and systems aspect the mai bottleneck has been the SkM, wich is not able
a Sun 4/490, which currently support about 100 users. There are tvo to handle the demands of a moderately large user community (about
sequencer interfaces on each computer which allow up to four concurrent 50 to 100 users) in a production environment. Another important re-
users. In addition, the systenm software supports the Network Queue sult of the investigations was the outcome of a study by Lee [13]. Lee s
System (NQS) and time sharing through the CM Tin.. Sharing Systcm analysis of the 1860 floating point performance indicates that on typical
(CMTSS). CFD kernels the best performance to be expected is in the 10 MFLOPS

The Connection Machine system was first installed at NASA Ames range.
in June of 1988. Since then the-system has undergone a number of
upgrades, the most recent being completed in February of 1991. An
assessment of the system is given in [21]. Perhaps its greatest strength,
from a user standpoint, is the robust system software. This is of critical 3 Structured Grid AppliCations
importance to NASA as it moves its parallel machines into production
mode. Structured grid codes, in particular multiblock structured grid codes,

are one of the main production CFD tools at NASA Ames. A number
2.2 Intel iPSC/860 of different efforts were directed toward the implementation of such

capabilities on parallel machines. One of the first CFD results on the
The Intel iPSC/860 (also known as Touchstone Gamma Sy tem) is CM 2 was the work by Levit and Jespersen [15, 1-4], which was recently
based on the new 64 bit i860 microprocessor by Intel. The 1860 has extended to threc dimensions JIG;. Their inplementation i based on
over i million transistors and- runs at 40 Mlz. Tihe theorecical peak -tht successful ARC2D and ARC3D codes deeloped by Pulliam [20].
speed is 8OMFLOPS in 32 bit floating point and 60 MFLOPS for 64 bit -Work is in progress '.u implement F3D,-a successor code to ARC3D,
floating point operations. The ioO0 features 32 integer address registers, on the CM 2. OA the iPSC/860 Weeratunga has implemented ARC2D
with 32 bits each, and 16 floating point registers with 64 bits eaci (or 32 (fur c rly rksults see [21), and work is in progress to implement F3D.
floating point registers with 32 bits each). It also features an 6 klob yte W-,atuaga also has developed a pseudo CI'D appliation based on
on-chip data cache and a 4 kilobyte instruction c, ace. There is a 128 structured grids for the NAS Parallel Benchn.ark, which is described in
bit data path between cache-and- registers. There is a 64 bit data path chapter 3-of [4]. We will Rot discuss thesc efforts here in more detail
between main memory and registers. and refer the interested reader to the references.

The i860 has a number of advanced features to facilitate high exe-
cution rates. First of all, a number of important operations, including
floating point add, multiply and fetch from main memory, are pipelined 4 Unstructured Grid Applications
operations. This means that-they are segmented into three stages, and
in most cases-a-new operation can be initiated-every 25 nanosecond We discuss here work on an upwind finite-volume flow solver for the Eu-
clock period. Another advanced- feature is the fact that multiple in-strutios cn b-excute ina-sngl clck prio. Fr "mpl, ale equations in two dimensions that is well suited for massively parallelstructions can be executed in a- single clock period. For example, a ipeetto.Temteaia omlto fti lwsle a

memory fetch, a floating add- and a-floating multiply can all be initi- mplementation. The mathematical formulation-of this flow solver was

ated in a single clock period, proposed and implemented on the Cray-2 by Barth and Jespersen[6].

A- single node of the Touchstone Gamma system consists f 860 This solver has been implemented on the CM-2 by Hammond and Barth

8 megabytes (MB) of dynamic random access memory, and h arre [, and on the Intel iPSC/860 by Venkatakrishnan, Simon, and Barth

for communication to other nodes. For every 16 nodes, there i: also [23].

a-unit service module to facihtate access to the nodes for diagnostic The unstructured grid code developed by Barth is a vertex based fi-
purposes. The Touchstone Gamma system at NASA Ames consists of nite volume scheme. The control volumes are non overlapping polygons
128 computational noles. The theoretical peak performance of this which surround the vertices of the mesh, called the "dual" of the mesh.
system is thus approximately 7.5 GFLOPS on 6,bit data. Associated with each edge of the original mesh is a dual edge. Fluxes

The 128 nodes are arranged-n a seven dimensional hyper ibe uang are computed along each edge of the dual in an upwind fashion using

the direct connect routing module aid the liypercube interconnect tech- an approximate Riemann solver Piecewisc linear reconstruction is em-
nology of the iPSC/2. The point to point aggregate bandwidth 0; the ployed which yields second order accuracy ;n smooth regions. A 4 stage

interconnect system, which is 2.8 MB/sec per channel, is the same as Runge Kutta scheme .z used to advance the solution in time. fluxes,
on the iPSC/2. Iowever the latency for the message passing is reduced gradients aid control volumes are all constructed by looping oter the
from about 350 micros*eon~d3-to about 90 microseonds. This reduc, edges of the original mesh. In the Cray implementation, vertorizaton
tion is mainly obtained through the increased speed ofithe l860 on the is achieved by coloring the edges of the mesh.
Touchstone Gamma machme,when conpred to the Intel dk 1bj37 on It is assumed that a lriaiigulariatLion of L computational domnain
the iPSC/2. The improved latency is thus mainly a product of faster and thl coirespo,,dinig mesh has been wamputed. We will not present
execution of the mes.age passingsoftwiare on the 1860. any iiorm details here. A complete description of tl,e algorithm can be

Attached to the 128 computational nodes of the NASA Ames system found in [6, 11].
are ten I/0 nodes, each of which can sore approximately 703 MB. Th- In bAh i.pluamentationui the tlame test, case has been lased. like test
total capacity of the I/O system is thus cboe t 7 GB. These I/O nodes case used is an unstractureti mesh with 15606 vertice, iSS8 -2g,
operate concurmently for high thioughput rate,. The coniplete 0.)sent J0269 faces, I bodi s, And 0,49 boundary edges. The flow was computed
is controlled by a system resource module (SRM), which is based ua it a Macl number of .1 at 0 degrees auigle of ttrack. T.he code for this
an Intel 80386 processor. Thi6 system handles compilation aiid nihiig test case runs at 150 Mflops on tle NAn Cray-YMP at NASA Ames,
of source programs, as well as loading the executable cede into the and require. 0.39 seconds per time step.
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4.1 SiMD-Implementation of Unstructured Solver inLeriur bu,,ndary verti-e6 vwh are shared by tL, pru4ebsors Luntaining
the neighboring subgrids. In the serial version of the scheme, field

a-noeipletation o the Cm-i mmndmanes th [ used quantities (mass, momentum and energy) are initialized and updated
-e-partitioning of the-problem which minimizesthe computation at each vertex-of the triangular grid using the conservation law for

and commuication-costs on a massively parallel computer. In-a mesh- the Euler equations applied to the dual cells. Each processor performs
vertex scheme, solution variables are associated with each vertex of the the same calculations on each subgrid as it would do on the whole
meshand.fux computation is performed at edges of the non-overlapping grid in the case of a serial computation.- The difference is that now
controlvolumes which surround each vertex. In conventional parallel each subgrid may contain both physical boundary edges and interior
implementations this operation is partitioned to be performed edge- boundary edges, which-have resulted from grid partitioning. Since a
wise, i.e., each edge of the control volume-is-assigned to one processor finite volume approach is adopted, the communication at the inter-
(edge-based). The resultir flux calculation- contributes to two control processor boundaries consists of-summing the local contributions to
volumes which share the-particulaedge. integrals such as volumes, fluxes, gradients etc.
In the-partitioning used-by Hammond and-Barth, each vertex of .the he performance of the Intel iPSC/860 on the test problem is given

mesh is assigned to one processor (vertex-based). Flux computations in Table 1.
are identical to the edge-based scheme but -computed by processors
-associated with vertices, Each edge of the mesh joins-a pair of vertices Table -1 Performance of Unstructured Grid Code on the Intel
and is-associated with one edge of the- control volume. iPSC/860

One can direct edge (ij) to determine which vertex in the pair com- Processors secs/step MFLOPS efficiency(%): putes the flux through the shared-edge of the control volume, (k',3'). 2 7.58 7.7 83

Whei there is a directed edge from i to j, then the processor holding 4 3.82 15.3 83
-vertex j sends-its conserved values to the processor holding vertex i, 8 2.01 29.1 79
and-the flux-across the common control volume edge is computed by 16 1.11 52.7 71
processor i and accumulated locally. The flux through (k',j') computed 32 0.61 95.9 65
by-the processor holding vertex i is sent to the processor holding vertex_ 64 0.33=i 177.3 60
-j to be accumulated negatively. Htammond-and Barth show that their 128 0.21 278:6 47
vertex-based scheme requires 50% less communication and asymptoti-
cally-identical amounts of computation as compared with the traditional
edge-based approach.

Another important feature of the-work-by Hammond and Barth is Particle Methods
-the use of fast communication. A feature ofthe communication within
the-flow-solver here is that the communication pattern, although-ar- Particle methods of simulation are of interest primarily for high alti-
regular, rmains-staticthroughout the duration of the computation. tude, low density flows. When a gas becomes sufficiently rarefied the
The SIMDimplementation takes advantageof this by using amapping constitutive relations of the Navier-Stokes equations (i.e. the Stokes

technique developed by lammond and Schreiber [12] and a "Commu- law-for-viscosity and the Fourier law for-heat conduction) no longer

nication Compiler" developed for-the CM-2 by Dahl [10]. The former is apply and either higher order relations must be employed or the con-

a highly parallel graph mapping algorithm-that assigns vertices of the tinuum approach must-be abandoned and the molecular nature of the

grid to processors in the computer-such that the sum of the distances gas must be addressed explicitly. The latter approach leads to direct

that messages travel is minimized. The latter is a software facility for particle simulation.

scheduling. irregular communications with a static pattern. The use- In direct particle simulation, a gas is-described by a collection of

specifies-a list of-source locations and destinations for messages wiuch simulated molecules thus completely avoiding any need for-differential

are then compiled into routing-paths to be used at run time. equations explicitly describing the flow. By accurately modelling the

Hammond- and -Barth haveincorporated the mapping algorithm and microscopic state of the gas the macroscopic description is obtained
- aommunication compiler into the flow salver ing othe CM- through the appropriate integration. The-primary-disadvantage of this

2 and have realized a factor of 30-reduction in communication time approach is that the computational cost is relatively large. Therefore,

compared to using naive or random assignments of vertices to-processors although t e molecular description of a gas is accurate at all densities,
and- the- router. Using 8K--processors of the CM-2 and a VP ratio of 2, a direct particle- simulation is competitive -only for low densities where
1ammond and Brth carried out 1Ui time steps of the flow solver in accurate continuum descriptions are difficult to make.
about 7 a62seconds. This does not inchde setup time. For a small discrete time step, the molecular motion and collision

terms of the Boltzmann equation may be decoupled. This allows the

simulated particle flow to be considered in terms of two consecutive
4.2 MIMD-Implementation-of-ZUnstructured Solver but distijiAt-eventb iii one time ACID, 0jjef,.ie ly1. there is a collision-

less motion of all particles followed by a motionless collision of tho;n
Similar to the SITD implementation else ol-the key issues is the par- paws of particles which have been identified s colliding partners. The
titioning of thme unstructured mesh. In order to partitiop the mesh par fprilswihhv en iniedacoligprtrsThcollisionless motion of particles is strictly deterministic and reversible.
Venkatakrishnan:et al. [23] employ a new algorithm for the graph par- lowever, the collision of particie is treated oi a probabilistic basis.titwoven, proem collsio hof parice- diiuse receatly oiy aio prbailstcass
titioning problem, ;vhicni ha5 beeni discussed recently by Simon (221, The particles move through a grid of cells which serves to define the
and which is based on the computation of eigenvectors of the Laplacian geometry, to mdntffy collidiig partners, and to sample the macroscopic
matrix of a graph associated with the mesh. Details on the theoretical quantities uscd to generate a solution.
foundations of this strategy can be found in [19). Dc .tailed investiga- The state of the system is updated on a-per time step basis. A single
tions and comparisons to other strategie5 (cf. (22]) have shown that the
spectral partitioning produces subdomains with the shortest boundary, time step is comprised of five events.
asid hence tends to minimize communication -cost. 1. Collisionless motion of particles.

After the application of the partition algorithm of the lresioUs sec- 2. Enforcement of boundary eonditiois.
tion, the whole firdte volume grid with triangular cells is partitioned into
P-subgrids, each subgrid-contains -a nunber of triangular cells which 3. Pairing of cc.iiision partners.
form a single connected-reglon. Each subgrid is assignie to one proces 4. Collision of elected collision partners.
sor. Alc(.nnectivity irormation is precomputed, using iparse matrix
type data structures. 5. Sampling for macrorropic flow quantities.

Neighboring subgrids comamunicate to each other only through dher Dutie.Ild dcsfriptivn of tlmeh alg.urQl~ m.i be fouad ir, [17; aiud-17
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5.1 SIMD-Implementation of Particle Simulation Table 2: Performance of Particle Simulation on the Intel

Particle simulation-is distinct from other CFD applications in that iPSC/860
there are two levels of-parallel granularity in the--metnJ. There is Processors ps/prt/step MFLOPS efficieicy(%)
a coarse level-consisting-of cells in the simulation (which are approxi- 2 24.4- 3.5 97
mately equivalent to grid points in a continuum approach) and there is 4 12.5 6.9 95
a fine level consisting of individual particles. At the time of the CM-2 8 6.35 13.5 93
implementation there-existed only the fieldwisemodel of the machine, 16 3.25 26.5 91
and it was natural for Dagum [7] to decompose the problem at the finest 32 1.63 52.8 91
level of granularity. In this decomposition, the data for each particle is 64 0.85- 101 87
stored in an individual virtual processor in the machine. A separate set 128 0.42 215 88
of virtual processors (or VP set) stores the geometry and yet another

set of virtual processors stores the sampled macroscopic quantities.
This decomposition is conceptually pleasing however in practice the rather than the data object decomposition used on the CM-2.

relative slowness of the Connection Machine router can prove to be In McDonald's [18] implementation, the spatial domain of the sir-

a bottleneck in the-application. Dagum [7] introduces several novel ulation is divided into a number of sub-domains or regions equal to

algorithms to minimize the amount of communication and improve the the desired number of node processes. Communication between pro-

overall performance-in such a decomposition. In particular, steps 2 cesses occurs as a particle passes from one region to another and1i

and 3 of the particle simulation algorithm require-a somewhat less than carried out asynchronously, thus allowing overlapping communication
straightforward approach. and computation. Particles crossing region "seams" are treated simply

as an additional type of boundary condition. Each simulated region-ofT he enforcem ent of boundary conditions req ires par ticles w hich are sp c i - ur o n e by a h ll f ex a c l s t a , w en n e ed Y a
about to interact with a boundary to get the appropriate boundary in- space is surrounded by a shell of extra cells that, when entered by aformation from theVP set storing the geometry data Since the number particle, directs that particle to the neighboring region. This allows the
of particles undergoing boundary interaction is relatively small amas- representation of simulated space (i.e. the geometry definition) to-be

ter/slave algorithm is used to minimize both communication and com- distrib'ited along with the particles. The aim is to avoid maintaining
putation. In this algorithm, the master is the VP set storing the particle a representation of all simulated space which, if stored on a single po-
data. The master creates a slave VP set large enough to accommodate essor, would quickly become a serious bottleneck for large simulations,
all the particles -which must undergo boundary interactions. Since the and if replicated would simply be too wasteful of memory.

slave is much smaller than the master, instructions on the slave VP Within each region the sequential or vectorized particle simula:n is
set execute much faster. This more than makes up for the time that applied. This decomposition allows for great flexibility in the physical
the slave requires to get the geometry information-and to both get and models that are implemented since nde processes are asynchronous and
return the particle information, largely independent of each other. Recall that communication between

The pairing of collision partners requires sorting the particle data processes is required only when particles cross region seams. This is very
such that particles occupying the same cell are represented by neigh- fortuitous since-the particle 'notion is straightforward and fully agreed

boring virtual processors in the one dimensional NEWS grid storing this upon. The important area of research has to do with the modelling
data. Dagum [8] describes different sorting algorithms suitable for this of particles, and since this part of the problem does not directly af-
purpose. The fastest of these makes use of the realization fect communication, particle models can evolve without requiring great
ticle data moves through the CM processors in a manner analogous to algorithmic changes.
the motion of the particles in the simulation. The mechanism for disor- McDonald's-implementation is fully three-dimensional. The perfor-
der is the motion of particles, and the extent of motion of particles, over mance of the code on a 3D heat bath is given in Table 2.
a single time step, is-small. This can be used to tremendously reduce At the present time the domain decomposition is static, however work
the amount of communication necessary to re-order- the particles, is being- -cried out to allow dynamic domain decomposition thus per-

These algorithms have been implemented in a-two-dimensional par- mitting-a good load balance to -exist- throughout a calculation. The
tide simulation running on the CM-2. At the time of implementation, geome,ry and spatial decomposition of the heat bath simulation ezag-
the CM-2 at NASA Ames had only 64k bits of memory per proces- gerated the area to volume ratio of the regions in order to more closely
sor which was insufficient to warrant a three-dimensional implementa- approximate the communication expected in a real application with dy-
tion. Furthermore, the shcewise model of the machine did not exist namic load balancing. The most promising feature of these results is
and the machine had-the slower 32-bit Weitek's-which did not carry the-linear speed up obtained, indicating that the performance of the
)ut any integer arithmetic. Nonetheless, with tlus smallcr amount of code should continue to increase with increasing numbers of processors.
memory and fieldwise implementation, the code -was capable of sim-
ulating over 2.0-x 106 particles in a grid with 6.0 x 104 at a rate of
2.0psec/particle/timestep using all 32k processors (see (7]). By com-

parison, a fully vectorized equivalent simulation -on-a single processorof te Cay MP rns t 10psc/patice/tmesep ad 8 MFOPSOn the unstructured grid code the performance figures are summarized
of the Cray YMP runs at l.Opsec/particle/timestep -and 86 MFLOPS inTal-3whral FOSnmesreCyYMPquvet
as measured by the-Cray hardware performance monitor. (Note that a Table 3, where all MFLOPS numbers are Cray Y-MP equivalent
significant fraction of a particle simulation involves integer arithmetic numbers.
and the MFLOP measure is not completely indicative of the amount of
computation involved,. Currently, work is being earried out to extend Table 3 Performance Comparison of Unstructured Grid Code
the simulation to three dmensions using a parallel decomposition which Machine Processors secs/step MFLOPS
takes full advantage of the slicewise model of the-machine. Cray Y-MP 1- 0.39 150.0

Intel iPSC/860 64 0.33 177.3
128 0.21 278.6

5.2 MIMD Implementation of Particle Simulation CM-2 (32 bit) 8192 0.72 81.3

The MIMD implementation differs from the SIMD implementation not
so rich because of the diffirence in prugianinung models bu bucauou Fo the partide methods the corespunding summary of performance
of the difference in gianularity between the haclme mnodels. Wherea. fignres .an be found in Table. 4. The figures in Table 4 should be-in-
the CM 2 has 327C 6Sprocessors, the iPSC/860-has only 128. Thereforc terpreted very carefull.. The simulatiuns run on the different machines
on the iPSC/860 it-is-natural to apply a spatial domain decumpositiun were comparable, but not identical. Ihe MFLOPS are Cray Y-MP
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equivalent MFLOPS ratings based o0-the hardware performance mon- [1 L. Dagum. O,, the Suitability of the Csnitwn Machini for Direct
itor. Particle Simulation. Technical Report 90.26, RIACS, iASA Ames

Research Center, Moffett Field, CA 94035, June 1990.

Table 4: Performance-Comparison of Particle Simulation Code

-Machine Processors jis:cs/particle/ step MFLOPS f8] L. Dagum. Sorting for particle flow simulation on the connectionCray 2 1 2.0 43 machine. In IlorstD. Simoii, editor, Researcn Directions in Parallel

-Cray Y-MP 1 1.0 86 CFD, MIT Press, Cambridge(to appear), 1991.

:Intel iPSC/860 128 0.4 215 [9] L. Dagum. Lip Leakage Flow Simulation for the Gravity Probe B
=CM-2 (32-bit) 32768 2.0 43 Gas Spinup Using PSiCM. Technical Report RNR-91-10, NASA

Ames Research Center, Moffett Field, CA 94035, March 1991.
The results in Tables 3 and 4 demonstrate a number of points. Both [10] E. Denning Dahl. Mapping and compiled communication on the

unstructured grid computations and the particle simulations are appli- [10]
cations which a priori are-not immediately parallelized, and for which Stout, editors, Proceedings of the Fifth Distributed Memory Con-both on SIMD a.nd MIMD machines considerable effort must be ex- Sot dtrPoednso h it itiue eoyCm
peoded n ordrI t a in ahines cinipleeaionrt hs been- puting Conference, pages 756 - 766, IEEE Computer Society Press,pended in order to obtain an efficient implementation. It has been Los Alamitos, California, 1990.
demonstrated by the results obtained-at- NASA Ames that this can be
done, and that supercomputer level performance can be obtained on k11; S. Hammond and T.J. Barth. On a riasbively parallel Euler solver
current generation parallel machines. Furthermore the particle siiula- for unstruauured grids. In Hlorst D. Simon, editor, Research Direc-
tion code on the CM-2 is a production code currently usedto ubtain tins im Parallel CFD, MIT Press, Cambridgekto appear), 1991.
production results (see [9]). The iPSC/860 implementation.should be [R. Schreiber. Mapping Unstructured Grid Prob-
in production use by the end of 1991. [12] S. tHammond andeto chie. T a l Reprt 9022 Ro -

Our results also demonstrate another feature which has been found NAts to the Connection Machine. Technical Report 90.22, RIACS,

across a number of applications at NASA Ames: massively parallel ma- NASAAmes Research Center, Moffett Field, CA 94035, October
chines quite often obtain-only a fraction of their-peak performance on 1990.

realistic applications. In the applications considered here, the require [131 K. Lee. On the Floating Point Performance of the :860 Micro-
ment for unstructured, general communication has been the primary processor. Technical Report RNR-90-019, NASA Ames Research
impediment in-obtaining the peak realizable performance from these Center, Moffett Field, CA 94035, 1990.
machines. Neither the CM-2 nor the the iPSC/860 deliver the commu-
nication bandwidth necessary for these CFD applications. This situa- 11 -] C. Levit and D. Jespersen. A computational flui,: dynamics -al-
tion is even worse for implicit algorithms ksee e.g. [21). Experience has gorithm on a massively parallel computer. Int. J. Supercomputer
shown that- CFD applications require on the order of one memory ref- Appl., 3(4):9 - 27, 1989.
erence per floating point operation and a balanced system should have [15)-C. Levit and D. -Jespersen. Ezplczt and Implicit Solution of the
a-memory bandwidth comparable to its floating point performance. In Namer-Stokes Equations on a Massively Parallel Computer. Tech-
these terms,-current parallel systems deliver only a fraction of the re- nical Report, NASA Ames Research Center, Moffett Field, CA,
quixed bandwidth. 1988.
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The various forms of parallel numerical algorithims that [I] Bokhan S. H., "On the Mapping Problem," IEEE Trans.
speed up finite element computations are as different as the num- Comp., Vol. C-30, No. 3, (1981) pp. 207-214.
ber of researchers working on the problem. However, most of
the recently proposed concurrent computational strategies stem [2] Farhat C. and-E. Wilson, "A New Finite Element Concurrent

from the "divide and- conquer" paradigm and require domain Computer Program Architecture," Int. J. Num. Meth. Eng.,
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NON-LINEAR ELASTICITY SOLVED BY A DOLMAI-DECOMPOSITIC'N METHOD
ON A HYPERCIJBE
Yaiin-llcrv6 Delltoeck

CER&10C,
Toulouse, France

AbstractL We want- to compute the equilibrium -positions-of
hyperelastic bodies under large strain using parallel machineb 2--The wixed linearulvIerL. At ea,ti iteiativii oI this pio-

with- distributed-memorY architecture, iidniely a hypca.ube. We ces, W.- -1141-A SUIe d liiiei b)Aln uf eqluations of the kind.

ahieve this-goal by using a domain-decomposition method at

the level-of -each linearized problem. Assigning one sub-domain An(U"n) . -n[=F(n

per node, the computation and assembly of the local stiffness Thcotyse fcntrtigasmbngndatrzngA

matrices then become independent tasks,_avoitiig-any commu- re csl tp)o osrcig sebigadfcoiig
nicaionbeteenthe ode. Te rmaiing omptaton n t e quire on-a distributed mernoly machine a coarse-grained paral-

linearised-problem involves a mixed solver, meaning-that we use lelism, in order to avoid overwhelming cownuinications. There-

both a local-direct solver and-a global iterative scheme. Namely, for ?, the 'lomain decomposition methods-aclijeves this goal by

a-preconditioned conjugate gradient is used at the interface, with subdividing ab inio the geonicti ical refert-tce domain 9? into

a preconditioner that has been chosen in sight of-keeping the non-ovprlappi'ng subdm)rains R,, separated by an interface r.

hihgauarity of the Iparalichisiii. rhe-taiget niacluiec u Consequently, thle computat3n aiidassemrbly of these subdomain

experiments-is anl Intel iPS(/2 liypercube 32SX.marcsAbeoeflyndpdntaks

As we could have stated in the previous- paragraph, the global

I- Te dscrtizd- on-iner poblm :For-th moch- st iffness matrix A is symmetric, positive, and most often definite
1- Te (iscrtizd no-liear robem Fr te moeln PD). It is-composed from the contributions of the following

ah-on- of bo-dies that can undergP.olarge deformiations, we choose sbarcs
the Lagrangian formulation. This-nmeans that all variables are

defined and maintained in a reference configuration, the main

unknown being the displacement flild u(z) of each particle of the A,-trac.ts- the degiees vi f~kccdui,, miteriil lto P",

domain Q2 once -the loading has been applied. B, interaction between P?, and P',

The equilibrium- equation, once discretized or, a Finite Ele- A.cnrbtosdeo eelmtsffiol1.

ments basis-{~,,, is solved-by using a Newton-type method. For

compressible materials, the constitutive law takes such a form By-performing Gaussian eliination o,-er the degrees of freedom

that each step can be described-as- related to the-interior of the bubdoiaiiis Q,, one obtains a lineal
system whose unknowns are the degrees of freedom on the inter-

Step n -+-a+ T face and whose-matrix is the Schur complement matrix S on the
interface r. Then, omnitting the projections and the mappings,

unl= Uri - [A']' (Gn --Ho) one might observe its useful additive property:

with An ~ xs ~ ,=X-T~B

/n = VV, d, All components of the local Schiur complement matrices Canl be
Jt, O computed, as in the well-Knowni subsizimcturint technique. Hiow-

Ho= jf. p. dx + j g.V, da , the load ever, a much less expensive approach consists it,~ keeping an im-
or 1 Ionplicit definition of tie local Sclmi complement, aiid solving the

where F(x) = Id + Vu(x) is the deformation gradient ' interface problem using a, Cv'oaygac Graient method (CG), be-

and W(P) is-the specific internal elastic energy - cause S in turn is also SPO. At bte,. k. of the (-,, one has to form

in parallel the implicit matrix-vector product., SPk where Pk is
In-turn, for isotropic materials, 1,1V only depends on the invariants the k" descent direction, which requires the solution of a linear

of the right Cauchiy-Green tensor F"'P: system of matrixA.

= h'rl"'~') -Based on an LDLT decomposition of A,., a direct solver is used

12 Trr((adjF)"adIjF) -in each domain. Thtis -factorization is performed once and for all

J = (lt( F) .during the initialization step of the inner CG loop.

A typical example is -gkeci :,) chic fullv*wi mla fv, hyperelastli, Ilvuveecr, this ant~d£qie -pmeoriditioiling techiqlue to

materials :be efficient. Benefittirig from our expciniments with the linear

three-dimensional elasticity. %%e have chosen the iecoiiditioner

WV(F) =Ci(Ii-3)+C2(J2 -3)+a(J2 -l)-(2Cm+lI' 2+2a)!ogj proposed in an anialytical form by Glowinski ct at in Ill. This

where Cl, 02 and a are experimental constants.amut oprxain

To enihance the Newton scheme, we have also applied the fol-

lowing numerical features:- the incremental loading and the arc- by M '1 = D.S.'D .
= length continuation, which enable to follow awkward problems

like buckling (one of the majui needsb of hulge defiirilttiuo miud whuere D, ,ire diagonal vacmghitiig imi ie. This rco.,io~r

elizations). is often referred as tme Ncunmann jpieconditioner, because of tile
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analytical- boundary conditions deseiied at the inteiface. Sim- computed..nd-thcii gathered).
ilarly, -using -the Schur complement amounts to treat-a DirichIel
probicmn regarding thle interface, -With this data structure, the only excl-rnges, are the global

summations: those are-scheduled to 2c performed by physical
Without-computing the local SchUt C 0-1pleiiiclt S, CXplctIy, diretiluns Ut llnk, (see SXAd j;) thki. iiu -1,C~ial mfAppinig of the

there-exists-an iniplicit definitioni of theii in~cibcs . bubdottiaitib-onto the noudeb-ib retlaircd, e.g. by a binary Cray-
-~ Code. Thanks to the kinicitv of tilt s~ri'cture of the-interface. one

57' (O 1 ~)A: B 1 1 0' level of indirect addesbsing ialso suppressed at tlbe gatlier'aig
B- Ai Il'/operation.

Thus, only an LDLT factofization-of tile local stiffness- matrices
has to be performned, in-order to compute products of vectors by A comp~lex splitting beconivs-inure diffX tilt to hanidle u~ ith the
the preconditioning mnatrix M. global data structure. Ibowe er, wth nio comolementary com-

munications, the code has beeni implemented with the following
In theC liftedt fiiizt-ok, Ale lid%(: allead) Mtlskd sitidIi feature. tw,. nodes are dedlitated to each subdomain, one stor-

this-method, inl 12). It s~n d gieatjjl i' 1juenid i lliii, ing and using the DiriLhlet uolci, thle othcr uric taking-care of
especially fot disbtediciiuIiliicti-an rvd to IW tlie Neumriw solter. 'Notiiuc that on a ,:btrib uted- nILU.-. i 11d

robstitpubl-nsam~ig (on ,nsstiu~i nid iotlimiig'iieus chine, t'.'i4 approach leads to mg,.ipl~hlization of the mem
materials. We also 11,1'e OunLsjinted nl-utcal bounds lot tile or) m-iagement and puotponc thc risk .,' lack of memory for
condition number of the iteration natinx. in [31, wve-proved that in bigger problenis. Of wumsc, thesc teo ul.,rs are still a Aebbcd
a general partitioning, it growsilike 0 ((i±iogtWA))), d being sequentially, but it implies that -for a given problem, -fitted io n
the average diameter of at subdomain and It tilie scale of the mesh. processors-in memory requirements, one splits the boyit2Th 0ekdpncc ~e en htth rcniinri subdomnains, overcoming somne difficulties of Lonivergence previ

stil prfitble henthemes is efied.Iloever th-nuber ously quoted. Examples show that it is at matter of trade Xf.

of sbdoain siotid nt. ncrasetoomuc, ad alimt o 16 The results that will be shown have been computed on the
seems reasonable, -especia Ily when -the partitioning is peiformed IteiSC23XofOIRtastoacpea nbtwn

in te thee imenionl spc.thle Groupe de Calcul lParall~le of ONERA and the IPar-del Al-

Without-the optimality of tie-prcconditioner described in 151 gorithms Gi~t-p at CERI'ACS.
by Smith, whose condjition number is- independent of- d and Jz, iReferences

th "Neumiann" precoinditioner remains local and easy to con-
struct on a large unstrnctmiied mnesh: indeed it requires neither
thle explicit Schum Complement, matrices nor any coarse mesh. [1] ,'*-F Doiu ,at, R. Glowinski, P. Le Tallec-and 1M.-Vidrascu,

MarialioncJlfornitilalion and algorithin f-si trace opecrator in
This terbatilty or h.e "NUMuiiMIi' prC-cunditVinm fa~ms, its doinain d. .ornpobastiou& ,,,smdattwni it, T. Chani, R. GuXjnbki,

implementation- ill noii-lit-, r-inste oleniet pI)leici. J3. Periau and 0 Vi idlond, Eds., Proedmngs oftlic scconid
internmaio at iyimposianii onl donsain deccomposition inetli-
ods. Los 4tigeles. (California. .January 14-16. 1988?, SIAM,

1h.Pcda atrmcttu-e for thle interface : I'he distribut ed ar- Philadclph.a. 1989.
chitecture-of the comflluter mnust lbe takeni into account inl the (2P.lTae. %l U-IukadXlVircnDo i s-

choie o a uitble atastrctue-fo th inerfcecomposition inellot', for lazijc lincarly elliptic threc dinumen-

At each iteration of the PCG, there are 3 interface vectors sional prob~ein.&, to appeac in: J1. of -Computational and Ap-
to be stored: u)L,rk and Pk the displacement, the residual and plied IN-lathemnatics 31 (1991), 93 11T Elsevier Science Pub-
the dlescent dimection, respectively; and 2 interface vectors to be lishers, AmsterdIam.
Used t = ~SiPk andl Z = Mrk the conjuigatc dlirection- and thle [31 Y.-1I. De Rockl amd -P. Le Tallec, Analysis and lest of loI-
preconditioned- residual, respect ively. ca lna--eem~oimnpccondizomes; to appear in P'

We escibea sratgy l il~l-meitaioi. clle albalceedingii of the fourth international symposiu onl donaiz
ee deibe -e ategyd of themnaion . cadlediti globlr i dccomuposition mnethods, Moscow, USSR, Mlay 1990. SlAM,

whole interface, its opplo,(-d to I It( so-called local imiierfiic, whetre Aldlha 91
each node of tile machine oiil% kiowv the ia5 erface degrees, of [.11 Y. S.a~..!, ouit.. Daln connunication. in Ilyper)
freedom which are in its, immnediate neighborhood. (embrs. .iunii..;' .. arallel dmd Dmvtributed Cozupu~ingr5. 000.

This global intcifact also induce-% %ome redundii~ant comnputa- 00(8)

tion, lbut reduces% the lisniliM Of cun11inmiiatiuns. Onl tile One j! B. Silwth - ol~iioiUIldss~ , isoslu pitoialiac,
= lm.nd, thle vectors to lie hdm,'fi-tred -it- loniger. oii thle . i'r foi til Jadc itc tit volat,u of lsImcn clastscity tnione

hand, no coisimliintisar( nieed to perfoimi the dot-produti- Tediim-a Report IS.!. di-1,.nitimtt of Uuipater Sc'iece.
(whereas in the other ap)proachl. local weighted subproducts art, Uoirnit %titute.Ii
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Numerical -tr(. tment of integral
equations on iPqC

Armel de La Bourdonnave
ONERA, Parallel Computing Division

B.P.72 , 92322 Chatillon Cedix, France

March 5, 1991

Abstract to vary , _ -frequency. Table 1 shows

We are-dealing with integral equations re- 500Hz 600Hz
lated to Helmholtz equation. They come TO 90"30 185
from scattering problemsaround a compact "300 > 300- > 3001
objet. The usual way of discretizing them > 300 > 3001
leads to a full complex non-hermitian ma- , Hz 7501iz 78OHz
trix. Thisdrastically limits the-size of-com- 85" 26.3-0" -
-putable problem, because of the limitedsize 1 > 300 ..' 300 > 300
of:memory on computers. -AF" 11 > 3001 > 3001 >300-1

1 Preconditioning Table 1: Uripreconditioned GCRA.

The algorithmn used- for resolution is -Gen- numbers of itcrations for the unprecondi-
-eralized Cofijugate Residual- Algorithm. It tioned algorith-,.= for varion..frequenies. In
ueeds t'o stort alldirections of-descent. Pre- these tests, the Fcatterer is waphere of radius
cond1itioning has two advantages. First it re- 1, with sotad speed equals to-333. .he num-

, ces--the CPU time fc:: the resolution and ber of degrees of freedom is 1026. :he inci-
.econd it leads to fewer directions-to be sto- dent wavc. :s spherical harmonic. In table 2
red, so that we can -test -meshes with more is we can oee th number of ite,,tions needed
points and sohigher-frequencies. to achieve convergence. The parameter 6

The preconditioning matrix we will fo- is the maximal distance between 2 points
cus-on consists of a subpart of the full ma-
trix. More precisely we will only retain- coef- 6 780Hz , 75 0Hz
ficients that come from interaction between 1-10 05 22 - 10- 10-
points near-from each other (near means the 0A0m 3 L5, 22 2 4 26

distance is less than a few wavelengths). 0.36in 2 5I 35 2 4 25

We-first show some theoretical results. The 0.32m 3 5 21 2 4 12
point is that, in a certain extent, we can ex- 0.28m 3 8 20 2 71 17
plane how that preconditioner acts. Indeed 0.24m 2 30I > 50 )1>50
it -tends to diminish the-highest eigenvalues 6 - 700Hz 60OHz
of-the matrix with no precise effect on the 10-4 10 - 5 110

-  10
- 4 10-5 10 -

lower ones What is really interesting is that -0.40m 3 4 4 1,31 2 4 10
these results remain true when frequency 0.36m 3 4 9 3 7 11
grows to infinity. 11032m 3 1 10 3 10 11

We then present two series of numerical 1j 028m 3 11 24 5 271 > 50

issues of that-preconditioned algorithm. The .24m 4 15 491 - - 17 1
first one aims to illustrate the reduction of
the number of iterations. We can see in to-. Table 2: Preconditioned GCRA.
bles 1 and 2 that the most remarquable facts
is-that the-number of iterations is reduced whose mn-ual interaction ib taken into ac-
from typically 10 to -1 and that seems not count ini the preconditioning matrix. The
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second series of re ,ults _presents comparisons product we must increabe this granularity to
bewena monopiocessor (CrayII)-and a par- mananefcec-sw nraethe num-

allel machine (iPSG-2)-in-tern.,s of CPU time. ber of-nodes when for-a matrix-vector prod-
in'-.table'3--we pre-sent -tests for two sizes of uct it can remain- constant if we -take care.
mesh. The scatterer is- the oare ab -before In table 4 we present actual times of compu-

-and the incident wave is a ?.lane one. In tation for- a mnatrix-vector product. Nloc is
that- f able,tssolution- timne.-is lie-sum-of the

- time of- assembly of the matrix ana -tYe -time2618
-of the GORA. Ta,,. 25 128oa~

Mesh n0?! : 68 points- andi968 -triangles. 5-cube 1 *12iT-53

- Mesh n02-: 1026 points and 2048-triangles. 4-cue * 53 28

- ~~We can-see that -a -hypeicube with-32-nodes 3cb 06 6 21~1
2-cube 5039 13 12-19 9

is about -the fifth of a-processor of CRAYIT. 0 - 3
Next we -will -tudy -thz way of -paralleliz- Inc6

rixng sc-ie-crm~al pieces-of the code on b- T. 1  TCOMM,, Teal Tommnl
iPSC-2. We% wililsee-whaL. we can-expe t. in5-ue 21 16 0 0
termrs of- speed-up-related to -local- granular- 4-cube 1604 1-1 19 - 138

-Test -Assembly -Iteration Resolution-2cb 1 6 73 5
C-1I: §5-Cube C4I 5-Cube IC-II 5-Cube Table 4. Matrix-vector product-(tirne in mns).

7e24 263 - 01 2 17 1267 1145
- - *-)the size of a -vector divided by -the number

Table 3. Compared timLS. Cray-II -vs n-Cube-(in sconds). of processor used. Tcal and Tco,,,L are re-

-calulus Nie-wil ,Pe tat or adotspectivelythe time due to computation-and
- - ity of-the-aluu. ewilsettfoadt communications.
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Meanwhile also codes based-on-irregular grids (as used by Finite El-

Parallel Grid and Multigrid Methods for ement methods) and locally refined grids-have been-implemented on
distributed memory parallel computers. Efficient-and and comfort-

Distributed Memory Architectures* able tuuls for-these stru".ures, however, have tu be develuped yet.

Karl Solchenbach 2.2 Parallel grid algoriths

PULLAS GmbH, Hohe Str. 73, D-5300 Bonn

I Introduction I i

Algorithms-for the numerical solution of PDEs are typically based on M
grid data structures (either regular or irregular ones). These algo- I
fithms are characterized by inh?.rent parallelism and-locality: values (a) Jacobi (b) lex. GS
at different grid points- can be calculated simultaneously and-the-
usually iterative - calculation of-a grid-point value involves only val-
ues at certain neighboring points.

Due to these properties grid based algorithms (like red-black relax- T
ation)-can-be implemented on-distributed-memory arehitecures very
efficiently. -Grids are-decomposed into subgrids (grid partitioning)
and each subgrid is connected to a processor. The locality of the grid j
operator guarantees that the communication betweenprocessors is
limited.

The implemeiltation of standard-multigrid-methods is also based on (c) (c)
the grid -partitioning approach. The parallel efficiency of multigrid, WB GS 1.half-step RB-GS 2.half-step

hovever, jbsunIevhatess thau-that of the correspundag ,ingle grid n . J.nubz ad Gaeus Seidel relaxat.urk bdiemes. * deautes grid
method. Ihis is mainly due tu the high cmmubaa Lioncakulation -. hih can be calUlated iudepepdentl.y in parallel, . denotes
ratio and the short message length on coarse grids. Nevertheless, the 'rid points with old values, and 0 denotes grid points with already

numerical-efficiency of multigrid outperforms these losses easily, calculated-new values.

A grid algorithm is a (usually iterative) method which calculates the

2 Parallel gr id-based applications value of a grid function at ,,e-point as a function of values-defined
at neighboriig points. The er.:ion- (also called relaxation) can be

.-e mathematical -model of many different supercomputer applica- characterized as Jacobi-type (the new iterate at a grid point is calcu-
lated uing only old'neighboring values) or Gauss-Seidei-type (using

tions are formulated as (systems of) partial differential equations already calculated new neighboring values). Obviously, Jacobi-type
(pg) ). Thedisretization of the PDEs-most naturally leads to a methods-are completely parallel since the calculation in each grid
grid b.sefalgorithis point can be performed independently (cf. Figure 1 (a)). If the num-
rs her of grid points is X the parallelism is-also N.

The implementation on distributed memory parallel computers re- The parallelism of Gauss-. ';.el methods depends-on the order in
quires which the grid points are processed. Lexicographic ordering implies

that only points on diagonal lines can-be calculated in parallel (cf.
e the paiallelization of the existing algorithms or their substitu. Figure I (b)).

tion by new parallel algorithms; For Gauss-Seidel methods, a, far-better degree of parallelism, namely

* the distr hution of the data structure to the local memory units. .N12, is obtained by "coloring' the ,grid points appropriately and pro-
The data distribution should try tu preserve locality ti.e. mmi- cessing all points of the same color simultaneously, e.g. the so-called
mize-comn.uaicatior,) and to achieve load balancing, red-black (RB-) relaxation (cf. Figure 1 (c)).

2.1 Grid data structures 2.3 Grid partitioning

The usual way to implement parallel grid algorithms on a distributedDistribution strategies aad-tools have been developed for two cla-sses
of grid structu-z';: memory system is based on the method of grid partitioning. The

computational domai , ,) is diided into several subgrids which
R p.largridsare aracte.ned by direct addressing of thegrid points are assigned to parallel processes.
ard a rectanglar or cuboid aldress space. Geometrical neighbors arc Each relaxation step can be performed on a subset of interior points
also logical neighb itrs.
Block-structurrdi ridsare ccnposed of several regular grids. Each sin- of the subgrid (9 in Figure 2) indepenrd.ntly. Calculation of values at

gle block shovi. ,nternally a regula. grid structure: the block structure interior boundary points (o in Figure 2). however, needs the values

itself, however, is irrgular (with certain restrictionsj. from neighboring subgrids (=proceses). Since the processes have iocommon data space these values somehow have to he made available.
Instead of transferring the values individually at the time they are
nerd,-d it is more efficient to have ropies or neighboring grid points in

*Paris of this work wer funded by iteGENESIS (FESPRIT sA2) projtet the local memory of e.-h process (0). llnce, each procezss contains
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a so-called overlap-ara tsurrounded bv the dashud line in-Figure 2) * Time T(N,P). time to solve a prcMem of-size X on a multi-
which, of course, has-to be updated after each iteration-step. processor system using P nodes,

-i. o o oo: ol0 o o *-ped.upS(N,P) := 7(A',)I/T(N,P),0"-f-0lo. •- oo 0 * *_
0- " 0 1 • efficiencyE(NP):= S(NP)P.0O-O 010o0o 0 0 0l#0 0 0

a 0 0.. 0 0 0 0 00 0 Note that on the MIMD/SIMD architectures the utilization of the
0- .'jO0 a .
0 0 e 0 . 01 , 0 hardware capabilites is the product of the "multiprocessor" efficiency
0 00 0 0 0!0, 0 0 0 as defined above and the efficiency related-to the vector processing

0 • 0. o 0 .0 unit. The total proLem solving time - which is-the only interesting0= * 0 0 .. *. number from the user's point of view - depends, of coarse, addition---- -ally on the numerical efficiency of an algorithm.

----- ,"In practice E will be smaller than its ideal value 1, mainly because
,0, o 0 , 0 00 of communcation (including synchronization), unbalanced load, and.0 0__ _0 . O +

, - , 9 ,, sequential partszin the algorithm.

3.2 Performance mode' for grid applications

Figure-2; Overlap areas and their exchange. Let N be the number of grid-points, D the-dimension of the grid(typically 2 < D < 4) and n NIP the size of the local grid on each
The grid partitioning approach can be extended to blvtk-(t, oktured processor The-total grid is assumed to be Lubic. Then the time for
grids in a straight-torward manner. the arithmetic-calculations is T,, = c1n. On homogeneous parallelarchitecures the time needed for communication consits of two com-

ponents, the so-called start-up time needed-for the initialization of a
2.4 Multigrid methods message, and-the transfer time which is proportinional to the lentgh

of the-message.
Standard iterative multigrid algorithms process a cycle from the fine
to the coarse grids and back to the fine grids sequentially, whereas on The data vonume to be communicated depends o-the way how the
each grid level the-actual problem is treated in parallel similarly to grid is partitioned. If the partitioning is performed in all D dimen-
the parallel single grid algorithms described in the previous sections. sions and cubic subgrids are generated the communication time is

- -. = c2n(D
-
iID + c3. The speed-up is

On parallel distributed- memory systems an efficient implementation
of multigrid algorithms is not trivial since the performance may de- S(N,P) 1 + n(-)D + tn-

grade due to:

* idle processors-on very coarse grids.
The asymptotic behaviour is

* short messages and -dominant influence of start-up time.

e bad communication/computation ratio. S(,P) - P, E(N,P) - I fo.n - cc.
The efficiency remains constant for scaled problems-(n constant, P -.

The algorithmical and technical details of parallel multigrid algo- co).
rithms are described in [3]. The constants ci depend on the particular grid- algorithm and the

properties of the hardware (communication speed, floating-point per-
2.5 Communications library formance etc.). A detailed analysis can be found-in (4

For grid applications, the explicit programming of the communica-
tion can be hidden from the user. In the SUPRENUM project, for References
example, a library of communication routines has been developedI1]
which ensures [11 Hempel, R.: The SUPRENUM communications subroutine li-

brary for grid-oriented problems. Report ANL-87-23, Argonne
a clean and error-free programming, National-Laboratory, 1987.

s easy development of parallel codeN. [2, Solchenbach, K.; Performance esaluation for single and multi
o portability within the clwas of distributed inelitory computers, grid algorithms on multiprocessor systems with distributed• p rtbiity wihi the o ditrbue seor oonputes, memory In-[4.I]

Programs can be ported to any of the-e machine- al
the communication libr.r b,% bec -niplemcnted. 3; Solchenbach, K., Thole, C.A., Trottenberg, U.: Paral

lei multigrid methods: Implementation on SUPRENUM-like ar-
The Ihbrar _ aupports regular and liuk-,trutured grd. and a . LhsteLctares and appi..atiuns. In. Superwrmputing. Pruceedlngs
able at the GMD or at the PALLAS Gmbll. of 1st International Conference on Supercomputing, June 8 12,

1987 in Athens. Lecture Notes in Computer Science 297, Springer
Verlag, New York, 198.3 Performance

[I] Trottenberg, U. (ed.): Proceedings of the 2nd International
S'PRENUM Colloqium 'Supercomputing based on parallel3.1 Performance measures computer architecttir,-k". Parallel Computing 7. North Rolland,

The quantities of interest in evaluating thc- performance of parallel I

algorithms are:
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IMACS session:
Solution of P.D.E. on Massively Parallel

MIMD Systems

P. t1ECA
ONERA, Parallel Computing Division

B.P. 72- 92322- Chatillon Cedex,
France

Abstract This subject has been studied at the Uni-

The success of highly parallel distributed versity of Colorado where several-mesh de-

memory multiprocessors-will depend mainly composers-has been developped and adapted
on-their efficiency when running realistic ap- to various machines such as the hypercube
plication codes. This paper presents the main iPSC2, the CRAY multiprocessors and the
topics discussed in the session dedicated to Connection Machine.
theuse of massively parallel MIMD systems Connecton Machin
in the field of scientific computing. Furthermore representatives from the cen-

ters of NASA Ames and NASA ICASE-pre-
In the race to Teraflops performances a new sent their-last results about the utilization of
-generation of highly parallel multiprocessors massively- parallel computers for CFD. The
is-emerging, which is based on -the use- of a respective -advantages of: SIMD and MIMD
large set of powerfull microprocessors. Nev- computers are particularly discussed.
ertheless- the acceptance of such systems in Then, theexperience done at CERFACS con-
-the industry will depend mainly on their-ac- cerning the development of a domain decom-
tual performance when running realistic ap- position methG. is presented. This method,
plication codes. that provides a coarse-grain parallelism,-has
This could be achieved- by redesigning nu- been implemented with success on the iN-
merical methods and algorithms that are used TEL iPSC2.
today to -solve partial differential equations
in-areas such as CFD, structural analysis or The multigrid technique is now widely-used
electromagnetism simulation. for accelerating the convergence-of iterative

algorithms on structured grid. However this
This session focuses on the development and technique leads to non-local memory refer-
the implementation of these methods on mas- ences that could enter in contradiction with
sively parallel MIMD architectures (iPSC, an efficient implementation on a distributed
NOUBE, BBN ...). memory architecture. The experience gath-
On such systems the efficiency is often the ered at SUPRENUM on this subject is-also
result of a trade-off between the reduction of adressed4n this session.
the time due to data communication, either At last, dealing with very large dense ma-
in the communication -network or through trices issued from an integral equation for-
the memory hierarchy, and the-reduction of mulation, recent algorithmns developments
the computation time. Then parallel algo- done at ONERA adequated to the numerical
rithms exploiting data locality in private or computation of Helmholtz equation are pre-
local memory are specially stressed. sented with implementation results on CRAY-
N'.oreover, the use of a geometric parallelism, 2 and iPSC2 multiprocessors.
based on a partition of the computational
domain, pushes-the development of software
tools that provide automatically this -parti-
tioning and the corresponding data struc-
tures.
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PARALLEL SYNERGY:
CAN APARALLEL COMPUTER BE MORE EFFICIENT TUAN THE SUM OF ITS PARTS?'

Sclim G. Akl
IEEEScnior Mcmber

Department of Computing and Infornat ion Science
Queen's University. Kingston. Ontario K7L 3N6

CANADA

Abstrai'i The-two most popular mokels of sequential and paralicI 4,ompularron lion grs ihen simulated on a RAM. Whe-errphasize here that (he question
lead. once defined precisely, to a computational paradox. Spcrifii~ally. we show addressed in this paper knamcly uriluawvn of the snterwcrrtion network in the
that for a wide family of problems the-cost of a PRAM solution is attalicr than~ Lost analysis) is-distict from the problcm-ttd in JAkM 3. Grit, Gustafson,
that of its RAM counterpart Ihis contradicts the currently established belief. and Janissen. Kornfcld. Lui. Leach. Li 1. Lt 2. Meliroira. Parkinsonl. Piis Qun.
does not appear to be amenablcr to explanation using existing approaches. We use %Vcidcj. where various issues pertaining to srpeedup tic. the ratio of sequential to
the term parallel synergy to refer to this phenomenon. parallel running time) are discussed.

1. INTRODUCTI1ON 2. TRADmTONALCOST-ANALYSIS

Over the last-forty years the Random-Access Machine (RAM) has-cstablitshc Assume that as problem P of size nit s given, for which As is a sequenuiat algorithm
itself as-the -most widely understood and-used model of sequential computation rnignseutaltet(t)on a RAM. The cost of A. is cs(n) =I x ts(it)=
[E-ngeler. Hoperoft, Machtcy. Mandriolil. The model consists primarily of a pro- runn in seunta tiels
cessor and a random access memory The processor possesses a constant number t (n). Note that. bcause there is only one processor, the cost of a sequenial algo-
of local registers, and operates under the control of a sequential algorithm. Each rithm is exactly its running time.
step of such an algorithm consists of (op to) three phases:

(a) a READ phase, where the processoir reads; a datum from the random acces Further, let A be a parallel algorithm for P running in parllel time tL(n) t5 nI
ppmemory and stores itin one of its loal rgisters; naPA ih p roesr.h oto s =i

(ii) a COMPUTE phiase, where the processor performs an elementary operation onaPA ihnpoesr.Tecs fAp sP(n= l p t(a) =ts(n).

(such as comparison. addition. etc...) on data in its local registery sc()adc()aetse o h RMadPA-.rsiuvl.tryd o
(iii) a WRITE phase where the processor wites into the random access memory S P

the result of some computation. take into consideration the network required for memory access. Indeed. both the

Fach of the phases is assumed to take constant time. leading to a constant excu P i.Ml and the PRAM ignore that net% ork Jespre th- facl t its ,ust ti-c- thc. pro-

tion time per -step. It is important to emphasiz that the model- as decie durt of thr number of processors it uses and the time required to traverse it) do--
assumes that each of the operands and re~sults of an elementary operation fits into a mnates that of man) computations. We now propose to e=m 1hat happenk to

single-memocy location. Thus, in thre. termninology of tAhoj. we are using the- 'um- crn and' z't() once the c;ost of the interconiction netwo rk is taken into atccouri.

form cost criterion" (not- to be confused With the cost of a computation defined
below). We note in passing that an interconnection network: that does not allow feedback.

i.e. a network where each processor is used once per memory access is sometimes
In Parallel computation, the Parallel Random Access Machine (PRAM) appears to referred to as a circuit [Parbery. Occasionally, the cost (or sne) of a-circuit is
be the preferred model among theoretical computer scientists [Ak! 1, Gibbons. cxpres ;ed simply as the number of processiors; it uses, without multiplying the
Karp. ParbicryJ Here several processors share a common random-access latter by the time it takecs to travers the circuit (also know.n as thc circuit's depth).
memory. As in the RAM. each processor has a constant number of local registers. in this paper. we prefer to adhere o the standard definition of cost (namely.
All processors simultaneously execute the instructions of a parallel algorithm. number of processors x running time), in order to avoid restricting our discussion
Each step of such an algorithm consists of (up to) three phases: to circuits. As it trms out, inclusion of the memory cess time in t analysis
(I) a READ phase-where processors read data from the shared memory and affects our results only marginally.

store them in their local registers: 3. TRUE EFICIENCY
(ii) a COMPUTE phas where processors perform elementary operations on

local data: In the RAM. in order to gain access to any of nt memnory locations. teprocessor
(iii) a WRITE phase where processor write results to the shared memory. issues a log it- bit address. A network of size O(n) decodes this address im O(log
Each of these phases; requires constant time, again leading to a constant time per nt) time This network is. for cxxnple a binary tr= of processrs tic. a circuit* in
step of the algorithm. Note that some procssors may not execute on ortw the terminology defined earlier) , Ku1.k. Tainenbaur. It has a Lost of Ott log n).
phases of a given step. Also, during a READ or WRITE every processor may gain I h RWPA.i rcsoscngi cestr eoylctossmt
access to a different memory location. However, the PRAM gives rise to a number inteEE aN.npucsn-nSma.cit eoylcrossml
of vatriants depending on whether two or morc. procssors ar allowed to gain taneously fonic memory location pceruccasor) in OtloS7 ri) tie using a network
access simultaneously to the same memory location (for reading or for writing). Ini of Ofri 105b nt) processors: where a and b are two constants Typical values of a and
this paper we shall be concerned solely with that variant of the PRAM wvhich 1 r hni al .itn oihrrnc ofcrooig cwrs
disallows such simultaneous accecss to t same memory location. This moe is 1 r ie nTb .aln ihcfrn.at h crepnigntok.fr

known in the literature as the Exclusitre-Rcad Exclusive.Wmie (EREWV) PRAM. cost of the network for memory -acss is thereforte O(h logd n). where d 2a+b.
Let us define the cost of an algorithm as being the product of the nuinber of pro. ________

cessrs it uses and its running time (Ak! 1. Qunn]. (Note that some authors use Network a b
the term wovrk instead of cost [Cormnj.) It is usually said that if c is t cost of
running an algorithm A on a PRAM, then the cost of simulating A on a RAM is (B1atcherl 2 2
(asymptotically) equal to c (ALI 1. Almasi. Eager. Faber 1. Faber 2. Fsburn.
Modil. Wec argue in this paper that this statement is no longer tru once t net- [Stonod 2 0
work interconnecting processors to memory locations is taken into consideration
by the cost analysis. More precisely, we show that for a wide family of computa- [(Ajtaii I I
tional problemns. the cost of a PRAM solution is smaller (asy mptotically) than that
of t best possible sequential solution. Furthermore. the cost of the PRAM solu- (Leighton] 1 0

'Ths w k" led th~atralSc neeandTable 1. Values of a and b for typical networks used in memor1y
Thswr ms pic y teNtrlSiene n Engineering access &Note that. unlike the networks of [StOncd and ILeightonl

Research Council of Canatda under grant A-3336. those, ot'f WtChel anid (Ajgail are -circuits7.
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Thc revised cost ofA. is therfore. 6. DISCUSSION

's(n) = (1+ 0(n) x -(ts(n)K COlog n)) =- ts(n) .Otn log n). mlditional analyses of "zi other ignor. the c&cnut f a network to intercon
while the rised cost of A n procssors to memory locations. or (implicitly) assure Lhat the cost of sch a

network is 0(l). Both approaches are clearly unrealistic. any reasonable model of
.in,- ~n*Osa gb ad computation must include as an integral part a means of lnEking processors to

=- n + O fn log n g s ,O an . ts ug ,. memor ljto.aizos wh11e .u l is- a n of d e. nambcr .,f huee pcfd esore s and

In other words. the cost of the parale 2lgorithm is as)mplotiJly smaller than memory locations.

that of the sequcntial algonthm: N' uui dt. boa.cipn, e as.a ON. t. M othun a twit hnd, i n wig. sv.,_ ,., w Ik intu Y,'At both
esa,.o valu. of i sn a rrlclau rhcn ,Umpulmg the. sawie. q~n. ii Sv it= numbr ol pnxesor rcquaW fv smh a r4.4 ". and he u. cLpsed during

needed. oft may of couras assume that Is(n) is the running time of the fastest pos memoryacess. It may be argued that since the processors used to build the inte-
connection netw k are simper than (hare actually doing the anthmetc and lop.

sible algorithm for P. cal computations. the two ought not be treated equally in the cost analysis. The
fallacy in this argument is that the complexity (.e.Csize and number of internal

It should-also be. o.eai that our analysis huids o.iny numbc= v tiwdrn.ial) &npunnu. su.h as rcguwapr % , tRAM x PRAM, ptro, ao uxd for ornmput
PRAM prrsurs, pro,,de that thu numbr Li axistua itrne turitun oun ndtt ing ia only a uv.uniaf mulirpe of t a an ,ntrmi.trx~i nrork proeor
number of PRAM memory ioa-tons mquired to wlvc a gim prnolem ot su. a. 6sn "n . c Cl ai,. Dom x, pcod to hadle. d a the .waw. ignitu. It is therefor

-Indeed, daiorzng thenumbcr of PRAM pruocsorshy .. %-rc. %n. ive-SMOLtha quite. icasonabie. in an z)-mlpUX& uu "].*, nayto iump ihe isAu L~h11 if POLei
an asymnplout. Valuc.Of,.- 114rrunsuohned.-n;%mely. wn wcth= and % c% thema t~im vht dzd acn~cagr.. Ja omputational model

(memory locations being the passive agerts). As a result. ier rrived at a conclu.
c (n) =(N+.O((n+ N)logb(n+N,))x($(nnx oa (n + N)) sion contradieting the establislhed belief whereby th cos of aparallel algorithm

P s for a given problem cannot be smaller than that of the best posabe sequential

= t(n) .Oft g a). alorithm for that Tiocem

As noted abome the traditional approach to anal)zing parallel agonthms does not In an attempt to resolve this paradox. we may use the following conprom. isc we
take into-consderation the cost of the network interconnecting processois to (explicitly) :ssume that the -iter oncton network is part-of the RAM and
memoie In that approach. the cftitercyofa Parallel algorithm fora given prob. PRAM. but that its cogt in both models is 0(l). lHowever. this sol outn leads. in
lem is defined as the ratio of the running time of the fastest sequential algorithm tu.. to a result not unlike the one reached in the prvimus section. Using an
for that problem to th cost of the parallelalgorithm. Because of the assrt-ption apoach dveloped in (AkI 21. EAl 51. --A la 61. we show in (Akl 41 that a
that a RAM can simulate a PRAM algorithm in no more time than the cost of h model significantly more powerful than the PRAM can be obtained by extending
latter, the efliciency of a parallel algorithm is at most I. By contrast. wec refer in the la.tr to includ a networck 1iose cost is as)yptotically equal to that roqured
this paper to the r.atio c'(nl,(n) a Lte true e y ofto interconnect processors and memory locailons in the EREW PRA?.L Asuming

thsppeothai ()a t iudcy of a pamilel migmithin. that the cost of that net-ovrk (as in the PRAM) is 0(l). we obtain soluions to a
This ratio in the L= of As a.,d A p a Otilubg al. %hh argeo than i. In jcyof prblm m a1i_,6 anatodhauo &&rs r"R MMsolu

what follows. we assume that the circuit of [Ai .i is used to implement the ERE tion..
PRAMI. it. d = 2.7. CONCLUSION

4.EXAMP LE From the above disr-ssion we conclude tha the PRAM allows for a synrgistic
hO enoacron to oc ur. Tis plomenon mitifests itself by a Mduction in comipa-

Consider the following poblem. Weare gien n dstinct integes I1. n in tatioral cost (as defined in this pape) forawide %-uctyof potlem Tb pob-
the. rangk-. n. Snt inm anaray X, iI. X" I- . X--n, i mx a %4ay that Xts, - icrns ame e~asten-ried by an isi~a-c m ni of data ftrm and in: to emor
l fix all I _% & -. . It is requrd to muddly X so tha. it,%U&catIsfie tolrmki It S~b .. ndrx thwurv- of a curinjxio. Oua tvi. RANT. cnds as to sac if Amacnor)

Qion: for all 1 :5 i:5 n. X(Yi = i. if and only if i11111 n. otherwise Xii = Is [AkI locations reqires Oft n) threc. --nd ues an intct - ionnok ol'site(n).
din PR.AIa. on L f Oler hrand. allows access go c2 n memory locations simulttw-

31. ously (also i? O(log n) tim) via an inteconnection neatwk of size 0(n log n).
e rd rot O(n-). Thogh vhat we call Idrw. rry. a PFAM with n p'oc-

Squcnthly. the. proliln can b c solved on the RANT in the or , way in a s is theeore. d fset than n RAMs.
ts(n) = 0(n). and this is optimal since every entry of X must be Cxlined 0,C., resut lar a nuce. of t . Or wk as ognaly

Consequcntly. c sn) = Otn" o ni. In pma a. p n)= -Utl, on a PRAM wthn minsiad by tdx obervawton that bouh the RAM .ad the PRAM. ms rhtc,,eri

processo Thus * (n) = (h log- n). It ollows hat d's( k* (n)- 0(.%3o- n) auc severelyp lackan: sevre.) edJ2neither modeler mo kdtakestopr r Tt s account the cost of suh a fwdimental operatot as memory acos. By defining

Nolte, that-siutuaung th PRAM iarittui an te RANT iwnts to ani agowbtm dr bS6JA ra.Wnde MUM.pr..s to 6n1n1. all =mPrIK-. rtrc not10 00 ly &C
whose cost is we get a o rcalisic ad eaniful ali but we 5 0 coer ht= h to

0(n) (Con x I uninovat phecnomena. lFinally. as noted above. both t RANT a=d t PRAM are
0(nx c'nalsog n) = Old" log n). id-lzed compuer Fromhermeticalo 'ntof ew.i nybersrultocood

analyses of tre efcienrcy, as defined an this paper. for real computers.
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Abstract We introducea~new relationaLstructure bwman- such invariants (weak causal-partial order) can be defined
tics-of concurrent systems which is a-generalisation of the and der:',ed. Oitr main result will'be the definition of a rela-
causal partiaLorder semantics. The new semantics is con- honal-,tructure semantics for inhibitor nets which employs
sistent with the operational behaviour of inhibitor and combined partial orders comp,,sets to model the interrela-
priority nets.expressed= in -ternis of step sequences. It em- tionshi, between eent occurrences involved in a concurrent
ploys combine&partial-orders - composers teaca-composet is history(each composet is a rclational-structure consisting of
a relational structure,consisting of a causal partial order and a causal partial order and a weak .ausal-partial c'rder). The
a-weak causal-partial order). We outline th- way-in which resulting seniantis in-del is consistent with the operational
composets can-be generated for 1-safe inhibitor nets. behaviuur of such-nets expressed in terms of step sequences.

We also show that the way in which composets can be gener-
1. INTRODUCTION ated is a-direct generalisation of the procedure used to

In-the development of mathematical-models for-concurrent generate causal-partial orders. The results of this paper are
systems, the concepts of partial and total order undoubtedly directly applicable to systems with priorities, nets with in-occupy a cetralcposition. nterleaving models use total or- hibitor arcs, bounded nets, and virtually any system model
ders of event occurrences, while so-called 'true-concurrency' whiclhsupports the-notion of true concurrency semantics.
mcdels use step-sequences or causal- partial orders (comp.
[BD87;Ho85,Pr86]). Even-more complex structures, such as 2. MOTIVATION
failures [Ho85]-or event structures tWi82], are-iarprincipit In thu, t,,ctivn we presen', an example which we believe
based-on th!econcept ofalttal or partial order. While inte:- clearly identifies an inabiity of the causal partial order
leav ings and step sequenciz usuall epreseat executions oc (CPO) semantics to ope proper I) with sume important- a.
observations-and can be~regarded Z- diret.ly-reprtbting pects-of non-sequential behaviour. We will ube Petri nets

-operational-behaviour of a-concurtent system, the causality [Pe81,Re85] to illustrate our discussion.
relation -'epresents a-set-of executions or observations. The Our example closely follows the discussion in [Ja87,JL88].
lack of ordering between two eventoccurrences in the case of We consider a concurrent system Con comprising two se-
astep-sequence is interpreted as simultaneity, while in the quential subsystems A and B~such that.
case of a causality relation-it is interpreted as independency, (1) A can execute event a and after event b.
which means that the evefit occurrences can be executed (ob- (2) B can either engage-in event b, or engage in event c.
served) in either order orsimultaneously. In other words, a (3) The two sequential subsystems synchronise by means
causal partial-order is aninvariant describing an abstract of the handshake communication.
history of a concurrentsystem. Both interleaving and true (4) The specification of Con includes a priority constraint
concurrency-models have been developed to a high degree of stating that whenever it is possible to execute event
sophistication-and proved to be successful specification, veri- b, then event c must not be executed.
fication and-property proving tools. However, there are some
problems, for instance the specification of priorities using One can model Con as the Petri net Nprwr in Figure 1. Be-
partial ordersalone is rather problematic (see [La85, Ja87, fore analysing the behaviour Of Nror, we look at the beha-
JL88]). Another example are inhibitor nets (see (Pe81]) viour of net N, where N is Npror without the priority con-
which are virtually oamired by practitioners, and almost
completely rejected ,1.y-theoreticians, in-our opinion mainly
because their concurrent-behaviour cannot be properly
defined in terms of causality based structures. We think a priorityib) -> prority(c)
that,-these kind of' problems follows from the general as-
sumption that all behavioural properties of a concurrent Nprior
system can be-adequately modelled in terms of causal par-
tial orders or-causality-based relations. We claim that the b C
structure of concurrency phenomena is richer and there are
other invariants which can represent an abstract history of
a concurrent-system. In this paper we will show how one of

Figure 1
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straint.-The operational behaviour of N- can be captured by derived-is very similar to that used to derive the standard
the set of step sequences-it generates, each step being a set of CPO semantics. We finally note that in this paper by a par-
events executed simultaneously, as follows: tially ordered set (poset) we mean a pair (X,R) such that X is

steps(N) ={A, (a}, {c},:{a}{b}, {a}{c}, {a,c}, {c}{a}}. a set, and RCXXX is irreflexive (-aRa) and transitive
Note that X denotes the-empty step sequence. A fundamen- (aRb A-bRc > aRc).
tal result of the theory of causal partial orders now says that
there is a set of partially ordered sets, posets(N), such that 3. AN OUTLINE OF THE COMPOSET MODEL

steps(N) = U poEposets(N) steps(po) (2.1) In this and the following sections by a step sequence we will

where steps(po) is the set of all step sequences consistent mean a special kind of labelled partial order (for which the
with a pbset po. Figure 2 shows the elements of posets(N) un-ordering relation is transitive) rather than a sequence of
together with the sets steps(po). Note that eachpoEposets(N) sets of events. The two representations are isomorphic, and
is interpreted as a causality relationship (an invariant) in- the translation from the latter to the former is illustrated in
volving event occurrences, and is intended to represent an Figure 3 (see (Ja87] for details).
abstract history of net N. The consistency between the oper- If we look closer at the CPO model, it-turns out that an ab-
ational and invariant semantics captured by (2.1) is a cor- stract history H of a-concurrent system can be represented
nerstone of the theory ofcausal partial orders. in either of the following two forms:

Having looked at the two-level (i.e. operational and invari- (3.1) On the invariant-level - as a poset which captures the
ant) description of the behaviour of N, one might attempt to causality relationship between the event occurrences
repeat the same construction for the priority net Nprior. It is involved in history H.
relatively easy to obtain the operational semantics of Nprior. (3.2) On the operational level - as a set of step sequences
We sirmply delete form steps(N) those step sequences which being underlain by the same causal relationship, i.e.,
are inconsistent with the priority constraint. As the result as steps(po)for some pa from (3.1).
we obtain:

In addith n, we have some properties -which establish thestep(Npmr)= ,{a},{c} {a{b},(a~}, {}{a }.consistency between these two different views on H.

Note that we deleted {a}{c} since after executing a, event b consisEncy beteen ese o diff erentowseanlH
becomes enabled and thus c cannot be executed. We should (3.) Each poserpo can be realised on the operational level,

now be able to find a setposets(Nprior) such that i.e., steps(po) O.
(3.4) Each poset is uniqely identified by the step sequences

steps(Nprior) = U poEposets(sprir steps(po). (2.2) which are consistent with it, i.e., steps(po) "steps(po')

However, any attempt at finding such a set has to fail. impliespo=po'.

Proposition 1 (3.5) Each posetpo is indeed an invariant, i.e., a precedes b

There exists no set of partially ordered sets pusets(Npror) inpo if and only if a precedes b in every step sequence

such that (2.2) holds. 0 in steps(po).

This leads us to a conclusion that it is impossible to con- The main reason why posets are adequate representations of

struct a CPO semantics of the priority net Nprzor which concurrent histories in-the CPO model is that the whole ap-

would beconsistent with the full operational behaviour of proach is founded upon the fullowing assumption concerning

that net, steps(Nprior). In order to develop an invariant se- the elative order of two event occurrences, a and b, involved

mantics for Nprior which would be consistent with inaconcurrenthistoryH.

steps(Npror), we must go beyond the CPO-based framework. (3.6) The existence of a step sequence in H in which a and b

In the rest of this paper we will show that there is a rela- occur simultaneously is equivalent to the existence of

tional structure semantics of Nprior, called-combined partial two step sequences in H, one in which a precedes b,

order semantics - composets(Nprior) - such that the other in which a follows b.steps(Nprir)=U cocomposetsvpor Steps(co). (2.3) From (3.6) it follows that a poset can be an adequate rep-
W te willsho that thecomposetstl d sentics ia n i- resentation of a concurrent history H. There are exactly

We will show that the compose semantics is a generalisa- three possible invariant relationships between two event ..-tion of the CPO semantics, and that the way it may be
currences, a and b, involved in H.

poEposets(N) steps(po) b

0 u={a}{b,c}(b) 10 a

ca" {a}
,, a (al

C 0 {c} u={a,b}{c,d} "

a -  b {a}{b} b d

a c {a}{c}, {a,c}, {c}{a} figure 3

Figure 2
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(3.17) In all step sequences in H, a precedes b. 4. a/b A b/c a=cV a/'c
(3-8) In all step sequences in H, a follows b. 5. a/b A b-+c = a-*c
(3.9) There are al,02, 03 in H such that: a precedes b in al; 6. a->b A b/c > a-,c.

a follows b in 02; and a is simultaneous with b in 03. Corollary 2
Then (3.7) and (3.8) can be represented on the invariant (E,-4) is a partially ordered set, while (E,/) is a-pre-ordered
level by having a and bordered in an appropriate way (a and set. 0
b are causally dependent), while (3.9) can be-captured by The-two relations constituting a composet can be derived as
having no order between a and b (a and b are independent). invariants of a set of step sequences with the same domain.
As we have already seen,-Nprior does not satisfy (3.6), since Proposition 3
{a,c}( steps(Nprior) while {a}{c1fsteps(Np..r). More precisely, Let A be a non-empty set of step sequences with a common
the-left-to-right part of(3.6) may fail to hold in systems like domain E. Let-*a and /d be two relations on E defined by
Nprior, while the right-to-left implication still holds. In a-b :4*VoEA. a-ob
(JK90] and [JK91] it has been shown that this implies that and a,,-Ab :0 VaiEA. a-4ob V a*ob
on the invariant level the partial orders have to be replaced where a-*ob and a*.0b respectively means that a precedes b
by more complex relational structures, which we will call and a is simultaneous with b in o.
combined partial orders (or composets). A composet is a rela- Then co =(Z,-4i,/,d) is a compose.. Li
tional structure (see [Co81]) co=(,-,) such that (,-.) is Le.,acomposetcan in a natural wavbe derived asan invari-
the standard causality invariant, and (.,/) is a weak cau- ant of a set of step sequences. tro show that a coposet is an
sality invariant. The weak causalityessentially means that adequate invariant representation we need another result.
if a/b then in all step sequences consistent with co, a
precedes or is simultaneous with b. In this way it is possible Let co--(,-,) be a composet. The set of step sequences
to capture three additional invariant relationships between consistent with co, steps(co), comprises all step sequences-0
two event occurrences involved in a concurrent history: with the domain Z satisfying the following.
(3.10) In all a inH, a is simultaneous with b. 1. a-,b =' a-+Gb
(3.1-1) There are step sequences in H, al and (2, such that: a 2. a/ b = a-+ob V a-b.

precedes b in oi; a-is simultaneous with b in a2; and Then the adequacy of the composet notion follows from the
there is no step sequence in H in which a follows b. following result (comp. (3.5)).

(312) There are step sequences in H, al and 02, such that: a Theorem 4
followsob in ol, a is simultaneous with b in 02; and If co is a composet and A =steps(co) then co -(Z.,/,,) [
there is no step sequence in H in which a precedes b. The next result#is a direct generalisation of the-properties of

Indeed, (3.1D and (3.12) can be represented on the invariant the CPO model-captured by (3.3) and (3.4).
level by saying-that a and b are weakly ordered in an appro. Theorem 5
priate way but not causallyordered, and (3.10) can be cap- 1. For every composetco, steps(co)t0.
tured by having both-weak causal orders between a and b (a 2. Ifsteps(co)=steps(co) then co-=co' Q1
aiidb are synchronised), The composets together with the steps operation can provide
Having extended the posets to composets one can define the an invariant model in exactly the same way as the causal
set of step sequences consistent with a composet co, steps(co), partial orders. To show that the new mudel overcomes the
and-prove that (2.3) holds for a suitably defined set of compo- shortcomings of the CPO model, we now have the following.
sets of Nprir (see the Section 5). In this way the CPO ap-
proach whichhas proven to be so fruitful for systems satis- Proposition 6fyin (36) an b ex end d t con urr nt yste s f r w ich There is a set of com posets, com posets(N prior) , such that (2.3)fying (3.6) can be extended to concurrent systems for which hls
(3.6) may not hold. For a detailed discussion and, in particu- holds. 0
lar, the proof that composet is an adequate notion of history In this way we have solved the problem from Section 2, i e.,
invariant for systems which may not satisfy the left-to-right we have found an invariant semantics of Nprtor which in a
implication in-(3.6) but satisfy the-right-to-left implication, direct way generalises the CPO semantics (note that each
the reader is advised to refer to (JK90] and [JK91J. poset (E,--) is isomorphic to the composet (Z,-,-*)), and is

consistent with the full operational semantics of Nprior.
Note that the abstract histories of Nprior may be represented

4. THE MODEL either as composets or as sets of step sequences which are
We-define a composet (or combined partially urdered set) as a consistent with those composets.
relational structure (see [Co81 ) co - ( ,-,/) such that E is There is a certain similarity between uur definition of the
a finite set of event occurrences and -, / are relations on 2 composet and the axioms for btrung and weak precedence re-
satisfying the following. lation presented in [La86]. However, the way these two con-
1. -,a,,a cepts are derived, the motivations, and the reasons for their
2. a/b#- b--a introduction are quite different. Hence this similarity is
3. a-*b=:a/b either accidental or, as we would suggest, the composet is a
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naturalgeneralisation of the-concept of-the~partial order,
and it maybe useful for various, perhaps unrelated, applica-
tions. a

5. THE CONSTRUCTION OF COMPOSETS

In this-section we outline an algorithm-for constructing the 4

set of composets of a concurrent system. Since in our con- b
structiowe can use a number of notions-which have been
developed for ordinary Petri nets, we will show the construc- 3
tion-for 1:safe inhibitor nets [Pe8l]. Note -that 1-safeness
means that-each place mayhold at most one token, and an Figure-5
inhibitor net is a Petri net with added inhibitor arcs. An in- shown in Figure 4(c), and the resulting causal partial order
hibitor are between place p and transition (event) t means is shown in Figure 4(d).
thatt can be enabled onlyfp is not marked. Inthe diagrams The way in which we construct-composets for an inhibitor
an inhibitor arc is identified by a small circle at one end. net will closely follow the above-procedure. Let NI be the in-
The standard approach in which the CPO semantics for ordi- hibitor net-shown in Figure 5. We first define an occurrence

nary 1-safe Petri nets is derived employs occurrence nets (see net of an inhibitor net by generalising in a straightforward
[Re85,-BD87]). An occurrence net is a representation of the way the standard definition of an occurrence net of an ordi-

causality-relation on event -ccurrences (or-single abstract nary Petri net. The only new element is the handling of the
history of-the net). It is an-unmarked acyclic net whose each inhibitor arcs.Since in the occurrence net places represent
place hasat most one input and one output-transition. Oc- tokens, it is not possible to join c with place 2 using an in-

currence nets can be obtained by-unfolding marked nets and hibitor arc. However, we can join-c with the complement
resolving-the conflicts according to the the firing rules. This place [Re85] of 2, i.e. place 5, using an activator arc (with a
is illustrated in Figure 4(a,b). Each occurrence net induces a black dot at one end). Intuitively, this means that c can be
poset on event occurrences in the following way: First an au- executed only when 5 is marked. We also note that there is
xiliary-relation -au is derived by transforming each three- no restriction on the number of activator arcs which can be
node path eventl--place-.*event2 in the graph of the occur- adjacent to a single -place. A possible occurrence net for the
rence net into-a pair event-auevent2. Then a CPO is ob- inhibitor netNIisshown in-Figure 6.

tainedby-taking the-transitive closure of -+,,, For the oc- The next step-is to transform the structural relationships
currence net-of Figure 4(b), the auxiliary relation -'a is embedded in the-graph of the occurrence net into two auxil-

iary relations, -+au and 1aux, from which the composet can

be derived. There are three structural relationships between

- -. event occurrences which we need to-consider, as-shown-in
Figure 7. For the occurrence:netof Figure 6 the two auxil-

2 2 iary relations are shown in Figure 8(a).The final step has to
a b cb take into account the various transitivities from the defini-

tion of a composet. More precisely, if -aux and /Aaux have

been defined for an occurrence-net ON with Z being the set
4 of event occurrences, then the composet induced by-ON, is

3- 4 , ,defined as co(-ON)=(E,-.,A), where (Z,-.,A) is a-minimal

a C composet (w.r.t. set inclusion for both -+ and ;)- such that

ordinary 1-safe Petri-net 5 4-

(a)1 -2

c

occurrence net b
a4

(b)

3 4 C

ri~h2 4
p oset generated by

a C +a occurrence net a b

10) (d) L 3
Figure 4 Figure 6
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X X_ Y ing language (see example tRo84]). For more -details con-

cerning the approach presented here, the reader is advised
X GXY Xlaux .Y to refer to [JK90] and [JK91].
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MINIMAL STATE CELLULAR SEGMENT GENERATION.

-PAWEL P. SIWAK
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Abstract. A 5-state solution of the problem and possibly in VLSI layout generation.
of generating the stable segment of length L There ar- two solutions [2] for the CSG
with I-D scope-3 cellular automaton is pre- problem since 1985. One, with 7-btate cell,
sented. L is represented by the initial con- generates segments of length L > I in L.ime T
figuration in binary form of some poly- = 3L + r - 2, when initialized from configu-
nomial R(L). Here L > 0 and simply R(L) = L. ratioi given by r-digit binary form of R(L) =
Carry-free counter with states in RNS form 2(i - 1). The other, based on 6-state cell,
and two waves transmitting the information valid for L > 2, completes generation in T =
were used in the solution. The generation 3(L - 1) steps and requires initial configura
needs T = 2L + 3 steps of time. Further, it tion to be given by R(L) = 2(L -2) in binary.
is shown how R(L) is related to the speed- of
the front wave. A comparison of some
solutions is also given. II. FORMAL DESCRIPTION OF THE CSG PROBLEM.

I. INTRODUCTION. Let CA = (C,u,X) denote a cellular automa-
ton, where C = (c'} is a set of cells, P: C
--n Cp is a neighborhood function and X-: SP --

We focuse here on generating a stable 1-D S is a local function of CA. The -natural num-
final pattern, cal-led the segment and compos- e
ed of-L consecutive states x starting from an ber p > 1 determines what is called a scope
initial configuration which contains certain (index) of neighborhood.
encoded informat-ion about L. The problem is By a cell c = {S,S -1 ,%) the finite auto-
to design a minimal state 1D scope-3 cellular maton is meant such that S is its finite,
automaton (CA) capable to realize such trans- nonempty state set, SP- I denotes its input
formation. This will be reffered to as CSG
(cellular segment generation) problem. The alphabet and is its transition function.
prblem was posed and partially solved in ceOnly I-D Cs are considered here, so the

1975 (1). The immediate application of the Z
CSG arise in VLSI circuits when L is assumed position L s Z; Z is the set of integers.
in its binary form; then the CSG actually We assume in -the paper that p = 3.
performs highly regular paralil conversion Consequently for each t e Z we have P(c.) =
of binary number L to its unary form. (C ) with left and right neighbors.

An effort was undertaken on looking -for -l,1 ,Ci+ I wg
the minimal state space in parallel produc- The input alphabet Sf -1 of c. is determined
tion systems, especially in 2-D and 1-D CAs. b
In 2-D the 29-state scope-5 CA-was first used by the states of its neighbors.
by von Neumann. Soon, a system capable of Any 4-tuple (a,b,c,d) of elements -from S

by vn Numan. oon a sste caabl of for given CA, such that X(a,b,c) = d will be
universal computation has been improved and a cle te e ta r (ER) o C and4-state solution has been given 5]. Also, called the elementary rule (ER) of CA and

4-tt olto a be ie [] lo will be denoted by abc/d; here the term
Conway's 2-state scope-9 cellular "game of "prod o wa also ine the loca
life" was shown to be universal. Recently, aThe local
3-state scope- universal CA was proposed function X of CA may be described then by the3-stte s~pe5 unversl C waspropsed set of all its ERs. A state denoted by...
[6). In 1-D the 'simple' computation-univer- will be called the quiescent state with a
sal CAs have been recognized quite early. An wilpecal th e qise sa it a
18-state scope-3 CA was proved (7) tD belong proprty ta '='1' is ef CA. a con
to that class. In order to implement prac- iguration of CA = (CPX) is defined as the

tically the embedding of computations in CAs function /. C --+ S, so SC denotes the set of
some other problems are under research, too. all configurations. Then, f(P(c)) is the
The techniques intented to synchronize state of neighborhood of given cell c. The
various events in 1-D CAs were mastered, as configuration I is called finite if and only
well (4); an 8-state scope-3 and a 17-state if I(c ) = - for all but finitely many I's.
scope-3 CAs for a firing squad problems were We shall represent finite configurations
proposed (4). Also a medium for performing
computations, namely 1-D 2-state scope-(2r+l) as follows, if / SC is such that for some L
filter automata, a modification of CA model, the equality f(c i+) - holds for all J < 0
was proposed [81. and even its VLSI and for all j > k - 1 then / will be denoted
implementation given. by -.w-.- where - and h

The CAs capable of generating certain by..(.weeI I )(and
particular patterns are extensively searched > 0. The configuration / will be said to have
for. Many configurations called "primitive the length k and to occur at the position t.
elements", "basic organs" or "general-purpose Suppose now that binary digits 0 and 1 are
components" were successfuly created to sup- in state set S. Let R(L) - aL + b be a linear
port simple computations. This effort is polynomial with R(L) > 0 for all integers L >
mainly motivated by expected VLSI implementa- 0. Assume some L > 0 and w = (R(L))2, where
tions and applications; in computer graphics, the binary form of R(L) has r d~gits with 1
code number conve-sion, random numbers (31 as the leftmost digit. Then the configuration
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............will be called either the simple............................... 101 ........
representation of L (if a = 1 and b = 0) or . ..................... 100 ...... 100+ ......
the encoded representation of L, otherwise. -3 . . ............. .10 ....... 10++x ......

Let x zS and let .(x) denotes a -2 ..... ..... 0+-....+ 0+x .... 1+0x+ ......
configuration of L consecutive cells, all -1 1.... 1++' 1++x .... I ..... Ix .....
occuring in state x. It will be called the 0 .0+ ---. Ox ..... Ox+x....Oxx+ .....
segment of length L. C 1 '+x ..... + '++x ..... +x+ ........ +x+x'-

By global transition function y: S --+ 2 -xl+--.xl+x xlx+ -.xlx+x .... xlxx+---.
of CA such a function is understood that y(f) 3 -xx0x -xl+----xxl+x -- xxlx----- xxlx+x --

= e implies Y(P(cj) = X(.f-(V(C))) = 6(c.) 4 -x ... xxx0r -xxxl+-.-xxxl+x---xxxlx+ °-
5 .x .... xx.-- xxxx0x-- xxxxl+-.xxxxl+x-

for all i - Z. If r(f) = q, then we say that 6 x xxx. xxxxx0x'xxxxxl+"

CA passes from f to 6. 7 "x-... xx .... xxx ..... xxxx ..... xxxxxx0x-
Let 10 w... ---.be some representation of 8 -x- .... xx .... xxx ..... xxxx ..... xxxxx ....

given integer L > 0. If CA with global 9 -x . xx ... xxx ..... xxxx ..... xxxxx ....
transition function r Passes from given L: 1, 2. 3, 4. 5
initial /0 to the final stable configuration

* T " (x)L.. in a such way that: Fig.l. Parallelogram. of the CSG processes.

rU 0 ) = 11" 2'UI) = /2' ...... .rT.-) = 'T the counter state number is created by either

where ,, ; f . for all = 1, 2...... T, adding (symbol 1) or subtracting (symbol +)
then we say that CA generates the segment of the proper weights according to i.

Analysing the roles oC all states in the
length L. T is the time of CSG process, frame of assumed idea for solution we may

Now we can state the CSG problem: oneits minimaty.
might determine 'simple' CA = (CvX) capable Theoreu 2. Assume a solution of the CSG
to generate segments for any given length L >
0. Since p = 3 has been chosen, then S and problem as previously. Then a 5-state0e Since seasheef n henre, thn andX solution is the minimum state one.
rest to be searched for in the problem. Proof. Is not presented here.

In Table 2 we show some comlpex4ty factors

III_ SOLUTION, of found CA; Q is a number of cells involved,
h - a number of ERs and i(%) = 1-h/hmax de-
termines a logical circuit spare of X.

The solution presented here for the CSG TABLE 2. A comparison of some solutions.
behaviour assumes two levels of organization.
On-the higher level two groups of cells are
distinguished in transient configurations, sol.IS I p T L R(L) Q K i(h )
namely a counter and a sphere of two waves. -

Initial state of the counter is determined by (1] 8 3 2(L-r)- ? L-r L 190 .63
R(L), During generation process the states of - - -

counter are decremented until the zero state [2] 7 3 3L+r-2 . 1 2L-2 L+r 67 .80
is reached. The role of counter is to control -

the waves. The emmision of waves occurs [2) 6 3 3(L-I--2 > 2 2L-4 L+r - 59 .73
twice. at the beginning with the speed 

v, and - - - > - -

at the end of counting with the speed 1/1, to 5 3 2L+3 - L > 0 L L+r+2 73 .42
assure that the waves can meet. We have. - -

Theorem 1. Let there be given CA - a REFERENCES.
solution of the CSG problem with a counter
and two waves distinguished: a front one of
speed v and a final one of speed 1/1. Let the
representation of number L is determined by string of a given length (in Russ.), Izv.

R(). Then: T = L v and R(L) = L (1--v) /v. ANSSSR, Tekhn. Kib., 6, 1975, 95-98.
Prof. Iseno p=reend ere. = -(23 Giorgadze A.H., Mandzgaladze P.W. Matevo-
Proof. Is not presented here. sian A.A. - A way of generating a cel-

The lower level of organization (still lular string of a given length (in Russ.)
above X) with a set of 13 smaller components Izv. ANSSSR, Tekhn. Kib., 1, 1985, 135-8.
was also used in order to systematize (33 Hortensius P.D., McLeod R.D., Card H.C. -
computer aided searching of the solution. It Parallel random number generation for
is not explained here. VLSI systems using cellular automata.

A number of 5-state solutions have been IEEE Tr. on Comp. C-38, 1989, 1466-73.
found. One of them is given in Table I. In [41 Moore F.R., Langdon G.G. - A generalized
Fi.l. some paral-lelograms are shown; rows firing squad problem. Inf. & Control,
are shifted to have all counters synchroniz- v.12, 1968, 212-20.
ed. Following the general idea of solution .53 Nourai F., Kashef R.S. - A universal four
the counter states are represented in state cellular computer. IEEE Tr on Comp.
transient configurations by RNS form. Thus C-24, 1975, 766-76.

TABLE 1. Function X for our solution (h = 73). (61 Serizawa T. - Three-state Neumann neigh-
bor cellular automata capable of self-

0 01+x. 1 01+x- + 01+x- x 01+x - 01+x- reproducing machines. Syst. Comp. Jpn.
-v.18, No.4, 1987, 33-40.

-0 00+++ 0 110 0 0 11O++ 0 ++ 0 + (7] Smith A.R. - Simple computation-universal
1 00+ + 1 110 0 1 11010 1 11- 1 + cellular spaces. JACM, v.18, 1971, 339-53
+ ++ + 110 + Xx+ + XX+ + x [81 Steiglitz K., Kamal I. Watson A. - Embed-
x xx x x+ x "xxxx x ding computations in one-d2mensional au-

. -xx "x.. tomata by phase coding solitons. IEEE Tr.

on Comp. C-37, 1988, 138-45.
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-COMPUTING HOMOMORPHISMS OF LABELLED DIRECTED GRAPHS
IN PARALLEL USING HYPERCUBE MULTIPROCESSORS

BOLESLA W MIKOLAJCZAK
Computer and Information ScienceDepartmet
Southeastern Massachusetts University
North Dartmouth, MA 02747,-U. S. A.

Abstract -Tis paper deals with computing of vertex-edge algorithm, i.e. a problem in class-P . I ere are, however, many such

homomoiphisms of deterministic abelled directed graphs in parallel, problems w'hich do not seem to admit Farallelisation readily. These

A new algonthm is presented and its tmt computational complexity problems, which we refer to as bting hardl) parallelizable, form the

is evaluaked. A decomposition of a graph with-respect to different class of P complete problems Tfan efficient parallei solution for any
iabls ued. Aumber dcoposo od aP complete problem could be found t!.en i similat-solution would
labels isused. Number of processors required dunng various stages exist for any other. There is no proof, but a great deal of
of the algorithm is assessed, circumstantial evidence, that classes P and NC differ.

I. INTRODUCTION All known sequential algorithms for NP-complete problems run in
exponential time, and all known parallel algorithins have exponential

Traditionally, time and memory were the only resources considered cost For these problems three general solutions are in la,;e. fast

when the computational complexity ot an algorithm had to be approximation algorithms, good probabilistic algorithms, and prallel

evaluated. The architecture of the computing machine was a single approximation algorithms.

processor sequentially addressing the memory cells. This was-a NP completeness of the automata homomorphism 1.robleni follows

reasonable- model as longas processors are mu h more expensive from considerations presented- in Lein, Garey-.ohInson, and

than storage space. Recent developments in VLSI technology Mikolajezak [3,6,8], and polynomial red,.ibility is from GRAPH K-

substantially reduced the processor-to-memor coSi t ohi COLORABILiTY. All concepts not dcfiaed in this paper are takensubtam all re uce th~prcesor-o-m m y cost ratio . n hs from MikolajCzak [101 We assume lat, ,oi,pt of homumorphin,

technology the cost of each feature is proportional to the area it f ikoasez [10] e assmat bon vert fthoomorpi
consumes on the Silicon wafer, and processors and memory .es discussed here includes transformations both on vertices (states) ,.d
have area of comparable size. The tradeoff between time and memory edges (inputs) Sach homomorphism s sad to bc the generalized

is extended to a tim; hardware tradeoff, where the hardware is a homomorphism.

combination of processors and vivmory. Another justification for IT. PARALLEL ALGORITHM
introducing parallelism has even aeeper re- o.n than technological
innovations. We notice that th,cremedy which shorter.ed the length of
computation time, required-by the sequential-algorithiu. was the In this whatfollows we willappl the 1ollo~ing assumptions.:') The available iumber of processors is adequate for dealing with

introduction of parallelism. Clearly, every search problem is tj The v im of rces l adate for delinth
amenable to a single time-hardware tradeoff of the tvan H t hole %idtn of the directed accllA graph (dag) which represents

Simply partition the Av points of the search Space into ti equat :he algorithm- thus the number of processors involved is no longer a

subsets, and assign a processor to search over the T=NIFI points of parameter).
ea.h subset. So, if parallelism is essential in overcorming Some (ii) A communication delay t between the time when some

fundamental imitations of sequential algorithms, it is i.inwiile to i'1formation is produced at a processor and the time itcan be used by

explore better %ays of exploiting a mltiprocesbor system. another processor is measured in elementary steps of-the processors
In parallel computa:ions-we have four major stages of algorithm tor nodes of the dag), t is a parameter of the architecture.

development: (iii) The optimum makespan of the scheduling problem, being a
(1; choose the algorkhm indr,,atirg ihc clementary vi..p ,tation and functon of t, is a fair measure of the parallel complexity of the dag,
their interdependence the scheduling problem is NP-complete.
(ii) choose a particular multiprocessor architecture (Lii We assume as a model of parallel computations the shared
(i find a s,.hedulc Ahereby the algorithm ;s c.c.utcd on ,hc memory computer, in which a number of processors work together
processors (so that all ae,-eszar dat. arc aa ?Lab! t hc ,propria.. synchronously and communicate with a common random access
processor at the time of each ,.omputatiun) memory, in the event of read or write conflicts in this shared memory
(it) evaluate performan_e of the algorithm, measured as the "e assume that both conflicts are nuiowed, and the lowest numbered
makespan of the schedule. processor succeeds in the case of a write conflict.

In attacking '.arios problems, wu Approa.,.L., se .a na,,ral the In our approach we apply a decomposition of domain and range of
more pra,.,.al approach is to inlsb:' o" a puiynoiia bou,,d o, the directed labelled graphs with respect to different labels. There exists
number of processorN, and then tr tw obtaa the b,:st wu. perlaps also a second possibility to decompose directed labelled graphs into

t-more theoretical approach is to insist on a pt.ylog bu,,, or. thc primaries (see Bavel [1]). Unfortunately, in the second case a

time, and then try to obtain the best processor count. decomposition ofa graph is not a parttion but a tover on a set of

By an ejficieit parallel algtrithim we mean ;ne that takc vertices, this makes load balancing more diffi,.ult (dyniamic load

polylogarithmic time using a polynomial number of processors. In balancing).
practical terms, at most a polynomiat number of protc.urs is In algorithm description we apply the following notation.

reckoned to be feasible. A polylogarlthm. time. a'go,.hn takes nA=ISAI, nBISBI number of vertices states) of graph A and B,

O(log k n t parallel lime fur soe -nt integer. mA=ZAi, mB=IZBt - number of different labels (inputs) of graph A

problem size. Problems which can b solved within these constraints
are universally regarded as having efficient parallel solutions and are and B, n-number of processors, Ai=(SArA.I,'Ai),
said to belong to the class NC. B B autonomous labelled directed graphs A and B,

A subclass of problems of particu!ar interest are those which have respectively, where l<=e<= leA ,  ieJ<=mte, gap, and B,j are
optimal parallel algorithms. An optimal parallel algorithm is an

algorithm for which the produ.,t of the parallel time t with the transition functions of graph A and B, respectively.

numberofprocessorsp used is linear in the problem size n Thatis, STMD narnllel nalorithmn cmornitwin set of generalized
pt=O(n). Opnmaity may aiso ,cean that the produc-t pt is, equal to ctm homomorohisms between eterministic com0plete laeilc
computation time ot tie tastest known sequniaimalgurhn i- .r..... I

the problem. We specifically refer to the problem as having optimal directed grn nv.

speed-up. Input: Deterministic complete labelled directed graph A=(SAXA,6A)

For any problem for which there is no knowr polynomial-time and B=(SBZn,8f) with disjoint vertex sets and edge sets.
sequential algorithm. for instance, any VP complete pr,'hlem we . Set of all generalized homomorphisms from A to B denoted

cannot expect to find an efficient parallel solution using a polynomial as GlIom t(A,B), i.e. set of state-Input homomorphisms with
number of processors. However, we might wish to find Such a transformations on set of vertices and on iut senigroips.

parallel solution for a problem with a polynomial-time sequential
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Dec~: j ompose dete-nistic complete- labelled graphs A and B A
inlto mA ahil-:iia autonoilious -factors, respt!ctively; allocate these deopsAuomt rlB
autonomous i- iros to mA+mB S1Dpoesr.Into autonoimous Itctors
-5e)2 For each -autonomous factors of A1 and B1,- respectively,
~compute in1 iarlel a set-of all a1 connected cmt.ponents of Ai, and-
a set of all bj coi inecte -d components-of BY.A A2 '04 Bi B2 B
tL,&For-each connected component of A- and 1 compute in

parallel, 'ising.at- most aiMA+bjmB processors, the following cov ute conrected campa n
topological characteristics: freach sutormocoug for~o
a) lengths-of cycles d1

1' for each connected -conmponen t -Cii of -Ai, I±tn~tn -n.ct
where 1R-i<--MA, and 1<=i'<=ai co f u*1
b)- lengths of cycles d*f for each -connected component-Dj of Bj, KC> 0 ? cilts co i i
where 1<=j<=m9B, and <> C,' c<be
c) level enumerations for each vertex belonging to every connected
component C1 of autonomous factor Ai and D)' of autonomous comp~ute level rarmlirin; compute cycle Itngth

for each state lonrjnl to for each connected comnpo
ar~r..cted conipoxnt4 of CiutoEO'.toi A ond B

factor B1 C substeps a,b,c are independent and can also be performed automaton A erl B_
in.-parallel:)q. level cycle IeVOl cycle'
Stil 4:i For each connected component- of Ai and Bj compute -in
parallel usi ng 'a-t most airnA+bjmn -processors-. compute sets of go. tone s c- divisib tity p ecty betwttn
(i) a set of gencrators using maximum function ( a set of generators for each connected ca ponent excycle Aenqth% 01 eachotfntced coonporent
for connected component is defined as-a set of all states of this of otorr~ton A ond B 0004 .1 oauitomtiaon li lox rorrtpordir,&
component whichhbavi maximum value of vertex level eumeration, level ~rambi4 end xoMmn otoronoo actors
if a connected component is strongly connected then arbitrary state of operator i
this component can be treated as a generator) -t
(ii) check divisibility property-of-the lengths of cycles d/ of -"ach for etchpair of conect _componetsd
connected component DJ of autonomous factor B1 with respect to the fom corresponding aor.. u s fact -ors
lengths of cycles dii -of each connected component C1

1 of setioyio4 cyclt divisibilityi level
r~omber4 conditions do in p altel

autonomous factor Ai. peneet rsthitrecrytreppin betwy tots f
-Stel 5 For each pair of connected-components (Cii', DD) such that- gntrotors
cycle-length- d/ divides dii' generate nondeterministically and in
parai~el using at most aibjmAmB- processors a set of all possible
mappings betvean set of generators-of Cii'a-nd set of generators of Ill. REFERENCES
DXr

For each mapping '.omputed-in step-5 generate in parallel 1. Bavel, Z., Introduction to tie Theor f au: a and Sequential
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LU DECOMPOSITION ON A SHARED MEMORY MULTIPROCESSOR
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Abstract:- We propose an algorithm for the parallel LU decom- can-be used to simplify (2). Since- u., 1,- 0, for 1 :j J n - 1, (2)
position of an upper -lessenberg-miiatrix on a shared memory multi yields-the fulloving linear systems for the-unkr,owns i,.

processor. We consider the general case of p processors, where p is not
related to the size of the matrix- problem. We show that the LU de- lj O0 j _ 0 , yi = 1
composition of an (in + l)-bandedIllessenberg matrix can be achieved y 1 (4)
in O("'n- 2) operations, where n is the dimension of the matrix and p is
the number ofprocessors. For tridiagonal matrices this algorithm has
a lower operation count than thosemthe hterature and yields the best It-is clear that (1) defines an m + 1 banded triangular linear system
existing algorithm for the solution-of tridiagonal systems of equations. Ty =-e. (5)

1. Introduction where

A number of authors over the last-two decades have written on par- f 1 if i=j=-i
allel algorithms for solving- tridiagonal systems. These articles have t' -J= -<  , i > 1
considered the problem of solving tridiagonal systems for- the form 0 j > i
Ax = bi, 1 < i <-k where A and all-ofithe b,, are known at the start of Thus the problem of finding an LU factorization of an upper lies.
the process. In such cases,-the computations can be arranged to pro- senberg matrix reduces to solving the bandedtriangular system de-

duce highl) efficient parallel solutions to all mn systems simultaneously. snegmti eue osligte-bne raglrsse e
tdce hhbe efnot phsourta tro aa umbyerof si -an y scribed in (5) to obtain the y 's and then-using the solution of that sys-
It should be noted, however,that there are a number of common-nu- tern-ta evaluate L and U. In practice, L may be determined from equa-
merial situations,- for-example the ADI method, where one needs to tin-(3). To determine U, note first that the elements-of the (m- i ,
solve tridiagonal systems where A-is known ab initio but the bi's are dion s). a
not all known at the start of the:computation but rather arise as a Also uaj = a sai for j i,,m. Thus these elements do not re-
result of an iteration process. quire-any calculation. The jth super-diagonal is given in terms of the

2. LU Decomposition Algorithm- (i + )'i by

We shall,-in fact, consider the LU decomposition of an n x n upper £,u,-..s+, + u,.j+, = a,,+,, i = 2,..., n -j. (6)
Ilessenberg- matrix, since the analysis is not significantly more diffi-
cult and- the additional generality leads to insights, which produce a Note that each element depends onlyon a single element of the next
more efficient algorithm. Let A - kai,) be a banded n x n upper superdiagonal and-on known-values from L and A. Thus, the calcu
Ilessenberg matrix with band width-m -t- 1, i.e., a,, 0 only when latson-of-each super diagonal of U is perfectly parallelizable. In- fact,
min {1,t- 1} : S max{n,mi-f- 1},1 < n. It suffices to the main diagonal may be-obtained using 1 division rather-than the
consider the case where ai+.i -0-0,1-5 5 _ n - 1, since otherwise the multiplication and subtraction in (6) by
matrix is reducible, and we may consider the LU decomposition of the
subproblems resulting from the reduction. Throughout this paper we 2,..,n. (7)

will use the convention that any element with a nonpositive index has Further, the calculation of the super-diagonals-can-be chained.
value zero. Thus the calculation of L using (3) requires n - 1 divisions. The

As in most algorithms for shared-memory multiprocessors, the ob- total computations for U is
ject here is to partition the problem into a number of subproblems
suitable for solution-by tasks running on-the available processors. We m-2

shall consider the general case of p processors, where p is not related (n - 1) + 2 F (n - j - 1) = n (2m - 3) -- (in2 - m -- 1). (8)

to the size of the matrix problem. Clearly A has an LU factoriza- j=

tion, A- LU, where L is-a unit-lower bi-diagonal a A a matrix and The iatter term is negatne for m - 1. Hence we get the follo ing
V = (u,,) is a banded n x n upper- triangular, with m non zero diago- upper bound for the complexity of calculating U
nals, including the main diagonal. The special form of L allows one to
readily determine L-. One finds that L-1 (I,,) is an n-x n lower n (2m - 3).
triangular matrix given by .ote that in the case of a tridiagonal system, m = 2. (8) reduces

S, exactly to-n - 1. Hence using p processors L and U can be calculated
1 := Ii fl& ) i (1) in the general case inI 0wz- 2n(m-1) (9)

Thus the elements of-U = L-1;, satisfy < < n operations and in the special tridiagonal case in

rann{.j+I} mii{/i~j}iJ 2(n- l)fp (10)
S= t,,a~, = fi (-4)a3,. (2) operations. There remains only the solution of the triangular system

i j-m +1 S-j-m+l 1= TIY

As in the tridiagonal case, the well known substitution (cf. [21, pp.
473 -47.1 ) 3. Algorithm for the Triangular System

= In (3), Lakshmi-arahan and Dhall present an algorithm for calcu.
1, = y,-/], i = 2.3,- -.,n lating the LU factorization of a tridiagonal matrix. Their algorithm
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used the substitution -given in tk3) to produce a linear system, which ii the tridiagonal case, by k10'j and (15), the cost oufprodacrng an L U
is equivalent-to that-describedb i5) with m = 2. -Our algorithm is a factorization is
generalization-to the upper-Hessenberg case of the algorithm presented 2 [3)ig ~ (1.(7

in (3]. Wearemark that the improvement-produced in the generalization 7P L
leads also-to a more-eflicient-algorithm-for the tridiagonal case. If one's goal-is-to solve the-linear system Ax = b, in addition-to

In order to partition the-problem we set solving (5), one must-also perform the backsolve by solving-the banded
triangular systems Lz = b and Ux = z. In the tridiagonal -case, this

Zj = (Y..m+1ij.m+2i.. tY 3)T, 1: i:5 , may be done by-casting it as- the solution of two linear recurrences,
similar to_(2.3)-and-(2.4) in (3.The recurrences may then-be cast

and let-B,,I1 5j 5-n -- 1, be-the m x m-matrix in the form z, = ar,z,_.. + Jand-solved using Algorithm A and

0- a 1 0 *. 0 Algorithm Yfrom (3]. The complexity involved, in the tridiagonal case,
is 2n/p, to cast-the analogue-of (2.3) in [3] in -the appropriate form,

o 0 1and 3n(2 + log(2p/3))/p to solve the two-recurrences, using Algorithm

Bi-I:(1= A and Algorithm Y Adding these gives a total of

0-0 1 n(8 + 3 log( P))_ (18)bi... b.- l
The cost-of solving for one righthand side, given- by (17) and- (18), is

where-v 6 l:=(1maj_.+aijj j- = 1, 2,.- n - 1. We-obtain -thus
from (4)-the rn-vector iteration- a [L7i +-6log (E)1 + 0(1). (19)

zi; = Bjzi j =1,2,---,n -1. (12) 4. -Conclusions

In order-to evaluate 111,12, yn~, one must compute In-the tridiagonal case, the algorithm is not only better-than ex-
/ k \isting algorithms in the literature for-LU decomposition, but-also has

zkm+s H f C I i, k =1,2,3,. .. IN :=r(n- 1)/mi. (13) better computational complexity for the solution of asingle tridiagonal
0=1/ systemn,-as indicated-in Table 1, where-i= n + 1-- 21.

n-1Method [Processors j Time
where-Ci:= l Bj,I 1< (N-j -1-and CN-:= if Bj. Serial Gaussian -I 8nr

j~-imi =(-km- Elimination

To calculate the required products fiC,, k = 1,2,---,]N, one uses Recursive n 24 log n

a-variant-of recursive doubling. Let Z1- = Clzl and-Z, = -C,, i Dublin (2]/2,... ,N,-then,-assuming we have g-processor groups, each group first 19dve -I2llo-nw - -14
calculates -Reduction (2] ________________

(5-1)A1+l Odd-Even n/1'1 log n/ + 1
D* = -f Zi, k = ,.,I = 2,.., M = N/g. -Elimination (2] ____ _________

i=k-)M2Lakshmnivarahan n/2 l8logn
Then the-p processor gro'-ps execute the following algorithm: Dhall1 [3])_____

for-i := 0 thru log(g) - 1- do Lakshmivarahan p (n/p)[25 + 9 log p/3] - 3
(distribute the g/2 independent calculations found-in the) Dhall (3] 3 _p5 2n
{j and k loops-below among the g/2 groups of processors 1 Aloih4 np)4/+6op3

forj := 2' thru -g - 2' step 21 do __________

fo using 1 throup cal+ulado Table 1: Complexity of the solution of a single linear system for tridi-

for I= 1 thru Ml do aoa arcs

Dl.k := DjkDAij Further let -us consider again cases,-such as the ADI method-dis-
cussed in the introduction, where A is known in advance but the bi

-It is easily seen that after the execution of the above algorithm D1j are not. Comparing this algorithm with methods, such as Recursive-
((k-i)Mf )-I Foteupsofsmlfigtec pexyan- Doubling, -which- do not perform the LU decomposition, a further im-

(rll C)zl- Fr te pupos ofsimlifing he ompexiy aal-provement in computational efficiency results, since one need only per.
ysis, assume that n = Nm; + 1, p =g(2m -- I) where g is a power of 2, form the forward and back solves, for each right-hand side, rather than
and-N -_gMl.

An -analysis, the details of which appear in III, yields the following performing the full elimination.
time complexity- estimate. For-a. general upper llessenberg- matrix References
with band width mn + 1, the time required to calculate its yj's in this III J.lDuoni, P.A. Farrell, A. Ruttan, Algorithms for LU Dcompost-
fashion is Lion on a Shared Uemory Multiprocessori Technical Report CS.

-[ [dm2 - 2m4-I-i -m(2m -1) log (~E A 4-+0(m). (14) 90-10-28, Departm2nt of Mathematics and Computer Science,
IP \2m-I0] Kent State University, 1990.

In the tridiagonal case mn = 2. and th~is reduces to [2] R.W. liockney, C.R. Jesshope, -Parallel C~omputers 2 - Architec-
iure. Programming and Algorithms (Ililger, Bristol, 1988).

+2 3 ogE (1,5) [3] S. Lakshmivarahan, S.K. Dliall, A New Class of Parallel Algo-

T T 1.rithms for Solving Tridiagonal Systems, IEEE Fall Joint Comn-
Thus, from (9) and (14), the total cost of an LU factorization is puter Conference (1086) 315-3241.

[-4 A.H. Sameh, R.P. Brent, Solving Triangular Systems on a Parallel

[16MG2 + 2m - 3 + (2m2 - m) log + -0(m). (16) Computer, SIAM JVA 14(0) (1977) 1101-1113.
2p F~~m-l/J )
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A-BICONJUGATE GRADIENT-TYPE ALGORITHM
ON MASSIVELY PARALLEL ARCHITECTURES

Roland WV. Freund AND Marlis Ilochbruck
RIACS, Mail Stop- Ellis- Street Institut fOr Praktische Ifathematik
NASA Ames-Research Center Universitlit-Karlsruhe
Moffett Field, CA 94035, U.S.A. Englerstrafle 2

-D-7500 Karlsruhe, F.R.G.

Abstract - The -bicozijugate gradient- (13CG) -method is the The blocks Vk in (4) just contain the vectors corresponding to the
"natural" generalization of the classical conjugate gradient algo- kth look-ahlead ILanczos step of length

rithm for Hermitian positive definite matrices-to general nion-Her-

snitian linear systems. -Unfortunately, the original I3CG-algorithm hk - k1- nk.

is susceptible-to possible breakdowns and numerical instabilities.

Recently, Freund and-Nachtigal have proposed- a -novel BCG-type In the sequel, we refer to the first %ectors v,,,, ;a eaf-h bluck as regular

approach, the quasi-minimnal residual method (QMR),-which over- vectors, while-the remaning %.ectors are called inner vcctors. Further

comes the problems of BCG. Here, we present an-implementation more, the-relation

of QMR based -on an-s-step version-of thie nonsymmetric look- A()=V(n+1)ii(-) (6)

ahea d Lanczos algorithm. The main feature of the -s-step Lnnczos holds. Ihere HM(" is an tfl1l)xll upper llessenberg matrix which is also

algorithim-is that, -in- general, all in~ner products, -except for one, block-tridiagonal with I diagonal blocks Of size hk x lii, k = 1,2,..-.,1.
can be computed-in parallel at the end of each block; this is unlike In addition-to the right Lenezos vectors v1, v2, ... , the look-ahead
the standard-Lanczos-process where inner products-are generated Laco loih enrtslf acos vectors wi, w2,...- such that

sequentially. The resulting implementation of QMR is particularly

attractive on-massively parallel SIMD architectures, such as the K.(w,,A) = span {toI, I 2 , ..-. , w,, for an=1,2. ...
Connection Machine.

and, as in-(4), we set

INTRODUCTION W=( Wj- O

We are concerned-with-the iterative solution of large sparse linear ~~1..'
systems These vectors are just constructed such -that right- and left Lanczos

AX 1 vectors corresponding to different look-ahead -steps are biorthogonal,

where A-is a nonsingular, in-general non-Hiermitian N x IV matrix.ie.
Some oi the most efficient iterative schemes for (1) are -Krylov subs pace IVTVk - 0D if i =6 k, i 1.., (7)

methods: for any initial-guess zo Ee , they generate approximations D fj k

to A-lb of the-form and,-moreover, the matrices Dk are all nonsingular.
By means-of (5) and (6), the ntli iterate (2) of any Krylov sub-

z,,Ero+ K~r~A),n = ,2_.., (2) space method and the corresponding residual-vector-can be written as

follows:
where ro = b- Ax and

Kn(ro,A) =span {ro, ilro, ..-. , An-Iro) (3) x. =xo + V(' 1zi, for some zn 6 Cn, (8)

is the nth Krylov subs pace generated by ro -and A. For example, the= i-A,-v"i t  Iioli-J():)()
generalized minimal residual algorithm (GNIRES) of Saad and Schultz Hfere ci denotes the first unit vector in
[8] and thie-biconjugate gradient-algorithm (DCC) of-Lanczus [G] both For the Qftmecthud the parameter vector --n in t is chosen such
satisfy (2). -Unfortunately, for methods like GMRES, work and stor that the Ethcidwnr Rurml of the roefficient, vector in the representation

age requirements per iteration grow linearly with a and, theretore. (0) is minimal, i.e., as solution of the least squares problem

versions with restarts are used in practice, which often results in slow

convergence. In contrast, for 11CC, work and storage -requireiiiva. min f?, (lrall~e -IIl (10)
per-iteration are constant and low. hlowever, BCG typically exhibits aZeI-]f)12

rather irregular convergence behavior and the method can even hireal where On,= diag(flvijj 2, li 2 , . .,lnit' 112). here, [fl, is chosen such
down. that all basis vectors v~/llvj1U2, ji ,. n- 1, in the representation

(9) of rn have the same Euclidean length. Iot-that £h,,II1" is an
Tile QMIR APPROACHI upper-llessenberg matrix with full column rank n. Hlence (10) always

In [3], Freund and Xachtsgal have pruposed a llCG-tipe apprr-t6, has a unique soluto n Z, ad thec QMR -iterate x., is wvell defincd by j8

the quasi-minimnal residual agurathni t.QNIRj, whichi overrcontes the and (10's Finial, Iiikam, t lL za CARl be easlliV updated fromk Step

problems of 11CC. The rneithvd-uses an implententation deecloped by !-, ep, and Lhi can QMI1 a~gurthiu can be c mpiemlented using

Freund, Giitknecht, and Nachtigal [1, 21 of the nonsymmectric Lanczos "1 It hrt r-ciirrn re-% I see 1%31 tor deta it-, .

algorithm [5J with look-ahead [71 to generate basis Vectors V, V.... AN s-STEP LANCZOS ALG0RI[MN WIa Loo-AllE.tD
for the Krylov subspaces (3). More precisely, with

To enforce Lte biorthogonality conditions (7), inner products or
V" = [VI v2 - - = [VI V2 ... Il]i, vectors of length X need to be computed. In the implementatiwo

Vk Z- [vly vn5+i .--- v 1 ~-] k I. J 1(n), (J of the look-ahead Lanezos algorithm described in (1. 2], this is done

we havesequentially, iLe. inner product-. are calculated in each iteration step ".
we haveOn a massively parallel machine, such as the Connection Machine, the

IC.(io, A) fVf") 5 z E for n 1,2... sequential coniputationof theseinner products represents ahottlen"Lk
I ~In this section, we sketch a version of the look-ahlead Lanczos algo-

*this work w-axs 55 poorid in part, by -oapraisw Agrmw- S- 3JI - r'thim %whkhi oi,,es thi probk.-in aind is inor smitetl for a par.-

i-a NMA anJ th 1. niver-ii ipae ics.riAwatolt~~ hine. in contrast to tle s-quential algorithm. where look-ah-Ad
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steps of size hk >. I- are performed only if necessary to avoid break Set V , i 3' c '~IS, w,. 1I and update tht matr. jyT 1 '.
downIs-of the Lanczos% process, the philosophy of the .s - step -Laaczos This loop-1 1in fwucd if wec C.&*truL. nigului utuYtor.,+

algorithm is to construct Lan..zos blocks of givcn size hk- s., w'hen and w,tj.. or if we. )har-e nacd the mauzirk bko-kL itt_. rn 1c
ever possible. This-is done by-first generating s - 1 intermediate inner first case, -go to 8;, in the~ second case, go to 7;,
vectors by means of simple -three-termn recurrences 7) Determine the smallest ralue which failed the checks and up-

in,= Ain~ -j - j7E.I (11) dote the -upper bound-n(A) to this =value. The block is now

irni= AT1B-( fV-711. (12) enforced to close. Let its size -be .3 and set n1+1 = nt + J,

with-suitably chosen coefficients C,,q,, and i7,, = 0. The biorthogo-V1=f. -- t.i;]YS =[....w,+,]

nality- conditions (7) are then enforced only at-the end of each block. 8) (Construct regular vectors r,,,, and -
This has the advantage that all inner products arising in the biorthog- Set ni = nt,, Z, = A5,n. 1, itS,, = ~S..,and comnpute

onalization process for the inner-vectors of a, whole block can-be com-'r,
puted in parallel. We remnark that to enforce (7) for the inner vectors in 'En .- AI DT2,1V 1 ejin-VTIV

block 1, it is sufficient to biorthogonalize them only against the vectors ti-. if - b4DT iii T it, 7 VIin
from the previous -blocks f = f(n),f + I,. , using If jjj2= 0 or IIM2 =0, stop;

rn= n- VjD7-'IVTi -141 IDTl11Vjif (13) Otherwise set vi, = iri/fr~fl2 and w,.- =Njta2

w.= - I Vj T ZfT - I. Vi_ l 1D71 1 ,. - (14) 9) Construct the Ith blocks of the block- trzdiagonal -matrix Mf~-1)

Moreover, in general, only one previous block occurs in (13) and (14), and set I-= I + 1.

i.e., f =-1. We note that-the quantity ri(A) in-step 7) is an estimate of the
In j1j, Kim and Chisupuiuo ptupoved-a.n 3- step Lanezos algus florn. of the iati.x A iahidj is ot voi ochecks tu guarantee that.

rithm using a fixed biu,. 6ize 3 throughout the w hole process. Out the Laneco. mwetrb renkaarksuffic-enl Linearly independent. A simiuat
numaerical tests show tl.ea 6aui an approach is -nut i iable_ -In order to concept %-s first introdducr!for the sequential iouk-aheZA Lan~-
obta in a robust rrmpit ' tv of the s - step Lanacos algorthm, it is algorithm i .These_,hecks, the criteriar for the decision in step 5),
crucial to keep the U-1 .iic- iara lec and ..umbine the process iaith a anid further details of the algorithm will be-presented in a forthcoming
suitable look-ahead strate,-, paper. Here, we only remark that the important properties (5),-(6),

-In-the following a'*&ViiJ.i, a.e outtine the .5 step look ahead Laric and %7,, % hich were used n -the deiiaton of the QNM method, remain
zos method which we proposc. In each block step, the algvrthmu tries ,alid al 0 for the,,sepLneo algorithmn with look ahead. Also, we
to build a block of size 6. If the cutnstruc tion 0uf such a blvk would note cha, tlie:aivuim algorithm can be realized with the-same number

lea-toasigulr o a.InerI)sinula marix~ i ~7or o anewpar of inner products as in the Liassical- nonst mmetnie LanezoA* method
vg~l and tcnz, 1 of regu at seutors which- have dominant components in without look-ahead. In particular, the .5 XS matrix lIrrf, in step 2)
the old- Mry lu subspaces Kci, A) or K, 1 , ATr), we either build a can be constructed by computing only, _s - !- inner products, rather
smaller block or, by performing sequential steps, a bib-r block thn3 i h tagifor ard approach- wuld suggest. Moreover,

Algorithm. Sketch of s- step Lanczos algorithm with look-ahead in step 4), the matrix A, can be updated from fifTr, using only,
already available inner products. Finally, numerical experiments with

0) Set c1 = ro/firorl, and choose w1 e C;V- with flrjil 2 =1 an implementation of the resulting QNII.algonithm on the CM% 2 wiln
Set nr = 1, 1 =1, EDioG=_o-0; be reported elsewhere-

ForI-= 1, 2,... REFERENCES
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3) (Biorthogonaliration of inner vectors.) ahead Lanczos alg7orithmn for non-JIlemnitran matrics, Pard I,
Determine f by, is/ = maxn. I n., : tit s + 1). Technical Report 90.46, RIACS, NASA Ames Research Center,
For n = nj+ l...,n +.s -I. computie r and u',- ia (13) and No\cvember 19M0.
(14); If flv.fl. = 0 or fllw,1 2 = 0, stop, 131 ILW. Freuind and .. atiaQMR a gzasi-miniml residual
SeLt - (r_, -. r.. ii I' = [Wiiq --- ii1 methodfor nion-Ilermiticn lincarsystems, Technical Report 90.51,

4) Construct the s&-mmetric matrir D, = It-Thv; RIACS, XASA Ames Research Center, December 199.

5) ocie weter o cnsruc ri+,and w,_, as regular rcctors [1) S.K. Kim 3nd AXT. Chronopoulos, An, efficient nonss, metric

or to reduce the Mock size and go to 8) or- 6). respeetively; 90-3ws inro of painnesa reuly 1990., ehnca epr

6) If it is possible to construct regular rectors r,,, end w-,- for is; C. Lanc-zn. An ireration method for the soluton oftix,. crnralne
s1 <: prmeim of lintar differentia! and inttgral oXereors., J. Ries. NatI.
set ng~j = n:-1.-. IVI = (r-, - - r,+.,I. IVI = [w,, --- -+1-11, Blur. Stand. 45.25!-2S2 (1950).
and go toVS; "6' C. lanrzoi. _So~ion of1 rsems of lainr equatiion by rni"zoid
Otherwise, try to inrivrase the block size s by sequential steps: iWtemios. 1. Pi-- Natl_ lir. Stand. 49. 31-53 105)
set ~i =-4
Loop: ;7j B-'. Paeett, 1).R ~. and 7-A. iua. A looik-ad Lanerots
Set s = s+ 1, n nj&. s-2, compute f+1 and w,+ rt ( a1.zitflm focr tmvon~er mdarices. Math. Comp. 44. Irv~ 124
and (12, and biorthsonalize immediatelgS W)
determine ft by n1 = maxn, 11 n, 5 ti i + 11 and nmpoui' I . Saad and 11.11-ohlt G't!Rs. a Ierrraltr inimal~ resd-
r,,~, and w,,+, Wrinl formulas l!V and,'4 'with a rtp~eadb I' az'uaaow!,Mn for ...AriMW naoyrnt limnear s'rsteMns. SLAM 'If
n+ 1); If qr 0 i +r rW, 0. slop. -- -it, -. 7 -%-~(9
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FAST -PARALLEL SOLUTION OF SPARSE TRIANGULAR SYSTEMS

Fernando L. Alvarado* Robert Schreibert
The University of Wisconsin-Madison RIACS

Madison, Wisconsin 53706, USA -  MS T045-1, NASA Ames Research Center
Moffett Field, Californa94035

Abstract -We consider parallel solution of a sparse system L] = b with
trlan ix ar matrixrL, which is teften a performance bottleneck in parallel
computation. When many systems with the same matrix are to be
solved we can improve parallel efficiency by-representing the inverse of
L as a product of a few sparse factors. We construct the factorization
with the smallest number of factors, subject to the requirement that
no new:nonzero elements are created. Applications are to iterative
solvers -with . :Iangular preconditioners, to structural analysis, or to
power systems applications. Experimental results on the Connection
Machine show the method to be highly valuable.

I.INTRODUCTION

There, are two possible approaches to the parallel solution of trian-
gular systems of equations. The usual approach is to exploit whatever
parallelism is available inthe usual substitution algorithn [4]. The sec-
ond, -which requires preprocessing, works with some representation of

If-L is sparse, its inverse is usually much denser. Here we consider a Figure 1: Best no-fill partition for a graph-without reordering. Five

factorization L-1 = l'[.=-Qk with sparse factors. Such a factorization factors are required.
is possible in which the factors have no more nonzeros than L [2]. The
chiefadvantage of a factorization of L- isthat all the necessary mul-
tiplications for the computation of QkZ ran be performed concurrently.
Thus, itis possible to take advantage of more parallelism in the solution
' .hese equations.

We -review the use of partitioned inverses of L. Any triangu-
lar matrix L can be expressed as a product of elementary matrices:
L = L I L 2 ... ,-1. The-factor Lj is unit lower triangular and:nonzero
below the diagonal only in column j, i.e. itis elementary lower trian-
gular.

Regrouping, we may write

L-= IP ()

where Pk = Le_1+ Lchi+2 ... ",, and

0=ea <el <...<em =n-1. (2)

Here {ek}m.0 is a monotonically increasing integer sequence. The factor Figure 2: Best no-fil partition for a reordered graph. Only three factors

P is lower triangular and is zero below its diagonal in all columns except are required.
columns ek_. + 1 through ek, where it is identical to L.

The solution of the artitioned problem proceeds as follows. From Definition I A partition (1) in which the factors Pk are :nvertible
(1) it follows that in place is called a no-fill partition. A no-fill partition of .L with the

1smallest possible number of factors. is a best no-fill partition.
=-'b= fl P;*b. (3)

k=m Let G(L) be the digraph with vertices V =-{1, 2,..., n} and directed
In computing the matrix-vector products, we may exploit parallelism edges E -E(L) = {(tj) s .j j, L., / 0}. G(L) is an acyclic digraph,
fully, using as many processors as there are nonzerus in P, and summing or DAG. Consider the matrix L with graph GkL) illustrated in Figure 1.
the results in logarithmic time. L has a best no-fill partition:

A. Problems Addressh = (Ls)(L2)(L3 )(L 4)(L 6 )(L 6 L 7 ).
We say that the matrix X is invertible in place if zj $ 0 *

(X-'), 0. The elementary lower triangdlaromatrices are invertible This partition has six factors. It is possible to symmetrically permute
in place. There thczefore always is at least one partition (1) of L with the rows and colurmns of L saic that L remains a lower triangular
factors that invert in place. and G(L) is as illustrated in Figure 2. A best no-fill partition of this

*'This work was supported in part-mnder NSF Contracts ECS-8822654 and ECS. reordered L is
8907391.

tThis work was supported by the NAS System s Division under Cooperative £ - (LiL2)(L3L4)(L5LsL7),
Agreernent-NCC 2-387 betrech-NASA and the University Space Research Asso-
ciation (USRA). which has only three factors.
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Definition 2 A best reordered partition of L is a symmetricpermu- Algorithm RP1 (Re-order, Permute 1):
tation of the rows and-columns of L such that the-permuted-matrix is Input: A directed, acyclic digraph G(L).
triangular and-has a best no-fill partition with the fewest possible fac- Output A permutation v -- {1, n}.,n} and a partition of L.
tors.

The aims of this work are as follows. We shall develop a theory of Compute level(v) for all v E V;
efficlent algorithms for computing best no-fill (Section II) and-best re- max-level 4- max ,ev(level(v));
ordered (Section IM) partitions. Second, we shalldetermine how useful i +- 1; k +- 1; eo 4- 0;
these ideas are in practice by. means of some experiments (Section IV). while i < n do

1. BEST NO-FILL PARTITIONS S +- 0; ek 4- i;
I +-7 min{j I there is an unnumbered vertex at level j};

The.transitive closure of a-digraph G = (V, B) is the graph GI = (V, Et) repeat

where El = {(ij) I there is a j - ipath in G}. The digraph G for every vertex v at level I do

(V, E) is transitively closed if it is equal to its own transitive closure, if (([Condition 1] v is unnumbered ) and

We shall state our results and refer-the reader to the full paper jI] ([Condition 2, Every predecessor of v has-been numbered ) and

for proofs. ([Condition 3] Every successor of v is a successor of all
u E-Sk such that u is a predecessor of v) ) then

Lemma 1 If L is a nonsingular lower triangular matrix, then G(L-1) V(v) 4- i; i 4- i + 1;
is the-transitive closure of G(L). Sk -Sk U {v}; ek - ek +1;

fi
Let G = (VE) be a digraph associated with a triangular matrix od

L. Given a subset S of V, define the column subgraph Gs = (V, Es) t * . + 1;
(where Es - {(ij) E Elj E S}) as the graph of the lower triangular until I >max-level or no vertices at level t - 1 are in Sk;
matrix obtained by zeroing all columns of L not in-S. P - - -. b; k 4- k + 1;

Theorem 2 Let a partition (2) and corresponding factorization (1) be od
given. The factors Pk are-invertible in place iff each column subgraph
G(Pk) = G{e-+i.,} is transitively closed.

Theorem 3 Procedure RP1 finds a best reordered partition of of L.
-Proof: By Lemma 1 (P )jj 5 0 iff there is a I - i path in G(Pk).

The following are therefore equivalent: The complexity of Algorithm RP1 can be large. Consider a dense
9 Pk is invertible in place; lower triangular matrix of order n. RP1 takes 0(n3) time in this case,
* (P;'1 )ij 0 # (Pk)ij # 0; since the cost of checking-whether all successors of vertex j-are also
* for every j -- i path, (P),, 0 0; successors of its predecessors is 0 (j(n - j)). In- [1] we refined Algo-
*- G(Pk) is transitively closed. o rithm RP1, producing an improved algorithm for which we can prove

The following algorithm was proposed by Alvarado, Yu and Betan- an 0( nonzeros(L)) complexity bound. Furthermore, A. Pothen has

court (21: developed a method v-th an 0(n) complexity bound for the case where
the undirected graph G(L + LT) is chordal (this happens when L is a

Algorithm P1: Cholesky factor) [61.
Input: L = LSL2... " n-1 While our-work is related to the use of clique and clique tree repre-
Output: A best no-fill partition of L. sentations of sparse matrix factors [7], the partitioning of this paper is

not the same as the partitioning into simplicial cliques or supernodes

i 4 1; k -- I; that has appeared previously. Indeed, all members of a simplicial clique

while (i < n--i) do of G(L) are included in the same factor by Algorithm RP1, but several

let r be the largest integer greater than i such that L, ... L, simplicial cliques-may belong to the same factor; see [1],

is invertible in place; IV. EXAMPLES

k -- k + 1; i - r + I; This section illustrates the performance of the proposed algorithms.
od Several examples compare P1 and RP1 with respect to the number

of factors in the partitions they find. We also examine the effect of
the initial ordering of rows and columns of a matrix A on the number

We have shown [1] that Algorithm P1 determines a best no-fill par- of factors in a best reordered partition of its Cholesky or incomplete
tition. (There may be others. Best no-fill partitions are not unique.) Cholesky factor L. An experiment shows that on-the Connection Ma-

I. BEST REORDERED PARTITIONS chine, the solution process (3) can be faster than substitution by orders

of magnitude.
This section describes a straightforward "greedy" algorithm for finding First, we compare algorithms Pi and RPI. Table I uses five power
best-reordered partitions. system matrices ranging is size from 118 to 1993. Table 2 gives results

For (i,) C E we say that j is a predecessor of i and i is a successor for matrices arising from five-point fiute difference discretizations. In
of j, Let G = (V, F be a DAG. We define level(i), i C V to be the each case, the original coefficient matrix is first ordered and its Cholesky
length of the longest path in G ending at i. factor L is found. We need to distinguish this first fill-reducing ordering

The algorithm works by finding a partition V - U%=5Sk for which of-A from the reordering of L found by-RPI. We call the ordering of A
the column subgraphs Gs5 are transitively closed. Moreover, Si is a the primary ordering. Three primary ordering procedures are used: the
source node in the quotient graph, i.e. there are no edges directed into mainirnum degree algorithm j8;, the multiple nurmmunum degree (MMD)
S1. -If Si and its out edges are removed, then S2 is a source node, etc. algorithm j5], and the mirumum level, mnumum degree (MLMD) algo-
We shall call the subsets Sk in this partition factors in analogy with rithm (3].
the corresponding factors Ph of L. For each matrix and primary ordering algorithm, two partitioning

methods are compared: Algorithm P1, which simply partitions L op-
timally without reordering it, and Algorithm RP1 which reorders the
matrix and generates an optimal partition. In most cases, Algorithm
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The computations used 8192 processors on the Connection Machine
I Min. Degree MMD - MLMD the NAS Systems Division, NASA Ames. From these results, as well as

I Size-11 P1 I RP1 II P1 I RP1 I-PI] RP1 those above, we see that unless L-has a fairly rich structure there is no
118:-53 14 110 10 16 5 great advantage to the use of the partitioned method. The use of an352 -132 21 13 12 8 8 MLMD primary ordering improves both substitution and partitioned

707- -213 26 23 - 18 11 10 methods. However, with the introduction of the additional fill in the

1084* 309 26 33 24 14 11" exact-factor L3 (compared with L2),-the number of levels in G(L) in-

1993 -563 35 41 25 15 15 creases sharply (as does the time for substitution) while the number of
_ - . _-factors in the best reordered partition drops dramatically. The differ-

ence in the solution time, even for this problem of modest size, is about
Table 1: Effect of-primary ordering on number of factors in best no fill a factor of twenty. Ihus, we conclude that the method can be-quite
partitions (P1) and best reordered partitions (RP1) for power system useful in lughly parallel machines when the matrix L has a rich enough
matrices, structure, as happens when it is an exact triangular factor.

V. CONCLUSIONS
I -IMin. Degree 11MUD 11MLMDV OCUIN

Grid Size P1 RP1 11 P1 RP1 P1 RP1 An algorithm for best reordered partitioning of lower triangular matri-

5-by 51 10 7 6 6 5 1 ces has been presented and proven-to be optimal.

10 by 10 20 12 15 11 9 7 Experiments have shown the method to be very valuable in practice

15 -by 15 20 12 16 14 11 8 on highly parallel machines.
For a lower triangular factor of a sparse matrix A, the number of

partitions attainable is stronglyinfluenced by both the ordering of rows
Table 2: Effect of primary ordering on number of factors in best no fill nd columns of A and the method of computing L.
partitions (P1) and best reordered partitions (RP1) for 5-point differ-
ence operators on grid graphs. References

RP1 gives a smaller number of factors than PAl, while in a fAw cases j1; FIL. Alvarado and R. Schreiber. Optimal parallel solution of sparse
both algorithms give the same number of factors, triangular systems. RIACS Technical Report 90.36, September,

We observe that RP1 reduces the number of factors at no expense 1990. Submitted to SIAM J. Sct. Stat. Computing.
in added fills. Its effect is most dramatic if the underlying primary
ordering is the minimum degree algorithm. On-the other hand, the 12] F. L. Alvarado, D. Yu and R. Betancourt. Partitioned sparse A

best results are obtained when the MLMD-algorithm is used for the methods. IEEE Transactions on Power Systems 5, (1990), pp.

primary ordering, even though the relative improvement attainable by 452-459.

Algorithm RP1 over Algorithm PI is small. The results for the MMD [3] R. Betancourt. An efficient heuristic ordering algorithm for partial
algorithm fall somewhere between minimum degree and MLMD. The -matrix refactorization. IEEE Transactions on Power Systems 3
reduction in the number of factors achieved by RP1 in:comparison with (1988), pp. 1181-1187.
P1 is quite dramatic when MMD is the primary ordering.

The second experiment we report compares the solution proce- 14; S. W. Hammond and R. Schreiber. Efficient ICCG .n a shared
dure (3) with the usual forward substitution method on the Connection memory multiprocessor. Technical Report 89.24, Research-Insti-
Machine model CM-2, a highly parallel SIMD computer. We begin with tute for Advanced Computer Science, 1989.
a large sparse matrix A of order 4037, obtained from a triangular mesh
in the region-around a three-element airfoil. Three matrices L 1, L2, 15] J.W. Liu. Modification of the minimum degree algorithm by mul-

and L3 are obtained by approximate factorization. tiple elimination. ACM Transactions on Mathematical Software 11

L, is obtained by an incomplete LU factorization of A; we carry out (1985), pp. 141-153.

the Gaussian elimination process, but we allow nonzeros in L (and U) [6) A. Pothen. Fast parallel solution of a triangular system in sparse
only where there is a nonzero in A 2 . The ordering of A is obtained from Cholesky factorization. In preparation.
a lexicographic sort of the (z, y) coordinates of the grid which leads to
the matrixi this ordering produces a large number of levels in C(L). j j A. Pothen and C. Sun, Compact clique tree data structures in

L, ;s the incomplete LU factor obtained when a variant of MLMD sparse matnix formulations. Computer Sciences Technical Report
is used as the primary ordering of A. Number 897, December 1989, The University of Wisconsin, Madi-

£3 is the exact lower triangular factor of A, with the same primary son.
ordering as fos L2.

In Table 3 we give the size of these factors, the number of levels, [81 W. F. Tinney and J. W. Walker. Direct solutions of sparse net-

which is proportional to the time required for our parallel substitution work equations by optimally ordered triangular factorizatidn. Proc.

algorithm, and the number of partitions, which is in practice propor- IEEE 55 (1967), pp. 1801 -1809.

tional to the time required by the partitioned solution algorithm (3).

Matri Ordering Factor- nonrzeros I Levels Substitution Factors -Partitioned
ization in G(L) Time soln. time

SLi RCM ILU 23,526 823 16.17 secs 816 15.73 secs
L, MLMD ILU 26,793 78 2.20 secs 66 1.84 secs

£3 MLMD exact 118,504 311 28.89 secs 16 1.51 secs

Table 3. Comparison of CM-2 execution times for substitution and
partitioned solution.
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SUPERCOMPUTERS: THE HARDWARE, THE ARCHITECTURE

Willi Scb6naucr and Harmut Haifner
Rechenzentrum der Univcrsitlt Karlsruhe

Postfach 6980, D-7500 Karlsruhe 1, Germany

Ab rglThe prototype supercomputer and some leading architectures including CRAY Y-MP8/8256. cycle time 0 nseL, theoretical peak pcrformance 2.67

massively parallel computers are discussed. A performance formula explains the GrI.OPS, 8 processors (MIMD shared memory computer), 250 Mwords MM

gap bctween theoretical peak and real performance. -The price/performance (main memory). 256 banks, 5 cycles bbt (bankbusy time), bandwidth. 2 toad and

relation for the discussed computers is presented. 1 store per cycle and pipe group, 2 Gwords EM (extended memory). bandwidth
2 * 13 GB/sec.

1. THE PROTOTYPE VECTOR COMPUTER Fujitsu VP2600 (Sicmens S600), cycle time 3.2 nscc, theoretical peak
performance 5.0 GFLOPS, monoprocessor, but internally 2 4-track pipe groups,

In -Fig I the 'prototype' vector computer is depicted The technology is 256 Mwords MM. 512 banks, 14 cycles bbt, bandwidth, one word per cycle and

characterized by the cycle time in nsec. The floatingpoint units are pipelines, pipe group, 1 Gword EM. bandwidth 2 GB/scc. Model 'vP2600/20 with two

thus have a startup time and need long vectors for efficient use. Chaining means scalar processors, model VP2400/40 with two vector k2 2-track pipe groups) and

coupling and overlapped operation of different pipelines, e.g. load, multiply, add, 4 scalar processors.
NEC SX-3. Model 44 cycle time 2.9 nsec, theoretical peak performance 22

mask - mask GFLOPS, 4 processors (MIMD-shared memory), 8-track pipe group, 256
reg. Mwords MM: 1024 banks, 7 cycles bbt, bandwidth: 0.5 words per cycle and pipe

group globally (between memory and memory access unit), but 1 load and 0.5
ex- a dd store per cycle and-pipe group-locally (between memory access unit and
ten- load . vec.-slot. processor), 2 Gwords EM: bandwidth 2.75-GB/sec. One or two-control

maine t processors for operating system, with separate memory. Remark. Only the two

ded mult. processor Model 24 can be recommended (11 GFLOPS) if at least 1 word per

me- me- cycle and pipe group global memory bandwidth is requested.
mory .IBM E.- 9000/720 with 0 VF.s (Vector Facilities- integrated vector processors),

corresponds to former 3090/600J, basically general purpose computer, cycle time
proc 14.5 nsec, theoretical peak performance 828 MFLOPS, 6 processors (MIMD

shared-memory), 64 Mwords MM: transparent (no banking), bandwidth: one
I/0 proc. i/o word per cycle and pipe group, 512 Mwords EM: bandwidth 2 * 138 MB/see.

Cache of 256 KB, danger of cache stumbling for long vectors. Announced: ES
Fig: 1 'Prototype' vector computer. 9000/900, cycle time 9.5 nsec, 2526 MFLOPS, 6 processors, improved cache,

two-track pipes.
store. There may be internal parallelism by multi-track pipelines, e.g. 4-track CONVEX C240. Minisupercomputer, cycle-time 40 nsec, theoretical peak
pipelines deliver 4 results per cycle, performance 200 MFLOPS, 4 processors (MIMD shared memory), 256 Mwords

In this paper we dcnote by 'word' 64 bits - 8 bytes and by 'pipe group' an MM: 128 banks, 8 cycles bbt, bandwidth: one word per cycle and pipe group, no

addition and multiplication pipe. Critical points of vector computers are: EM. Soon expected: C300, cycle time 16 nsec, 8 processors, I GFL02S
memory bandwidth in words per cycle and pipe group; memory size in Mwords theoretical peak performance, 512 Mwords MM.
(million words); size and bandwidth of extended memory (the two sizes limit the IBM RISC SYSTEM 6000. Model 550. Super-Workstation, cycle time 24.4 nsee,

problem size); i/o bottleneck: disks are extremely slow compared to the pipelme theoretical peak performance 82 MFLOPS (can 'simulate' vector operations),
speed. 64 Mwords MM, transparent, bandwidth: one word per cycle.

2. ARITHMETIC OPERATIONS AND MEMORY BANDWIDTH 4. PARALLEL COMPUTERS

Dyadic operations like We denote by 'parallel computer' an architecture that can be extended to 'many'

e = a, + bi (1) processors. With parallel computers the real problems are shifted from the

need 2 loads and 1 store per cycle and pipe group. Triadic operations allow hardware level to the software level, i.e. to the user. VNe discuss only MIMD-

parallel operation of the addition and multiplication pipeline and deliver two type parallel computers. There arc three basic types, see Fig. 2.

results per cycle and pipe group, called supervector specd. The vector (or full)
triad triad~~ ~~ -processor I s a e n m r  shared memory/

di =-a i + bi * (2) M- local memory Shre ..mr

needs 3 loads and I store per cycle and pipe group. This is the most important

operation and thus our key operation. More special is the linked triad with one
scalar operand com.. nei.oik COmm network switch

ej - ai +s * bi (3)

with two loads and one store and still more special is the (repeated) contracting ...
linked triad . ....

bi = b- + s *a (4)
that needs only-one load if-b is fixed in a vector register. This is the basic message passing hybrid shared memory
operation of matrix multiplication. A vector computer v.ith a memory bandwidth (distli,. i.llory)

of one word per cycle and pipe group-fits only to (4) and delivers only 1/4 of J

the peak performance for (2). Fig. 2 Three basic type parallel architectures.

Because of the different number of memory references one should not count
fot veutor wmputers merely additvn,sand multiplitons but uuntmWXRjAL%)n. The" I if sharedmemor, ..uphtbr. i.z h, m;mury buttlene.k that limits

like-c.g. linked triads. the number of processors, and the memory contention. The user has to
distribute only the processing.

3. SOME VECTOR COMPUTER ARCIIITECTURES The problcm of the message passing system is the distribution of the data t.
the local memories, and the resulting communication overhead. Idling processors

In I1I detailed discussions of the most reclvant super, omputers, inluding kernel nf a dedicated (sub )systm cannot be. usm.d-by oth.ur jobs, thus a., hae. a

program measurements, are prcs;nted. Present supertomputers are the. trLOPS PC The dream of the. m,,ssag%, pasbing ,.urnmunity is tht. virijal

continuation of these arthitetures. In the oral pe.Sntiton overviews like rig. sharcd memory, but this is just .ontriry to th .um ni uDitIltun etfiiccy,

1 are presented for the different supereumputers. lrc. ae. present only their Hybrid systems arc th. worst of all urldJs bcause they combine the

main characteristics for the maximal configurations. We discuss 3 real disadvantages of both inherent systems.

supcrmomputers, an intcgrdtd v.ctor procssur, a nini-supercomputer and a An essertial drawad.k of pafdal1 ,.omputUrs is that ffitint programs must be

super-workstation, tailored to the special architecture, In the following we discuss briefly two
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representative hypercube arcutcctures, in the ural prsntation d-taddoveriew sequ-ntiai knon-paialchzbe) code. part q of oprations is pdtalklizble, part
graphs will be presented. (1-q) is sequential (fine grain parallelism). Then we get

NCUBE: max. 13-dimensional- hypercub, 8 - 8192 scalar 64-bit processors, fA . (10)
max. 20 GFLOPS for 64 bit. The basic processor is a 1.2 micron CMOS custom (l-q)p+q
processor with 0.5 M transistors, 20 MHz, 50 nscc cycle time, delivering-2.4
MFLOPS (the pipeline formula is not applicable), with 14 bidirectional DMA This is Amdahl 4 law for parallelizauton, compare to k9), e.g. p 64, q 0.95,
channels with 2.2 MB/see, each-(one is for i/o). One node has Ior 4 or 16 MB f5 = 0.24.
local memory. Subcubs can be-allocated to diff-rent users (spae sharing. bhard memory MIMD paralhcl .omputcr. -.mcory conitcrunn. If a' denotes
'PCs*). The job management,tth .ompilers and the tools arc running on the the iaio of availabit over minimal number of memory banks and ,- denotes the
SUN workstation that serves as host computer. part of operations with contiguous, (1-c) with random elements (indirect

addressing), then a modcl yields
INTEL iPSC/860: max. 7-dimensional hypercube, 8 - 128 i860 vector processors,

max. 5.1 GFLOPS for 64 bit. The basic i860 processcr is a 0.5 micron CMOS f +1-
custom processor with 1 M- transistors, 40 MHz, 25 nsee cycle time. The 1+2(1-c)Ja
pipelined floating point units deliver 40 MFLOPS 'supervector speed' because
the multiply unit needs 2 cycles-for one result. Unfortunately presently the e.g. a = 2, e = 0.95, ff6h 0.95.
software is far behind the hardware, and Fortran compilers are unable to rea.h Message passing tdist.ibuted memory)-MIMD parallel computer. waiting for
this performance. There is a one-word (64 bits) per two cycles memory communication. For m useful cycles in the mean in b additional cycles are
bottleneck between i860 chip and memory. The node has 8 or 16 MB local needed for non-overlapping communication. Then we get
memory and 8 bidirectional communication links with 2.8 MB/see, each (one is
for i/o). Subcubes can be allocated to different users (space sharing: 'Cs'). The I(12)
job mangement, the compilers and the tools are running on an INTEL 80386 PC 6 1
that serves as host computer.

e.g. b = 0.05, f6 mp = 0.95.
5. PERFORMANCE FORMULA If we calculate up to this point f* .. * f6 = 0.034, we see that we get with

those 'reasonable' assumptions finally not more than 3.4 % of the peak
In this section we want to explain why there is suci a large ap between performance, i.e. we have !=s 96.6 % of our supercomputer'!
theoretical peak performance and real pcrforn andc for pre.ent supercomputer Load balancing (tcoarse grain parallelism). we assume that a user has reserved
architectures. If wc take 1000!.T , where we muasure the cycle time t in Asee, p pro.essors ( .g. his subcube), t, As the time that protessor i is active. Then we
we get the (vector) speed of a single pipeline in MFLOPS, times two yields the get his 'personal' utilization factor
supervector speed, times the number P of total pipe groups in the system yields
the theoretical peak performance. But unfortunately the latter is reduced by
several reduction factors fi that-we want to discuss below. Thus our formula for fA'I t /(p*mat), (13)
the real performance of a pipelined supercomputer is M

r = 1000 * 2 * P-* * * f [MFLOPS] . (5)
-rnsec]

. e.. peak... duc.i... factors e.g. f7 = 0.9.thjeoret, peak reduction factors Long-range continuous usage: an idling computer produces no GFLOPS. Thus
the global utilization factor

Repeatedly internally lost cycles (e.g. section loop organization): for m cycles
we have in the mean m * d lost cycles, thus f8 = (hours of usage per year)/8760 (34)

t= ... , (6) is of decisive importance. For a workstation that is used (as number cruncher)
1*d for 8 h on 5 days a week f8 = 0.24.

e.g. d = 0.05, f, = 0.95.
Memory bottleneck for vector triad (2). only the vector triad has full flexibility 6. PRICE/PERFORMANCE RELATIONS

of multiplication and addition ai 'assumed' in the peak performace, all other
triads arc 'ex ptiuns'. Therefore we clect a 4 Ly o, jt.tat th,. vic.tor triad that Th,. prie,'performan rctlaon has two components. The pri. is determined
needs 4 mcmory referc,., per cyclc. and pipe group. If we have instead uf 4 by th. selected .onfiguration that is strongly determined by the size of the
only m, we get memory. We select a configuration for the solution of !ar=. problems, else a

supercomputer is not an appropriate tool. Therefore we select (as far as
(7) possible) 1 GB MM (main memory), 1 GB EM (extended memory) and 100 GBfA "M, ( disks. P denotes the purchaseprice, given in MDM (million deutschmark),M+L

denotes maintenance and licence costs, given in MDM/a (per annum = year).
e.g. m - 1, f2 = 0.25. All prices are commercial list prices (no university discount), without VAT, valid
Finite vector length n (startup y, cs Jost .c). If %N. dunot.t by ni/ 2 Hockney s January 1991. The software for a FORTRAN environment with operating

half performance length, see [1,2], we get system, compiler and tools is included.
The nerformance is given by the peak performance and the reduction factors.

A = n (8) We determine the performance for the tri. We note only the reduction
n~n,, factors 0 1 that are applied.

We attribute some personnel to the computer. SE denotes system engineer with
e.g. n = 1000, n1l1 = 1000, f3 = 0.91. 78 KDM/a, OP denotes operator with 52 KDM/a. We do not consider cost for

housing, electricity, climatization.
Scalar code. part of o,,ratliuo is vIS .turiZablo, part (1 V) Is calar, V Is the The price,'performance relation is given in MDM a per GFLOPS, i.e. the cost
ratio vector'scalar speed for infinitely long v,.tour. Thcn w. get to be paid pei yea. to have 1 GFLOPS sustn vector triad. For this purpose

the purchase price is distributed onto four car.& i.e. we assume a four year life-
1 (9) cycle of our supercomputer. In the following we give the data for the different

(I-v)w*v ( computers.
CRAY Y-MP8/8128: 1GB MM, 1 GB EM, 100 GB disks, P = 48.05 MDM (31

This is Amdahl's law for vct,.rization, see [1,2], e.g. w - 10, v - 1.95, 14 = 0.6. MS), M + L = 2.16 MDM/a, 2 SE, 3 OP, peak performance 2.67 GFLOPS, f2
Up to now we have discussed monoprocessor vector computers. For the = 3/4, f6 ti 0.9 (estimated).

examplary values we get f, * f2 * f3 * f4 = 0.15, i.e. our supereomputer would F0t,"I ( Iemen% V MJ ,, 1 GB MM, I GB EM, 100 GB disks, P 28.65
deliver only 15 % of its theoretical peak-performance for the vector triad. 'MDM, Mf L 1.48 MDM/a, 2 SE, 3 OP, peak performance 5.0 GFLOPS, f2
In the following we discuss narnllel computers with p processors. = 1/4.

716



NEC SX-1-9Model 24' 1 GB MM, 1 GB EM, 100 GB disks, P 30.48 MDM, a bath fnvuonment that allows the- continuous usage of the computer like for
M+L = 1.37-MDM/a, 2 SE, 3 OP, peak performance 11.03 GFLOPS, f2  1/4, a conventional computer.
f6,sh= 0.95-(estimated). We have presented list-prices. A discount may change the relationsIBM ES9000/720 (3090!60Q). 6VFs" 05 GB MM-(max), 15GB EM, 100 GB .urrespundingly. Note that the software results in additional losses that may
disks, P - 38.24 MDM, M + L = 1.829 MDM/a, 2 SE, 3 OP, peak performane increase the price/fperformance relation considerauly. But finally an efficiant use
0.828 GFLOPS, f2 

f 1/4, feache stumbling = 0.8 (estimated), of any type-oh supeconputer-is possible only wi data structures that are
CONVEX C240: 1 GB MM; 8GB disk, P = 3.9 MDM, M+L = 0.39 MDM/a, taiored to-its architecture. If the data structure does not allow sufficient
I SE, peak performance 0.2 GFLOPS, f2 - 1/4, f6,,h = 0.9 (estimated). vectorization and/or parallelization, Amdahl's law (9) and/or (10) will destroy
(Remark:I GB MM is unusually large for a CONVEX and brings the price up, any efficiency.
but for the solution of hr problems we need a large MM.)
IBM RISC SYSTEM/6000. Model 550 Worktation: 0.5 GB MM (max.), 2.5 GB 7. CONCLUDING REMARKS
disks, P - 953 KDM, M+L = 26.5 KDM/a, 0.1 SE, peak performance 0.081
GFLOPS, f2 = 1/4, f8 = 0.24 or 0.75. (Remark: The maximal MM of 0.5 GB The cycle time for the ECL-technology of the large supercomputers will
excludes this workstation from the solution of very large problems. The price for continue to decrease from now 2.9 nsec (NEC SX-3) to perhaps 2 nsee
the memotybrings the price for the workstation up.) (CRAY-3-?)-and eventually I nsce for 1995+ + and 0.5 nsec in the year 2000.
NCUBE 2. Model 10: 512 processors A 4 MB -2 GB MM, 50 GB disks, P The CMOS-Technology of presently 40 MHz/25 nsec i8W0 chip) will evolve to
7.0 MDMM+L = 0.70MDM/a, 2 SE, peak performance 1.23 GFLOPS, fz 50 - 80 MHz/20-12.5 nsec (12.5 nscc was the cycle time of the CRAY-1),
I (scalar!), f5 = 0.95 (q = 0.9999), fs = 0.1 or 0.24 or-0.75. (Remark. The 2.4 INTEL expects for the year 2000 200 MHz/5 nsec. Thus the usual factor of 10
MFLOPS per processor are based on parallel scalar execution of addition and in speed between ECL and CMOS may be maintained.
multiplication and arc met for the vector triad by the 80 MB/sec between CPU The engineers want (sustained) performances of 100 UFLOPS, then 1000
and its local memory.) GFLOPS = 1 TFLOPS. This can be obtained only by narLlelism. But there are
INTEL iPSC/86., Model 128:128 processors A 16 MB - 2 GB MM, 50 GB two main problems:
disks, P = 9.8 MDM, M + L = 0.98 MDMa, 2 SE, peak pcrformanu 5.1 Problem 1. Can we pay the memories that are needed to store the operands in
GFLOPS, f2 = -1/4.5, f5 = 0.99 (q = 0.9999), f8 = 0.1 or 0.24 or 0.75. (Remark. order to use TFLOPS? The answer is. We have to wait until we can afford these
The value f2 

= 1/4.5 results from the fact that a load for 64 bits needs.two memories, increased parallelism does not solve this problem.
cycles, but an immediately following store needs 3 ,ycle6, thus 9 - 4.5 * 2 .YIs Publk.m 2. How -an wt, organize a umer-friendlv parallelism on the hardware
are needed for the vector triad and 40/4.5 = 8.9 MFLOPS per i860 chip result, level? The answer is presented in [3].
An assembler program should come close to this value, a vcctorizing compiler
in a test- has obtained 7 MFLOPS according to INTEL. But the software that
has been delivered up to now is far bahind the hardwarepossibilities.)
Everybody is free to choose hi-own parameters in--this play. In Fig. 3 the REFERENCES

price/performance relation for our narameters is depicted. The results speak for
themselves. The general purpose .omputcr ha its own merits, but it is-an 1. W. S..hunaucr, S.entific. Computing on Vector Computers, North-
expensive number cruncher. Nevertheless the purchase of VFs pays if the Holland, Amsterdam 1987.
ES9000 is used in scientific computations. The mini-supercomputer is 'relativcly'
expensive in spite of the 'chcap' tcchnvlogy because of the. r.ativly" large 2. R.W. Hoi.kncy, C.R. Jcsshupc., Paralll Computers 2, Adam Huger,
memory.-For-the workstation and the parallel computers the utilization factor Bristol 1988.
is decisive for the price/performance relation. These computers have (not yet)

3. W. Sch~naer, R. Strebler, Could user-friendly supercomputers beo

MDM/a designed? in J.T. Devrcese, P.E. van Camp (Eds.), Scientific Computing

GFLOPS (for vector triad) on Supercomputers II, Plenum Press, New York 1990, pp. 99 - 122.
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Abstract FFT's, the routines doing multiple transforms are of mixed radix

Different numerical libraries from hardwareimanufac- type allowing radices 2, 3,- 5 and 7. A random number generator
turers and- software houses are available for supercom- is included-in the runtimelibrary of the compiler.
puters. Contents -and performance of these libraries on
CRAY 2, -CRAY Y-MP, Fujitsu/Siemens NP-series and IBM: ESSL The Engineering and Scientific Subroutine-Library
IBM 3090 VF is-discussed- and a proposal for~future li- (ESSL) from-IBM is available in a vector as well as in a scalar ver-
brary development is given. sion running on any IBM mainframe. In-addition to the chapters

on linear algebra, FFT, sorting and searching some other routines

I Introduction for interpolation, numerical quadrature, random number-genera-
tion and parallel processing-are included-in this library. -Only a

Numerical subprogram libraries are-important tools in developing subset of -level 2 and level-3 BLAS are available. But :the linear

scientific software. With the increasing use of supercomputers, in algebra chapter contains-some routines-for solving sparse linear

most-cases pipelined vector computers, there is an increasing need systems by direct or iterative methods.

for reliable and- efficient collections of numerical subprograms.
This frees the application programmer from recudig iinumerial- Fujitsu/Siemens. SSL II and supplemenents FuJitbu'b
algorithms and increases the reliability and maintainability of ap- SSL II library 1b buppleiciented by Sielenz, with a tulilete 5et of

plication programs. all three levels of BLAS, a set of FFT routines and random-num-

This paper-will concentrate on discussion-of efficiency of libraries her generators. Together-with these supplements SSL II-seems to
on supercomputers but will not include a-general evaluation of be the-most comprehensive-library froma- supercomputer-manu-

different libraries-since this must comprise a detailed discussion facturer. The linear algebra-chapter contains several routines-for
of-the numerical algorithms, their robustness and their implemen- solving linear systems andeigenvalue problems. There are routi-
tation which is beyond-the scope of this paper. nes- for nonlinear equations, minimization, interpolation -and -ap-

proximation, Fourier and-Laplace transforms, differentiation and
In section 2 a brief review of-different:libraries for supercomputers quadrature, ordinary differential equations, special function ap-
will-be given. Since most work on adapting libraries to supercom- proximationand random number generation.
puter architectures:has -been- done-in the area of-linear algebra
this-is discussed ingreater detail in section 3. In the concluding
remarks some items -missing- in todays subroutine libararies are
listed and a-proposal -for future library developments on super- While the manufacturer supplied subprogram libraries are avai-
computers is-given. lable only on specific computer systems, standard- mathematical

subprogram libraries like IMSL/MATII library from IMSL Inc.

2 Numerical Libraries for Supercomputers and NAG Fortran library from the Nuierical Algurithms Group
Ltd. are-available on a wide range of-computer systems-ranging

Iwo groups of-numerical subroutine:libraries for supercomputcrs from PC's to supercomputers. So program devclopment and small
must-be distinguished: production runs can be done on a uorkstation while large produc-

tion runs are executed on a supercomputer. The identical program
SLibraries developed by hardware manufactur'ers and being can be executed in-different-supercomputer environments.

a part of the- software environment on a given -computer Versions of- these libraries are available for-the most important
system, supercomputers like GRAY Y/MP, CRAY 2, IBM 3090 VF, NEC

9 Libraries developed by software vendors (e.g. IMSL and SX-series or Fujitsu/Siemens VP-series.
NAG) which are-in general available on a wide range of These librarim have nut becn designed fur use on supercompu-
different computer systems. ters from their starting point. But during the last years IMSL as

well as NAG have spent much work in adapting the libraries to

2A1 Libraries from Computer Manufacturers achieve efflicient implementations on supercomputers. This must
been (lone while maintaining the portability of the library, i.e.

Cray: SCILIB The Scientific Library (SCILIB), release 5.0, The user interface of library routines must iot be changed.
contains programs from three different areas: linear algebra, Fast But the user interface of new routines which are introduced
Fourier Transforms (FFT) and searching and sorting. The linear into the library may-be chooscii to allow efficient vectoriza-
algebra- chapter comprises all level 1, level 2 and level 3 BLAS
as described in [6, 1, 2) except those level 2 BLAS for packed tion.
matrices. Also optimized versions of LINPACK and EISPACK * The bource cude of library ruutinu bhluld be identical on
are included in SCILIB. There are rotinc for single and multipkc all Luiiputtr y atcin ab far a pobibkl. This is iicccssary
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in order to guarantee the quality of the software and to use-level 3 BLAS. In the next releases level 3 BLAS will be used
maintain the-software over a long life cycle, more intensively.

Both libraries, IMSL as well as NAG, have a much broader con- Table 1 shows the performance of some library routines
tents than the libraries from supercomputer manufacturers. They fur solig a system of linear equation based on LU
comprise programs for solving systems of linear or nonlinear equa- factorizativn. L2TRG/LFSRG from IMSL, FOIAAF from NAG,
tions, eigensystem-analysis, interpolation and approximation, in- SGEFA/SGESL from SCILIB, DLAX from SSL II and
tegration and differentiation,-dfferential and integral equations, DGEF'DSEL from ESSL. In all cases the array containing the
Fourier and Laplace transforms, linear and-nonlinear .jptimiza- matrix has beew defined with an , d leading dimension in order
tion,-special function approximation and-a lot of utility functions, to-minimize memory bank conflicts.
Besides this many statistical capabilities for data analysis are in-
cluded. The routines from linear algebra chapters in most cases
handle dense matrices, and a few routines in NAG library are avai- Computer Library matrix size
lable-for sparse matrices, and IMSL library contains two routines 100 200 300 400 500
for iterative solution of linear systems which operate on sparse Siemens SSL II 155 322 439 518 577
matrices. S400/10 NAG 147 395 638 816 972

IMSL 120 354 582 762 918
CRAY Y-MP SCILIB 100 128 137 145 145

3 Adapting Libraries for Supercomputers NAG 104 168 202 223 238
IMSL 114 197 238 258 267

Work-on adapting standard numerical libraries to the architecture IBM 3090 S ESSL 46 65 75 80 83
of supercomputers-must concentrate on those areas where most VF NAG 29 50 61 67 72
computing time is-spent. These are linear algebra, FFT and so- IMSL 34 51 60 63 65
lution of differential equations. An overview-of vectorizing NAG CRAY 2 SCILIB 134 214 228 253 284
and IMSL library is given in [31 resp. [7]. NAG 35 34 41 75 80
Besides restucturing of existing library routines new programs IMSL 24 31 54 40 67
have -been introduced into the libraries, especially into the NAG
library, which are well suited for vectorization. So new routines Table 1. Performance of-LU-factorization in MFLOP/s
for numerical quadrature and solution of differential equations
have been incorporated which evaluate function values at many -able 2 shows similar results for Cholesky-factorization, using
grid points in one subroutine call. Calling an external subprogram LFIDb/LFSDS from IMSL, F03AEFjFO4AGF from NAG,
to evaluate only one function value would disturbe vectorization SPOFA/SPOSL from SGILIB, DVLSX from SSL II and
and would increase-the CPU time significantly. Also new routines DtPPF/DPPS from ESSL. Again the leading dimension of the
for FFT, doing several transforms in parallel-havc been included. array is odd except DVSLX and DPPFIDPPS winch accept the
This-gives in general greater vector lengths-and higher speed ups matrix in packed storage mode in a one-dimensional array.
on vector computers.

In order to improve the efficiency of library routines on supercom- Computer Library matrix size
puters a hierarchical programming concept must be applied. It is 100 200 300 400 500
necessary to identify the most time consuming parts of programs Siemens" SSL I 144 316 434 518 582
which are general enough to be put into a library subset-that can S 400/10 NAG 96 240 366 458 538
be modified and tuned for a specific supercomputer. IMSL 99 308 507 580 672

CRAY Y-MP SCILIB 51 80 85 108 108
3A Linear Algebra NAG 119 191 226 248 261

IMSL 119 208 246 267 277
Basic Linear Algebra Subprograms (BLAS) have been defined in IBM 3090 S ESSL 48 71 80 86 89
[6, 1, 2] and are-widely recognized as a standard. Level 2 BLAS VF NAG 40 63 60 59 59
contain routines for matrix-vector-multiplication of rectangular, IMSL 26 47 58 60 57
triangular, symmetric-or hermitian matrices, rank-one- and rank- CRAY 2 SCILIB 26 35 38 41 42
tw .ipdates of rectangular, hermitian or symmetric matrices and NAG 44 55 67 114 126
solution of linear systems with triangular coefficient matrix. Ma- IMSL 40 80 63 62 72
trices may be stored in different storage modes (general, banded
or packed). Level 3 BLAS contain similar routines for matrix-
matrix-opcrations: matrix-matrix-multiplication of rectangular, Table 2" Performance of Cholesky-factorization in MFLOP/s
symmetric, hermitian or triangular matrices, rank-k- and rank-
2k-updates of hermitian or symmetric, matric and solution of Ia-order to btudy the bchaviour of these routines in case of badly
linear systems with triangular coefiueut mnatritcs and multiule d;mcnsiuried arrays the same programs hae been executed on
right hand sides. Carefully optiriiized verbvis of these routines Sicmcns S 100/10 and CRAY Y MP fur matrices of size 256 and
are being supplied-by most supercomputer manufacturers. Usage 512 wvith different lcadhuug dimcnios. The results are given in
of these optimized BLAS ,ill result in portable and very efficient tablc 3 and indieatc tat the right Cktii of leading dlmcnsions
software. in the calling program can increase the performance significantly.
In the current vc- ,.jn of IMSL- and NAG-library linear algebra Snilar re sulus a. thosc repurted it tables 1, 2 and 3 can be obtai
routines are based on level 2 BLAS and a few routines already ned fV utir, lifear algcbra ruutie shvwi6g that the pcrformance

of routines from standard numerical libraries like IMSL and NAG
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Computer Lilirary LDA = N -LDA = N+1 standard numerical libraries give equivalent or even better per-

256 1 512 1 256 I 512 formance. This demonstrates that well defined and optimized low
LU-factorization level routines, in this case the BLAS, allow the development of

Siemens SSL II 59 64 393 578 very efficient and portable software. There is a need for compa-

S 400/10 NAG 259 465 539 978 rable basic routines-in other areas. In [4] a first idea-for a set of
IMSL 256 491 487 926 Basic Operations for Fourier Transforms (BOFT) is given which

CRAY Y-MP SCILIB 136 153 139 148 hopefully will play a similar rule for applications of FFT. Also dis-

NAG 175 227 190 239 cussions on sparse level 2 BLAS defining matrix-vector-operations
IMSL 1 127 147 226 272 for sparse matrices are going on. As with the BLAS these low le-

Ch0o!esky-factorization - vel routines should become part of the software environment of

Siemens SSLJLI 1 388 588 388 588 a supercomputer. This is the basis for development of numerical

S 400/10 NAG 236 426 307 543 libraries and application programs.

IMSL 233 479 428 676 Today there are some open problems concerning numerical libra-
CRAY Y-MP SCILIB 42 46 96 125 ries on supercomputers:

NAG 210 258 216 262IMSL 203 255 235 279 The application programmer must very carefully select the
This routineuscs one-di hcnsional irray to stre appropriate routine. Sometimes there are several library

the matrix, routines doing-similar operations but using different data
structures which may influence the performance signifi-

Table 3: -Effect of leading dimension cantly.

9 When passing multidimensional arrays the leading dimcn-
is in general as good ure'ven better than the performance of ruu bioi, should ahayb be an odd number. But oine library
tines from other libraries. In most cases these routines give good routiues do iot include tlis as a separate iternin the para-
performance over a wider range of parameters (e.g. array dimen- meter list.
sioning). But a prerequisite is the usage of carefully optimized
BLAS. Only on IBM-3090 VF the routines from ESSL run about \ Within one library the performance of different programs
20% faster than-routines from other libraries. may vary significantly.

* Some important application areas (e.g. solution of sparse !i-
3.2 Fast Fourier Transforms near systems or sparse eigenvalue problems) are not covered

by library routines.
A comparison of the performance of different library routines for
FFT shows much greater differences than in the area-of linear
algebra [5). Table 4 gives-timings for one complex FFT of -varying References
length on a, Siemens S 400/10. Similar performance ratios can be
found on other supercomputers. [1] J.J. Dongarra, J.J. Du Croz, S.J. llammarling and R.J. Ilan-

son: An extended Set of Forlran Basic Linear Algebra Sub-
N FFTVPLIB NAG IMSL programs, ACIM Trans. Math. Software 14, pp 1-17, 1988

DFTCB1 C06FRF DF2TCF

64 0.029 0.018 0.176 [2] J. Dongarra, J. Du-Croz, 1. Duff, S. llammarling: A Set of Le-
128 0.039 0.056 0.209 vel 3 Basic Linear Algebra Subprograms, ACM Trans. Math.
256 0.041 0.068 0.225 Software 16, ppl-17, 1990
512 0.051 0.103 0.336 13] J.J. Du Croz: Vectorization Review: Part I and Part 2, NAG
24 0.052 0.171 0.531 Newsletter 1/89 and 2/89, NAG Ltd., Oxford, 198920,18 0.15,1 0.382 0.922

'1096 0.322 0.7,10 1.698 [4] 0. Ilaan and W. W5lde: FFTVPLIB, a Collection of Fast
8192 0.656 IA95 3.382 Fourier Transforms for Vectorprocessors; in II. Burkhart

15625 1.468 1.602 6.062 (Ed.): CONPAR 90-VAPP IV, Lecture Notes in Computer
16384 1.203 3.009 6.598 Science, vol.457, pp 147-457, Springer-Verlag Berlin, lileidel-
19683 2.148 2.121 9.966 berg, New York,1990
32768 2.685 12.216 12.960
65536 5.4.56 21585 25.874 [5] 0. llaan and W. W\ ic: Fast Fourier Transform Libraries

131072 10.636 50.105 53.865 for Vectorcomputcrs; Supercomputer 40, pp 12-49,1990
1 262144 1 21.7,16 1 101.230 1 108.09.1 1 [6] C. Lawson, R. Hanson, D. Kincaid and F. Krogh: Basic Li-

Table 4. Timing of different FFT-routinics on Sciriens S.100i10 nrr Allgcbra Subprograms foi FORTRAN L.agc, ACM Tran
sactions on Nathematical Software 5 (1979), 308-323

[7] P. W. Smith, It. J. lanson, J. Li, T. R. Leite: Supereomputing
4 Conclusion at fISL, IMSi. Vectorization Report, Update 9001V, IMSL

Inc., llouston, 1990
Subroutine libraries from supercomputer manufacturers cover
only a small range of applications, most attention has been gi-
ven to linear algebra and FFT. But in the field of linear algebra
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Abstract: The supercomputer in combination with the- graphics super-
workstation opens a new simulation technique. The scientific. visualization typical graphics jworkstation _f the

-enables computational scientist and engineers to undertake *human-in-the- -super workstation [Uniersity-of Karlsruhe
loop" problems -- a class requiring visualization -techniques as different --
from photoreilistic computer graphics as interactive- computing is from screen display -19" color monitor <19" color monitor

-batch processing. The developer of the necessary-software systems that resolution -resolution
provide true "distributed- applications" has to divide the application _1280.1024 -1280.1024
program to the existing resources - supercomputer, network and graphics image bit- - 16-32 bit Z-buffer '2048.1024/plane
super-workstation. -planes -24 bit color planes -8 planes, 4 overlay

1provision for -planes
1. Introduction double buffering 16 bit Z-buffer

The new series of powerful supercomputers, a new -,ass uf powerful 16.7 Mio colors

:workstations and the high speed LAWs in ombinatiun lead to a new ,.ias display bpeed 500.000 3D Vek.irs,be,. -240.000 3D vet.tors.se.
of applications- called "distributed applications". The "graphics super- =-150.000 couraud- -50.000 triangleslsec
-workstations" are expected- to play an -increasingly important role in -shaded, Z-buffered -without light-source
-providing an enhanced environment for supercomputer users. -trianglesisee 38.000 triangles/sec

-30.000 Phong-shaded, -with light source
Their-potential uses include: Z-buffered triangles/sec

-1. Off-loading the supercomputer surface geom- polygons, triangular polygons, vectors,
- service station-for the supercomputer as front-end system (input etry strip meshes, NURBS triangular strip meshes,

queue - output queue - print queue management) approximation -NURBS (order of 6)
-pre- and postprocessing of the input and output of supercomputer (primitives) dithering, back facing
applications -cull

- distributed or shared processing. shading, Flat-, Phong-, Gou- Flat-, Phong-, Gou-
lightings, -raudshading, -texturing, raudshading,-radiosity,

2. Scientificvisualization- rendering transparency, specular advanced hardware,
- understanding of results highlighting, ray trac- -lighting, transparency,
- communication of results. ing ray tracing (optional) -

3. Real-time interaction with the supercomputer Table 1: Typical graphics capabilities and values of the univer-
- controlling of iterative computations
- kill, suspend and restart of supercomputer jobs sityworkstations
. exploration and development of new algorithms.

Table 2 shows the typical values of a graphics super-workstation hardware
2. Status and in the second column the corresponding values of the university

machines.

The -term "graphics super-workstation" is defined here to refer to a The supercomputer performance, mainly the very fast floating point
category of workstations introduced in 1988 which combine high quality pipelines with a peak performance of 5 GFlops and the large main
graphics- with very -powerful computational capability. Typically, such
workstations provide from 1110 to 1/100 the floating point speed of the memory of 2 GByte is the reason that- we need powerful peripheral
most-powerfulworkstations with super graphic capabilities to prepare the supercomputer(16t -pow6 yer andur rent p capable thfy hvenerange an mn aing results or to steer-the simulation. Supercomputing is currently in the(16 - 256 MBytes) and are capable of- generating and manipulating gigaworld era. Unfortunately, we may also be confronted with OBytes of

realistic, three-dimensional: graphic displays. In- combination with high

speed LAN's it is possible to -exchange -data very fast- between-the output. This may occur not only from scientific problems that deal with

different computers in the LAN and the workstation memory. The work- verylarge amounts of input data, but also as output data-from solutions
station provides a very rapid movement of data between memory, disk to mathematical equations representing physical, chemical or technical
storage, computational units and graphics hardware. The extensive system processes.

and-application software provides users-with a powerful and convenient At the third IFIP -International Conference on Data Communication
working environment. In the following table typical graphics and display Systems and their Performance an empirical ratio of approximately 100
manipulation characteristics will be specified. In the second column of Bytes of output per MFlops of calculation was found. Hence, as we
table I the actual capabilities of the workstation installed in the computing approach processing power of 5 GFlops of our Siemens S60020 vector-
center of the University of Karlsruhe will be presented. computer, and a simulation time of 2000 seconds, this empirical ratio

would predict the-following output:

100 ByteslMflops * 5 9 10' MFlops/sec e 2000 see

1 GByte
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Structural analysis or computational fluid dynamics are typical engineering
typical graphics workstation of the problems requiring a vector computer for the solution of the discretizised
super-workstation University of system using the finite element method employed in many commercially

Karlsruhe available codes as ADINA, FIDAP or LS D)na 3D. An example of
1 central processimg graphical output is shown in figure 1. The 3D turbulent flow around a car

units, floating pooig nt ppes ut without vector has-been computed on the SiemenslFujitsu $600120 supercomputer using
units capability FIDAP and the results are visualized on the workstation.

vector or floating 5-30 MFlops 2 MFlops (BLAS)
point performance ---

integer processing 10-80 Mips 14 Mips

cache memory 1 MByte 128 KByte
(1 GByte/sec)

main memory 16-128 MByte 16-24 MByte
(300 MByte/sec) .-]

110 channels 80-100 MBitlsec 60 MBit/sec

disc storage -300-2000 MByte 300-1200 MByte

Table 2: Workstation hardware

In the computing center we can have up to 10 jobs per day of this 1/2
hour type, so we produce data output in an order of 10 GByte/day. These Figure 1 3D turbulent flow around a car
types of jobs are large scale calculations in the fields of finite element
structural analysis, fluid dynamicsinvolving repeated iterations over a
spatial grid, and ab initio computational chemistry involving determination
of eigenvalues of very large sparse matrices and multi-dimensional Generating the spatial discretization into different elements is done as
integrations, preprocessing using a workstation freeing the supercomputer for the

numerical intensive part of the analysis.
The driving sources for increased processing speed, main memory and
disc storage are the physical realism, the increased dimensionality and the 3. Graphics Super-Workstation in a
data volume. Realistic representation of physical or technical systems may
increase geometric complexity or eliminate simplifying approximations. Supercomputing Environment
On the other side, the dimensionality of a problem is not limited to the
physical dimensions and the time, but more generally represents the num- The supercomputer of the University of Karlsruhe is needed to solve
ber of degrees of freedom that-must be considered as in the number of important scientific problems. The supercomputers of the future are
grid points in a computatnal fluid dynamics problem or the number of needed to solve problems that presently cannot be done at all and shouldgiditeeeents in a mputranal y cs problem be designed and used for this purpose. The new generation of powerfulworkstations of the university provide a logical, cost-effective and user-

Scientific problems of the departments of the iniversity of Karlsruhe that time-effective alternative to shared supercomputers and indeed this is one
are driving forces for the increase in computational power are. of their appropriate and important -oles in a supercomputing environment

shown in figure 2. The increase in computational capability should not beComputational Flid Dynamics (ncluding turbulence) the result of the aggregate demands of many users- each of whom mayneed only a small amount of supercomputer time.

Structural Analysis (finite elements, nonlinear analysis, different
materials, eigenvalues, modification of the geometry)

Physics/Chemistry (molecular dynamics, ab initio quantum PC

chemistry, surface chemistry, statistical mechanics, astrophysics)

iMaterial Science (superconductivity, sinter materials, materials by
design)

Seismology no
FWW

Climate- and local weather simulation (environmental influences) vpsi0olOO

Figure 2 Supercomputing environment
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Regarding the large amount of results and output datd, the graphi~b super inJude algorithms with different data stgk)age te,.hniqua, s)stemcs
workstation can also play the role of a 'filter. Only the neesar) vntaining multiple extrema where globdl-extremum is-desred and
information to detect new phenomena arrives at the workstation screen. iterative processes that .onverge very slowly.
Along-with processing speed and larger main memories, there is a need
for -increased storage and onmnunkiation bandwidth. The present In these examples, the ,.ientisr bewmes an essential part of-the simula-
limitation of our LAN's of about140 Mbi'set. is restrited but adequate tion. The user ats at a very high level by serving ds part of a ,umpli-at'd
for now, however the existing WAN's (exluding the BELWUE link nonlinear feedba.k loop, by using the knowledge of physidal behavior not
between the universities of Karlsruhe and Stuttgart) are totally inadequate. inluded in the program -ode ot by deteting trends.

The telecommunication bandwidth required by a supercomputer is mainly
proportional to its CPU speed. Table 3 shows the required speeds for 4. Technical aspects of "Distributed Applications"
transfer of different items.

The technical realization of distributed applications must be based on the
S..etc existent hardware systems, the not yet fully standardized networks, the

ation required-- ue different operating systems and the different graphical standards-
tex9.6t " Standardization is a difficult task involving quite a number of organiza-

text- 9.6 kBit/sec ISDN (64 kBit/sec) tions (ISO, IEEE, CCITIT, ANSI, DIN), competing manufacturers and
X-Windows 20 kBit/sec specialists and-will take time and an still evolving market The require-

color graphics 1-2 MBit/sec Ethernet ments of the parts of the distributed system are shown in table 4.
file transfer (FTP) > 1 MBit/sec (10 MBit/sec)
NFS > 2 MBitlsee __________ r supercomputer communication workstation

simulation 64 MBit/sec FDDI (100 MBit/sec) L services
visualization ISDN-B (140 MBit/sec)

-(8 pictures/sec) operating system: remote login operating system:
UNIX System V remote job entry UNIX System V,

animation 1-10 GBitlsec Ultranet (800 MBitfsec), Berkeley Extens. remote monitoring Berkeley Extens.,
frame buffer remote printing OSF/I

networks: file sharing (NFS) networks:
Ultranet file transfer (ftp) Ultranet

Table 3: Speeds for transfer of different items High speed-1i0 connecting FDDI
(HIPPI) (TCP, UDP /IP) Ethernet

FDDI auxiliary services
The problem of mass storage is even more limiting (University super- Ethernet

computer disc storage capacity - 40 GByte, compare with-expected Channels

output for advanced-simulations) and there are few promising technologi- (lyper, IBM)

cal developments on the horizon.

languages: distributed languages:
The only hope to overcome these problems is to find out a new way in FORTRAN + processing FORTRAN, C,
which we make use of supercomputers so as to effect a drastic reduction vector extensions remote pro.edure C- + (object
in the amount of data that needs to be stored or transferred. This requires calls (RPC) orientated)
a fundamental new kind of scientific simulation technique. The emergence graphi ai standards. [emote windowing graphi.,d standards.
of graphics super-workstation offers an opportunity to enable that essential Xi1, Motif network computing XI1, Motif, GKS,
change in methodology. GKS, PHIGS (NCS) PHIGS, PEX,
Today the typical solution sequence of a simulation includes the following Starbase, HPGL
steps: different picture

interchange formats:
Physical System description IGES, GIF, PCX,
Mathematical model CGM
Vector Algorithm
Calculation Table 4: Technical requirements
Analyze Results
Presentation of Results.

5. Conclusion

The-handling of these steps in a sequential top-down manner must be Today's supercomputers produce torrents of data, but the human brain
replaced by a new simulation-technique using the capabilities of the stil interprets numeral data as poorly as it always has. Scientists and
graphic super-workstations. Graphics super-workstations can be utilized engineers need an alternatve to numbers and that alternat e is images.
further "upstream' in the process as part of the calculation itself. Their
specialized hardware and architectural properties can be used effectively The overview of the characteristics and capabilities of currently available
in conjunction with the supercomputer in a distributed processing system graphics super-workstations showed that one of the most important

activities in a supercomputing environment was the analysis and interpre-
However, the availability of X-windows on workstations and supercom- tation of large masses of complex information.
puters not only enables a user to watch the progress of a computation -
and if necessary abort a bad run - but permits the user to interact the The role of the graphics super-workstation in a supercomputing environ-
computation in process. The scientist can modify parameters, such as step ment is absolutely essential to insure the integrity of analysis, to provoke
size, grid spacing, damping terms, etc and also change the solution insights and to empower the human as an essential component of tne
algorithm. Human interaction with the supercomputer by means of simulation.
powerful graphics super-workstation will also enable or facilitate the
solution of computationally difficult problems where the intervention of
a human is a key or possibly essential part of the simulation. Examples
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ASPECTS OF BENCHMARKING FOR SUPERCOMPUTERS

Aad J. van der Steen
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Budapestlaan 6
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The Netherlands

Abstract We address the problem of benchmark- field and a growing number of publications in other jour-
ing supercomputers with the aid of synthetic programs. nals (see for instance [1], [5], [8], [11]).
While not modelling an actual workload this approach An obvious advantage of the theoretical approach is
has the advantage of prov[Iing more general information one often is able to simulate machine- or component be-
about the capaLilities of the systems -under con.ideration. haviour at a fraction of the time and price of actually
We will review some benchmarking models and present building such a s)stem. For existing machines a cor-
the EuroBen benchmark as an example of a benchmark rect theoretical benchmark may adequately predict up-
set that yields a performance profile which enaLles the perbouzads and eve!. performance profiles for various pat-
identification of the strong and weak points of a machine terns of utilisation of Jie components.
in terms of a range of applications and their constituent A drawback is the difficulty of designing good theo-
algorithms. retical benchmarks, especially for very complex behaviour

large multi-user- supercomputers. In most cases one has
I. INTRODUCTION to be satisfied with the limited understanding obtained

In this contribution we focus on- the performance of su- for isolated subsystems without being:able to relate this

percomputers. A problem encountered with these systems to the "otal performance of the system. In addition, rela-

i s the large variety in their architecture. These can range tively small changes in the architecture of t machine may

from large vector computers writh a limited amount of pro- be difficult to incorporate in the machine model to be

cessors that share a common memory to maclin with evaluated In all,- theoretical benchmarking is a very diffi-

thousands of very simple processors and distributed mem- cult (but sometimes rewarding) approa.h to performance
ories. This-can lead to an enormous performance range, evaluation.

sometimes potentially a fa. tor -.- thousand or more, de- III. SYNTHETIC BENCHMARKING
pending on -the suitability of a certain piece of code for Synthetic benchmarking consists of the running of one or
the underlying arcnitecture. more program kernels from which the performance of a

There are several ways to deal with this problem, system should be derived. The practice of running such
leading to different ways of benchinarking. Three main synthetic programs is very easy in comparison to theoreti-
ways can be identified: Theoretical benchmarking, Syn- cal benchnnarkingor tile practical benchmarking to be dis-
thetic benchmarking, and Practical bencmnarking [12]. cussed later. 'his, and the fact that many "ready-made"
We will briefly discuss the various approaches and -their benchmarks exist (j3, 10]), has made it very popular. Yet,
particular advantages and drawbacks in the next three although easy to run, the interpretation and the signifi-
sections. In addition, in section V we will dscuss one cance of the results for a particular test site are often far
synthetic benchmark, the EuroBen benchmark, in more from straightforward [4, 6]. Especially with supercom-
detail. puters one has to be very careful in addressing all aspects

II. THE OREOTICAL DENCHMARKING of the nachine(s) at hand and one should refrain from
judging such systems from just one parameter which sup-

Theoretical benchmarking is ahinck' at the mudellhmig of the posedly iould represent the pt.rfurmance of the system.
performance behaviour of ..achiincs %%itl rcard to their Regrettably, this is acniii,,on practice with many vendors
constituent components. Th.se machine may or may not wvhich in this way are able to "prove" the relative supe-
exist. In fact, this kind of modelling is often used to esti- riority of their systems. We will discuss better synthetic
mate trade-offs between performance and the application procedures in section V.
of more or different hardware components, more or less The advantages of synthetic benanmarking are al-
expensive technology, etc. Mostly, probabilistic niodels ready made clear. the testing procedure is relatively easy
arc used to estimate the influence-of the vari,.s cvmp,- (although the design of a good synthetic benchmark is
nents. As supercomputers tend tu Ii inure complex than nut). Sy nthetic benclimarking alsu is flexible. when new
their more conventional counterparts the tvmvsitivn of architectures eumerge one can modify or extend an exist,
theoretical benchmarks also is much imure difficult and ing benchmark set easily to address new architectural fea-
one often has to rely on simulators to acquire the dbired tures. In addition, ,when performed with care, the bench-
information. This branch of benchmnarking is more or less imaik jsy yield niore general information than just per-
becoming a discipline in itself with journals like Perfor- futmnance 5t,,res for particular prograns.
mance Evaluation as an example of the interest in ths Apart from the danger of misinterpretation that at-
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jeady -has -been metond-yhtc echniarks caniw.,u squate, allgvithnis, etc.). Again the results from module 2
claim- to-give definive answers in selectiou procedures furt and module 1 can -be used here for- explanation of the-ic-
a-particular site. In this- case one--has to dJo additional sits froiii movdule 3. Module 4 contains full application
benchmarking that moure -preciselv icfleds the % vrkluad prvgraius that again rely ui- the previous modules. Since
of that site and possibl) the 'variationis in arid e uiution of ead) 1991 there is-an cffvrL fromn EuroBen and the PER-
this work load. So, -although synrthetic benchiarkingrnia) FECT club to integrate their benchmarks -in the sense
help in- the prebtlectiva stige aiid- in acquiring a general that the PERFECT benchmark suite % ilI act as module
understanding, one has to-complement it %%itli site-speci1fic 4-in, the Eurol~en-beC1(hmaik. This-is appropriate as'the
testing procedures. PERFECT suite only contains application-programis-and

IV. PRACTICAL I3ENCHMARKING aims at the same diversity ia application areas as deied

-Practical -benchimarking is employed to obtain the spe- inteEre mdl

cific answers concerning a systemszappropriateness for a REFERENCES
particular site. In this case a typical woickload for that 1)DP galVKJnk-rmEvutighee-
site can be run on such a system and usually one al- [1 D rawa, or K Janakiputrm Evaluratn thEErE
ready hias a detailed knowledge about configuration re- ompuanero, Mul ipue 1986guraions27.E
quirements and the total -software -environment that has 2)Mpterr, et-ay.j PERFCT -u2Bechmrks
to present. Because of the very specific nature of these [-2] tiv P.erry, rmLancT~e PEutno Clu -encomarks
benchmarks it is very hard to make general statements EfecIt.v Peoura c vuto of SupercomputeAplctosV.
about the methodology beyond tile most trivial ones: one cr, N. Jouna of89 Suecope4ppiatosVl
should-work with a representative workload, memory--and 3, o.J 1ogra Pefrac 1989,ou 5-40.er
I/O-requirements should be-properly liccded,-etc. Conse- [31n Sta Dnara Pierratie ofiVaru ion aFor-
quently, there is almost no literature of general interest on Using StndrdonmeArgonneation l o arnatFor-,
practical benchmarking (a-rare exa -mple is [9)). The large Tecian e ret,'C-I3 Argonn 199.l abrtoy
architectural differences between supercomputers will of- TechJ Dnicar Repor Mar-tin2, Jeboio 1991. te
ten frustrate practical benclimnarking because it is impos- [41 J.J. Dong, Jaths Marn pitflon, IEEEptrm
sible to port a complete workload to these systems in a bJndyma19i7, paadpifl43.EESecrm
way that allows simple comparison. This leads to the Ju] ly 1987D, 84. ed serAfibt oPro-
paradoxical situation that where a clear comparison is [51c Ph. ein-Dra J.reocessngrnt A rlativof Pfr-
most needed it is often the most difficult to obtain. In-ths fomance ofenitral Procein Unimm: Af eltie PeM-
respect synthetic benclmmarking may be-of us ordue Vl. 30, No. 4, 1987, 308-317.
at-least some partial answers. 1P._Feig .. WlaHo nttoiewh

V. HEEuo~e BNC MAR [1 h.. Femng 3 J.Walae, fo nt t le itV. T E-Euo~enBENCMARKstatistics. the correct way to summarize benchmark
In June 1990 the EuroBen- Group was founded [7] with results, Gumm. of the ACM, Vol. 29, No. 3, 1986,
the objective to distribute an easily portable synthetic 218-221.
benchmark set in Fortran 77 that would pro,6ide the user [7 A. rriedli, W_. Gcntzsch, R.W. llo.~knejr, A.J. -van-der
with a performance profile of thme inadiiie to be tested. Stecii, A Eurupeazi super computer benchmxark effort,
The Euroflen benchmark is a European effort to bring Supercomputer Vol. 6, No. 6, 1990, 14-17.
some standardisation in the rathcr hectirCOfild vf.5.ntlct;, [8 M.A. llouiMda , M.K. Vernon. Exact Perfotricc Es-
benchmarking. As such i. is certain!y not the only effort. timnatcs f0: Multiprocssor Memory and Bus Inter-
In this area both the PERFECT club [2J and tile SPEC fecrnce, IEEE Trans. on Cconip., Vol1. C-36, No. 1,
group should- be mentioned. The latter communcates; its 1987, 76-K&5.
results through its own newsletter. [31 IC.E. Jordan, Per.*r.nance Comparison of Large-Sca-

The EuroBen benchmatk, is sumne~haL diferent, from le Sceitilirc Com~puters, IEEE Computer, Mar. 1937,
most benchmark sets in that the information on a ma- 10-23.
chines' capabilities are obtaned in a hierarchiical tay, [10; F.lI. McMahon, The Liscainuore Fortran Kernels, a
i.e., the 'jenclimatk consists of modules of increasing cumn- Comaputer Test vi' Nur-ericill Performiance Range,
plexity. The first module contains tests of bascr opera- Lawirence Liv.criizore National Laboratory, Tec-hnical
tions, combinations of operations, and intrinsic functions Report UCRL-53745, Oct. 1986.
while also issues like memory bank conflicts, and iunii- 'jn M.1I. Schrage, arcliatsaural barriers to arrijv proe-
ory contention are addressed. The second inudule coji- -%of eIfiici and their analvsis, Proc. 4. VAPP 1,
tains, basic numerical algorithms that mainl,, cinlk 01, in C"1111. Phys. V'~nm.~ol. 2G;. No. 3&A. 19S2,
erations as tested in module 1. This enables to explain 3-53-355.
the-performance- of these algorithmnsin teimnxof thl, te:,.lts tI2 AJ. --in &tr Sue-i&, I-, it rralj' psile o benchmark
from module 1. Module 3 contains miore cxtcnsi,. ao in. A.J. '.an tier Steen, edi, Etal-
rithms thlat often combine sevecral agouitlaws r1 .u. isod- uaitinA Nuprcrcumplokl:.. jChaj'mnaazaI& 113ll. Lundon,
ule 2 (ODE- and PDE solvers, linear- and non-linear least 1f)
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SUPERCOMPUTERS: THE SOFrWARE, VECTORIZING AND PARALLELIZING COMPILERS

-Karim Roger K 4er
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Seffenter Weg 23
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Germany

Abstract- Recently, thc biggest increase i performance - measured m executed concurrently or in parallel System resources are managed-
"naked" IPS or FLOPS - had-been achieved by hardware developments dynamically by MVS. Thus, MVS . uppor parallelism in an eflient way.
and new machine architectures. That is why today the main attraction often
is the architecture of new systems. In case of multiprocessing systems new VM virtualizes system resuurces. Ealh user his own personal virtual
results will be expected soon. Atluther aspect which become% morand machine (VM) which is separated-from oth, s but, anyhow, the user
more important is the quality of software. For economical reasons standard may initiate communication- with other V,. . Thes; VMs sendi their
software, e.g. the FORTRAN programming language, is prefred- rather requests to a control program (CP) which in turn .arrics out the requested-
than special architecture-dependent or assembler languages. The benefits operations Some VM's normally are dedicatcd as bat.h workcr-inachins
are easier implementation, better portability and the possibility to- Use to realize batch processing Parallelism is supported by assigning several-
universal programs and hbranes on different machines. Portability for VM's to a user application that are working independently.
example is very important since the life cycle of application software lasts
longer than the mnnovauon time of hardware. Consequently the FORTRAN VSPI (Vector S)stem Produc1,'lntcrac. , e) for FujI[Sa's vector machines is
programming environments-for some supercomputers from CRAY, IBM largely compatible with MVS1XA (user and operator-interface, job-
and Fujitsu are presented. The-opUmiing strategies of the compilers -lot control but not binary code) VSP/I has some extensions conccming vector
vcctonzing and parallelizing-will be discussed but no valuation -of -the processing on these special-machines. For instance, programs under-MVS
efficiency of the generated Lode will be made because this strongly usually operate in a virtual addressing mode but in VSP/I all vector
depends on the underlying-hardware. Besides, some language extensions, programs run in a real mode the whole program code is resident in main-
compiler-directives and analysing tools are presented. Operating systems storage Hence the vector processor never wails on program parts to be
will be focussed briefly since they build the missing link between loaded from secondary storage.

= runnable programs and hardware. The -newest operating system for CRAY supercomputers is UNICOS
1. INTRODUCTION which is based on AT&T UNIX SYSTEM V. UNICOS has some

enhancements to UNIX for mainframe supercomputers, forexample batch
After a general survey -about- the operating systems ton supercomputers services, accounting tools and pcrff-,manc analysis tools. Above all
from CRAY, Fujitsu and IBM the compiler systems CRAY CFT 77, UNICOS supports the multiprocessor architcture of CRAY machines.
Fujitsu FORTRAN/VP and -IBM FORTRAN/VS are presented and
compared in detail. The machines from CRAY and the IBM 309-xO 3. STANDARD FORTRAN PROGRAMMING ENVIRONMENTS
series are multiprocessor computers tightly coupled via shared memory.
The older Fujitsu VP machines are-monoprocessor machines but the new 3 1 THE COMPILERS CRAY CFT 77, FUJITSU VP, AND IBM VS
-VP machines have a multiprocessor option and enhanced vector units. All
machines are vector computers with some possibilities for parallelism Now we take a closer look at the compilers CRAY CfT 77, Fujitsu VP,
provided by the shared memory. Although CFI 77 and IBM \vS have and IBM VS All these compilers are autovc.torizing compilers based on
some multitasking capabilities, their main goal is to vectonze rather than FORTRAN 77 standard There are language extensions with CFT 77
parallelize programs. The Fujitsu VP compiler has no multiasking feature, modelled in FORTRAN 8X standard Information that ,annot be extracted
but a new one is announced which wilt suppon the new multiprocessor by syntactical analysis, for example vector lengths and true ratios of
architecture. logical IF statements may be inserted as compiler directives into the source

text. These directives will be treated like comments by other compilers.
In addition to these common FORTRAN systems that are Extensively used The compiler -irting can be helpful when optimizing a program. Alt
in production environments two recent developrients with bettei -support compilers shew :=iformations about the upurnizatioris of oops, furthennmore
for parallelism will be presented. CRAY s autotasking system CE77 and the IBM N S corapiler presents all loops In a source to source modifiLation.
IBM's PARALLEL FORTRAN. Both systems have capabilities to Hence this listing could be a vectorizing tool for other systems. Tools for
parallelize work automatuicaly and powerful extensiors on explit run time analysis are available with all systems c.ept IBM VS under
parallelism. VM/XA. Tf'e most comfortable is VECTUNE from Fujitsu which allows

interactive analysing on lo3, and statement level. Optionally the results of
Vectonzing and parallelizing may be reguarded as program this analysis may be taken to generate Lompilcr direc.tives automatically.
transformations which change the order ol statements but don't change the CFT 77 Fuj. VP IBM VS
program's semantics. If two statements share some inpui or output
variables - ,%"ed a data dependency - they must not be interchanged, auto-
Therefore the autovectorizing or autoparallelizing compilers analyse these vectorizing X X X
dependencies before they change the order of statements. There are similar auto-
analysing and transformation mfiethods for prallelization and vectorization. parallelizing cf 77 planned

2. OPERATING SYSTEMS pro rammed
muftitasking X planned X

On IBM 3090 mainframes there are two major multiuser operating vector language
systems: MVS and VM. MVS is a multi-purpose operating system which extensions
has a wide functionality and is used in scientific and commercial directives X X X
environments as well, whereas VM is commonly used in scientific
environments, analysing tools X X only MVS
MVS (Multiple Virtual Storage) is designed to let each user have his own 8X FORTRAN 8X standard
addressing room which is extremely protected against disturbance from ct77 = possible if cft 77 is embedded in c77
outside of the user's world. Each user may start several tasks that are Table 3.1.: compilerequipment
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3.2. OPTIMIZING METHODS OF AUTOVECrORIZING COMPILERS-CFT 77 Fuj. VP IBM VS

The quality of vcctorizing and parallelizing compilers depends decisively
onmthe ability of analysing and modifying-loops. Nevertheless, loops with
certain data dependencies after some optimization can be vectorized. For reordering cf 77 X X
instance the loops with the-data dependencies in Table 3.2.1. can be partial
vectorized if the statements are exchanged. vectorizing- X X X

DO 10 1-1,N DO 10 I-1,N temporary
... - A(I) A(I) - scalars X X

A-(I+I) A . .. (I+l)

0 CONTINUE 10 CONTINUE conditional
vectors X

Table 3.2. 1.: data dependence, anti-dependence
vectorizing

For IF statements with an- anti-dependence that cannot be reordered outer loops X X X
another vectorizing- technique may be chosen. A temporary scalar is
introduced which is expanded to a vector by the compiler (see Table 3.2.2) loop

distribution X X
DO 10 I-1,N

S , A(1+1) logical IF M M,G,C M
A(I) -
10 .. S Block IF G M,G,C M

10ELSE IF G M,G,C M

Table 3.2.2.: anti-dependence after insertion of a temporary scalar

M = mask operation
if- a loop contains vectorizable and non-vectorizable statements G = gather/scatteroperation
vectorizable parts have to be separated from non-veetorizable to vectorize C = compress/expand operation
a -portion of the loop. This -is called partial vectorizing. Sometimes it cf77 = possible if eft 77 is embedded in cf77
depends on the-value of a variable whether a lcop is vectorizable or not.
With the conditional vector method it is possible to generate sequential and Table 3.2.3.: optimizing techniques
vector-code and-to decide at-run-time which code is executed. In nested
loops statements of the outer loop may be independent from those of inner
loops. Then outer and inner loops may be splitted into two loops which are 4. PARALLELIZING COMPILERS
beth candidatesfior-vectorization (loop distribution). The vectorization of
an :outer loop is attractive if- the- inner loop is not vectorizable or the 4.1 GENERAL PARALLELISM CONCEPTS
vectorzation of-the outer loop is simply more efficient, for example
because of a greater vector length. This irnplies that the compiler is able to Parallel execution of tasks for one application may improve its execution
analyse whether loops can be interchanged (loop innermosting) time but it increases the entire amount of work to be done (in CPU cycles)

because there is a remarkable overhead generating parallel tasks, their
For a logical IF statement in a loop there are different methods for synchronization and communication. Therefore, parallelism must be
vectorization. Mask technique. a vector-bit-mask for the conditions will be handled carefully. However, if one apphcation covers most of the main
built and only those right sides of assignmentshe tae ofstistd storage it should be processed in parallel since it would be waistfui to
bit is true-will be assigned tohe left side. The disadvantage ofthis method execute it on only one CPU because of other CPU's running idle. In
is-that all operands are sent through the pipeline, this would be waistful if genera to maximize throughput the share of main storage and processing

the IF condition seldom is -true In this situation =the gather/scatter power should be equal. Another motivation for parallel processing may be
technique works more-efficiently For all-true conditions an index vector that an application may be done only in realistic time by-parallel speed up
willbe built and a specialgather/sattcr hardware accesses the operands or the application has a certain deadline, e.g. meteorological calculations.
indirectly with uis vector ahd evaluates the right sides of equations. With
the comp.ess/t pand method a vector-bit-mask is built as well but all There are two classes of multitasking concepts;
operands ar f .ched from memory avoiding indirect addressing. Then the
fetched vectors are compressed and processed by constant stride hardware Fine-gram paralhsm means parallel exe uuon of small fratuns
After- processing the result vector will be expanded and stored. This of code, for example different chunks of a DO loop
method will work well if the ratio of load store and arithmetical operations Coarst-grain parallelism signifies parallel execution of progivin
is small. segments with larger granularity, for example subroutines

These described optimizing techniques for the compilers are listed in Table3.2.3.Up to now techniques for interprocedural data dependency analysis to
3.2.3. allow automatic coarse grain parallelization are in the experimental phase.

The programmer has to introduce explicit parallelism by using a
multitasking interface, for example library calls, or new language elements
or by specifying compiler directives. All interprocedural data dependencies
have to be synchronized explicitly by the programmer. Within one
subroutine compilers may find small independent parts of code (fine-grain
parallelism) Thus, no restructuring of the algorithms will be needed. In
coarse-grain parallelism it is a big problem to partition work into portions
of approximately equal size so that the work load is balanced among.the
processors. Fine-grain parallelism helps load balancing by filling the gaps
of processor idle time owing to the existence of many small computational
units, If the sum of idle times of processors is greater than that for
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initiation,communication and synchonization of parallel work the CMIC$-directivs.
application is accelerated as well as system throughput is increased.
, ectorization and-parallelization may exclude cach oilier, for example a The CRAY autotasking system mostly consists of well-known components
long vectorizable DO-loop may only be splitted into smaller chunks of for instance the cft77 compiler. Other, new pans are the preprocessor fpp
parallel loops. and the multitasking translator fImp.

Here are some advices for parallel programming: -fpp analyses the data dependencies and transforms the source code to
modified source code so it can be vcctorized or parallclized or is simplyat first optimiz~e program for one processor (vectorzation) more optimal-in scalar. The modified source code contains directives for

choose equal granularity of tasks (load balancing) vectorizing and multitasking. Automatic parallelizing may be switched off
coarse-grain parallelism should only be used for-tasks with more so fpp may create pure vector source code. Depending on the CRAY
than 10 000 operations because of the overhead involved with it architecture vectonzation is prefered rather than parallelization. fpp onlyuse few multitasking routines and parall lize-thc hot spots of analyses DO loops, which are the most frequent type for parallel or vector
execution tine constructs. All loops are vectorized if possible. In nested loops the

outermost loop will be parallelized if possible-and the innermost loop will4.2. CRAY AUTOTASKING SYSTEM cf77 be vectorized. By an option vectorizable loops with high iteration counts
may be splitted into several parallel loops and each parallel loop-will beCRAY provides three concepts for multitasking: macrotasking, vectorized. Even the outer loops of non-vectonzable inner loops may be

microtasking and autotasking As macrotasking is the coarse-grain parallelized. fpp provides inline-expanding of subroutines so a more global
mechanism microtasking and autotasking are fine-grain. With autotasking analysis of data dependencies can be made. But it should not be overdone
automatic fine-grain parallelization in subroutines is introduced, because then the code grows immense. If no additional loops becameAutotasking, microtasking and macrotasing can coexist in different- vcctorizable which should be the case in good vector programs the gain of
subroutines but not in a single one. run-time is little.

MACROTASKING If no parallelism is requested the modified source code program may
directly be compiled with cft77. However to exploit parallelism the outputMacro!asking is available by means of FORTRAN subprogram calls from of fpp must be processed by fimp before being translated with cft77. Imp

a-special multitasking- library and offers high level synchronization and changes autotasking directives to machine dependent library calls.
communication primitives. These subroutines are the interface to the
library scheduler which manages the single tasks, the synchronization
between them and performs requests to the operating system. The library 4.3 IBM PARALLEL FORTRAN
scheduler does not use hardware for most synchronization primitives. Thus
for small granularity the actb,ities of the library sadtedulcr .an lead to an Parallel FORTRAN has three fundamental extensions for fine- and t-oarbe-
extensive overhead: Macrotasking should be used with large granularity, grain parallelism on IBM 3090 multiprocessors.

THE MACROTASKING LIBRARY consists of. extensions to the compiler for automatically generating parallel
code

routines to manipulate tasks language extensions for explicit parallelism
routines to control events for synchronization extensions to the library-for synchronizing parallel execution
routines to control critical regions which can be executed by one
processor exclusively at one time Fine-grain parallelism is supported by language-extensions and

automatical detection of implicit parallelism, coarse-grain by language andMICROTASKING library extcnsions.
Microtasking offers much faster basic functions for synchronization and- The Parallel FORTRAN environment consists of the parallel application
communication by accessing special hardware and is realized by compiler program, some FORTRAN processors and the parallel library. The
directives (CMIC$) The CMIC$-directives are translated into multitasking FORTRAN library maps the parallel pieces of work onto virtual
library Calls. processors called FORTRAN processors. The operating system maps

FORTRAN processors onto real machine processors. The implementationTHE-MICROTASKING DIRECTIVES consist of. of FORTRAN processors depends on the operating system. FORTRAN
directives requasting microtasking mode and logical CPU's processors under MVS/XA are tasks. Under VM/XA several virtual
directives toqdefin mirotasking moel strucales CUs machines build a virtual multiprocessing machine and each FORTRANdirectives to deine microtlasking control structres (MCS) processor is executed by one virtual CPU. The maximum degree ofdirectives to mark critical regions parallel execution can be varied at rn-time by specifying an option for thenumber of virtual FORTRAN-procssors. The user can define more

With the GETCPUS directive logical CPU's are created Logical CPU's are number o FORTRANprocessors dfeore
in a busy loop waiting-for work If there is some work to do all idle CPU's Addional pieces of work build a queue and fishing FORTRAN
are able to execute parts of it The operating-system scheduler takes this processors take ther work from thas queues are filled
busy loop concept into account' logical CPU's which terminate working the FORTRAN processors cancommue working without th e operating
are rescheduled and are immediately ready to work again. Therefore system. Only f a queue empties or refills thero is overhead of tie
microtasking is very efficient Within one MCS several parallel processes operatng system by suspendig or restart erig a iFORTRAN processor.
may be defined each of them executed exclusively by one logical CPU. Tere is no operating system overhead to schedule and synchronze
Processes within one MCS are scheduled dynamically in unpredictable parallel work.
order and therefore must be independent. Data dependencies may be
considered by putting the corresponding processes into different MCS's, AUTOMATIC PARALLELISM
since a MCS must be terminated before die program continues. Code
outside MCS's can be processed in parallel by all logical CPU's in The compiler determines whether it is cost effective to execute the loop in
unpredictable order. parallel, otherwise vector or scalar code is generated. A loop selected for

AUTOTASKING parallel execution may contain inner loops that are parallelized, vectorizedor serial. A loop selected for vector operation may contain only inner loops
which are serial. There are for example directives to indicate a preferenceAutotasking is realized by using some microtasking- and new autotasking- for parallel, vector or serial code and the number of iterations to be
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grouped together as a unit of work. multiprocessor architecture the compiler FORTRAN/PP will be dcveloped
with automatic intraproccdural parallclism and language extensions for

LANGUAGE EXTENSIONS interprocedural parallelism.

-Parallel FORTRAN provides two types of language extensions which
-both can be nested and intermixed: There is no ideal compiler, all are in continous development and in

addition to that often have to be adapted to new hardware.
- in-line extensions: define parallelism-within a routine
- out-line extensions: define parallelism across routines With parallelization howevernew problems arise, for instance for coarse-

grain parallelism synchronization has tobe programmed explicitly. To

In general-in-line extensions support fine-grain parallelism as out-line justify the-overhead derived from parallelization work has to be partitioned
extensions provide coarse grain parallelism, in large parts of code. This in fact conflicts with dynamic load-balancing.

-If the programmer is aware of his problem and of the underlying hardware
too, many errors may be avoided . Hardware aspects-are important since,

IN-LINE EXTENSIONS -for instance, the shared memory systems focussed here not -only use
memory to store data but also to communicate between tasks. Parallelizing

There are two new-in-line extension language elements the PARALLEL compilers today are_.n the age of mdtunty. Possibly the next generation
LOOP and-the PARALLEL CASES. Each iteration of a PARALLEL will be able to analyse data dependencies above the DO loop level
LOOP can-be executed concurrently and the order of execution of the Analysing results will be displayed and sornc sort of interactive semi-
iterations-is not guaranteed. Parallel executed blocks- of statements are automatical parallelizing will e realized.
declared by PARALLEL CASES. Such blocks may contain straight code,
parallel or -vector loops. Although, PARALLEL CASES is an in line 6. ACKNOWLEDGEMENT
construct this:primitive should better be used for coarse-grain parallelism
because in current implementations there is a large overhead involved with I would-like to thank W. Julng who made 'aluablc-Lonmbutions to ths
it. Thus . It is possible to number cases to define an execution order among paper.
blocks of statements. Every acyclic graph of data dependencies-may-be
transformed into PARALLEL CASES. 7. BIBLIOGRAPHY
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root task which may=create several child tasks with an ORIGINATE vectorizable FORTRAN," Palo Alto Scientific Center
statement. A task is terminated with a TERMINATE primitive or Report No. G320-3478, September 1985
automatically at its end. SCHEDULE or DISPATCH assign the execution
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Today vectorizing is an established method. The three described compilers
all are able-to vectorize automatically but in spite of that they are very Perrot, R.H., Zarla Aliabadi, "Supcr..omputcr Languages, Computing
different. The CRAY CFT compiler is the successor ofthe older CFT 1.15 Surveys, Vol. 18, No. 1, March 1986
compiler. Since the aged-CFT 1.15 was not based on theoretical program
analysis, CFT has been designed completely new. The IBM Toomey, L.J., Plachy, E.C., Scarborough, R.G., Sahulka, R.J., Shaw, J.F.,
FORTRAN/VS compiler is based on an older sequential version. The and Shannon, A.W., "IBM Parallel FORTRAN," IBM

-biggest handicap for VS is the-underlying 3090 cache-hardware. If the Systems Journal 27 (4)416-435, 1988
accesses run out of cache-memory (for example row accesses in matrices)
vectorizable'loops are not vectorized by the compiler. The newest version
of FORTRAN/VS Rel 2.5 is an autovcctorizing and autoparallelizing
compiler. Supplementary to enhanced vectorizing capabilities it-includes
features from-PARALLEL FORTRAN. Fujitsu's VP compiler adapts the
structure of vector registers to the program structure given. It has three
vectorization methods for IF statements (mask, gather/scatter,
compress/expand). The announced Fujitsu FORTRAN/VP-EX compiler
will adapt programs to the new hardware and improve the performance of
programs. For instance, the vector-pipeline-is used inefficiently if the DO
loop does not contain enough operations. Loop unrolling expands the
executable statements in a DO loop and reduces the iteration count ,thus,
pipelines can work more efficiently. Program performance is increased
further by integrating subroutines into calling routines-and optimizing the
modified program in a more global manner. To exploit the new
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we can perform vector addition on-vectors whose components are
Introduction

themselves vectors:

Dataflow-languages afe-attractive for parallel computation because def vvaum A BB - map2 -vas 11 BB ;
of their expressive power- their high-level, machine-independent, Another useful-higher order function is:
implicitly parallel notation- and because of their fine-grain par-
allelism, which seems essential for effective, scalable utilization of dot feldi t z A .... details omitted ...

parallel machines. which computes the "i-reduction" of array t, where z is the zero of
Dataflow languages are-no longer tightly coupled with dataflow ar- the function i, i.e., it computes:

clitectures. Today, we understand the compiling issues for dataflow . .(t (f z AE13) A[23) An
languages well enough that we can recommend these languages to Using foldi, one can express the inner-product of two vectors:
programmers without having to rely on architectural support. def ip A B - foldl (+) 0 -(rap2 * I B)

There are several dataflow languages described in the literature, in- Here, =&p2 multiplies A and B pointwise, and f oldi computes the sum
cluding Id [7], Sisal [6], and Val [1]; due to space limitations, we will heresultiet of pouts
base our discussions here on Id. of the resulting vector of products.

The ability to manipulate entire complex objects and functions them-
selves as values relieves the programmer of the tedium of descending
down to explicit loops and assignments at every stage- such details

"Expressive power" does nothave-a precise definition; one can make can be hidden in a few generally useful functions such as map2 and
reasoned arguments about why one language is more expressive than -foldl [2]. Such higher order functions are the "power tools" of func-
another, but ultimately thejudgment is subjective. Theoretically, tional programming, in the sense that they amplify the programmer'sanoterbutultmatly hejdgmnt-i sujecive Thoreicaly, effort.
FORTRAN and assemblylanguage have-the same computational
power, but almost everyone-would-agree that FORTRAN is more
expressive, because it is architecture-independent and because it re-
quires less detailed specification of problem solutions and is "closer" Implicit parallelism:
to the way human progranm~ers think about problems. Another aspect of expressive power is implicit parallelism. In most
Dataflow languages are based-on functional programming languages, parallel languages, the user must carefully orchestrate parallelism:
Unlike most programming languages that have evolved upwards from explicitly partition the program into parallel processes, specify the
machine languages, functional languages are based on the A-calculus, placement of data, specify the placement and scheduling of processes,
a mathematical theory of-functions that predates digital computers etc. Often, these details are architecture specific, and sometimes even
[3]. configuration specific, resulting in-fragile, non-portable code.

In functional languages (and in all our examples above) we do not
Functional notation: have to specify what can be done in parallel. In principle, everything

can be performed in parallel, limited only-by data dependencies. ForAn aspect of the expressive-power of functional languages is that example, the implementation of rap2 may perform all the applica-
one can manipulate complex objects (entire data structures, and tions of f in parallel. Thus, functional languages do not increase the
even functions themselves)-as ordinary values. Consider this func- complexity of the programmer's task when moving from a sequential
tion: to a parallel environment.

def map2 f A B -B details omitted ...

taking 3 arguments: a function f and two arrays A and B, and return- M.structures: implicitly synchronizcd-state:
ing as its result a new array (call it c) where In pure functional languages, there-is no concept of "state," i.e.,

crJ3 - f 1(J) B[J] structures whose contents change during program execution. There
are no assignment statements- programs are functions that corn-i.e., it applies f to each pair of components of A and B and returns an pure-new values-from old. While-many algorithms can be expressed

array containing-the results. (In Id and other functional languages, clearly in this style, there are sonecproblms.
it is common to use a "curried" notation, omitting parentheses, com-

mas, semicolons etc. around the arguments of a function.) One difficult area is. algorithms making effective use of non-deter-
minism. Functional languages have the Church-Rosser property [3j

Now, we can specialize rap2 to define a vector sum function: which guarantees that the answer produced by a functional program
dea vsuw A B - map2-(+)1B ; does not depend on the particular parallel execution structure chosen

S here, the function "+" is supplied as the f parameter to smap2 so by an implementation. This is usually a major advantage; unlike
erthat fntio adds the vectors and B ntw , pand-returns toavecso other parallel languages, functional programs are not subject to racecothaininga the vectoFurtersiane B pistsel aditet funavctor, conditions leading to non deterministic and irreproducible behavior

containing the sums. Further, since vs is itself an addition function, (which complicates debugging).

Funding for this project is provided in part by the Advanced Research Projects However, consider the problem of traversing a directed graph to
Agency of the Department of Defense under Office of Naval Research contract count the number of nodes reachable-from a given root node. The
NOOOi4.$9.J-1988. following strategy seems simple: starting at the root node, fan out
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in-parallel on all outgoing edges-from each visited node. To avoid but it appears that Id on Monsoon can be competitive with C-on a

repeated traversals of shared subgraphs (and cycles), the first traver- modern workstation.

sal to reach-a node marks it "visited," so that subsequent traves.!s Fine grain parallelism seems essential if we are to simultaneously
reaching the node via other paths will observe the mark and retreat. adieve the-goals of general-purpose parallel prograniung and scal-
Non-determinism is exploited because, of all the incoming traversals able performance. As processors become faster and machines become
arriving at a-shared node, we do not care which one arrives first to more parallel, memory latencies are becoming relatively larger. A
mark the node and traverse its successors. There is no way to express general way to address this is rapid, fine-grain thread switching, i.e.,
this idea in a-functional language onc must pick a dctermilnrstic eah processor needs a large pool of threads amongst which it can
order to traverse the nodes. This not only-clutters up the program be efficiently multiplexed so that it can always do useful work while
significantly, but also seque.itializes it. some threads are waiting (for long-latency memory requests, for syn-

Introducing-non-determinism into a functional language is not very chronization, for results of procedures, etc.).
different from introducing state- constructs for one car be used to Dataflow languages and their compilers offer a systematic, complete
simulate the other. Not surprisingly, functional languages also have approach towards this computational nodcl. New compilces are un-
difficulty in dealing with input output, which seems quintcssentially der construction at MIT and Berkeley that use datalluw principles
linked to the notion of state. to compile Id even for non-dataflow machines [8, 5]; these compilers

In Id, the functional core is extended with M-structures which are should enable Id to become widely available.

updatable data structures. Unlike other languages where updates are
protected by separate synchronization primitives (e.g., semaphores), Conclusion
accesses to M-structures in Id are combined with implicit synchro-
nization. For example, a component of an M structure array (an There is an interesting parallel between parallel programming today
"M-array") can be incremented using the statement: and sequential programming in the early 1950's. At-that time, pro-

L!j] --A !lj + 1 grains were written in assembly language, and programmers had to
be acutely aware of the architectural details of their machines. There

Ttwas widespread skepticism that high-level, machine-independent pro-
simultaneously locks the location. The assignment ".t !j] . "* not gramnming was possible with acceptable efficiency. John Backus and
only writes the value back, but simultaneously unlocks the location. hs group changed all that, with their outstanding FORTRAN impe.
This guaratees that the increment is atomic, i.e., even if several mentation. Today, parallel programmers-have to be acutely aware
computations execute this statement concurrently, the increments of the architectures of their parallel machines, and there seems to
will be done properly. Coupling- accesses -with synchronization in be widespread skepticism that high level, machine independent.par-
this manner-leads to clear and concise programs [4]. allel programming is-possible with acceptable efficiency. Our hope

is that datallow languages like Id can do for parallel programming
what FORTRAN did for sequential programming. The prospects

look bright.
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1 Introduction (a) (c)

Dataflow architectures often seem-mysterious compared to more famil- add v, [Efp+S fork 11

iar von Neumann computers. This reflects the history of their evolu- , . '

tion, which has tended to emphasize tokens flowing on dataflow graphs fork lab2 *join (fp+2
as the-metaphor for their operation. Recent advances in dynamic ',... : fadd v1, vrlab2: fork 22.r

dataflow architectures, as well as-in our understanding of them [4], v, fp+6) iml v, (7) .......-"
make it possible to see dataflow machines in a more conventional light. .
While the tokens-on-a-graph metaphor is still a useful way to reason 12:

about the machine, and especially about a particular compilation style , join tfralP
for the machine, one can also-think of a dataflow program as multi- add v, fp+1] =1 v, (fp+4] f±Vv v2.r: ju=v 13.r

ple, interacting sequential threads [6]. This makes a dataflow machine ' .... .r ............

lookmore like a typical multiple-instruction, multiple-data (MIMD) 1.b3: "'.... . 13:
multiprocessor, and highlights its strengths relative to other MIMD Join tfp+2e join lf(+33

architectures.
This article describes the Monsoon architecture from this point of s v, (f4l+3)

view. Monsoon [5, 2] is a-prototype dataflow computer currently un-
der-construction in a joint effort between the Massachusetts Institute
of Technology and Motorola, Inc. Most of the discussion directly ap- Figure 1: Examples of fork and join
pliesto any dynamic dataflow computer with an explicit token store,
includingxthe Sandia Epsilon-2 (3], and the ETL EM-4 [7].

3 Split Phase Memory Transactions2- Parallel Machine Language
Essential-to any multiprocessor is the ability to tolerate long memory

Dataflow-architectures are perhaps the-first general purpose comput- latency [1]. Dataflow architectures do this through split-phase-memory
ers that execute-aparallel machine language. It- is a parallel machine transactions [1]. From the program's point of view, a split-phase fetch
language because it has primitive operations for managing parallel instruction to fetch from location L behaves like a fork: the thread
computation, namely, fork and join. A fork instruction initiates a issuing the fetch continues processing, and a new thread is initiated.
new,-independent thread of computation in the machine, with its own The new thread will have its value -register initialized to the- value
program counter and-register set. This is depicted-in Figure 1a; as the fetched from L. In the machine, the fetch instruction actually oper-
figure-suggests, fork is-like both taking a branch and also continuing ates by sending a special request message to the processor containing L
on to the next instruction. A join instruction brings two independent (this is the first phase), and continuing on to the next instruction-in
threads-together into a-single thread. Each thread will try-to execute the thread. The remote processor sends back a response message (this
the join instruction (by falling through-to it or-by jumping to it), but is the second phase), which initiates the new thread in the processor
only-the-second-to-arrive will- continue -with- the next- instruction fol- that originally executed the fetch. This new thread may begin a to-
lowing-the join. This is depicted in Figure ib What is unique about tally independent computation, or synchronize with the original thread
the dataflow architecture is that these primitives are single instruc- through a join instruction. As long-as there is a sufficient supply of
tions, whereas in conventional multiprocessors they must be simulated parallel activity (i.e., other threads previously forked), the processor
through software procedures -that can require hundreds or thousands will not be idle between the issuing of the request and the receipt-of
of instructions-for each fork or join. the response.

What happened to datalow graphs? They emerge from a par- A split-phase store instruction is similar, except that the response
ticular compilation- strategy that introduces many fork and join in- from a store carries no value, only an acknowledgment that the store
structions, as illustrated in-Figure -c. This reveals the correspondence is complete.
between multi.thread-sequential code and dataflow graphs: a chain
of one-input, one-output dataflow operators-is like a sequence of con-
ventional von Neumann instructions. The token flowing along- such 4 Synchronization
a chain simply contains the processor state for that thread: a pro-
gram counter (in dataflow parlance, the instruction pointer part of the EquallJV essential to an giultiprocessur ib the ability to rapidly syn

"tag"), and the thread'b register set. In Monsoon, that bet is really chronize parallel coirputat;ions [I,. The join operation already dis-

only-a single general register, called the ",aiue," and a special frame ubsed tl,e pima means-of synchronization in lataflow architec-

pointer register tanother part of the "tag" in dataflow jargon) used a tures. In -,xpli~it token sturp" dataflow architectures such as Mon-

the base of an addressing mode for accessing data local to a procedure oor, thia o.peration si perforaed quite effid-ently through the addition

activation.' A forl is a, one-input, two-output datalow operator, and vf a few pIcacn . bit;to each word of an rdlinary data memory. Every

a join is a two-input, one-output operator. join instruction names a word in that memory, called the rendezvous

The instruction set of Monsoon includes ingle instructions that do puint. T.pieal, the addressing mude used to nane that rendezvous

a join, an arithmetic operation, and a fork. Such an instruction would point is a fixed offset relative to the activation frame (see Section 7).

be drawn as a two-input, two-output arithmetic node in a dataflow Initall, the prebenc bits on the rendeivous point are cmpty. When

graph. Iaving buch instructions means Monsoon can efficiently ex- the first of the two joining thread, executeb the join, the contents of

ecute "pure dataflow" graphs, but agun, this is only one of niany that thlead'o V',lue register ,tre stored in the data part of the ten

compilation strategies possible. dezvous point, and the presence bits are changed to present. The first
- ifonsoon actually provides more than one general register along chains of m- thread then "dies," meaning that the processor goes on to execute

struction$, with the restrictions that the additional registers are uninitilized in some othcr thread, created b an earlier forL or response to a split

new threads created via fork, and that the additional registers arc dertrouyd nhcn 1,hasc ti aidaatun. So ic th,. Lttur, anothet thread executes a jo,

the thread executes a join. which names the same rendezvous point, finding the presence bits set
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to present, that thread continues with the next instruction following 7 Compiler Controlled Task Distribution
the join, and the synchronization is complete. -In the case -where the
join is-part of a two-input arithmetic instruction, the value registers A cosmnii imLonception ti hat work distribution across processors
of the-two joining threads become operands, one of them having been in a dataflo, maichine is at tike levei of individual instructions, I.e.,
recorded in the rendezvous point.2  at every foik. In fact, the thread created by fork always executes

Notice that the jon-operation requires no exotic hardwae bklh as on-the biai p.ucesbor th,t e.%ecuted the fork- instruction itself. So
associative memories, only a few-extra bits. Notice, too, that every strictly bpa1.g, fork d.cs iot create aly parallel activity,-only an-
word of data memory comes equipped with presen.e lits, so there other thrcad Lhat is queued up until the processor finishes with the
is an effectively unlanimted namespace for syncLhruzaior events, or, LUrrent, tlu"d.- Creating a thread on another processor requires aspe-
putting it another waty, an unlimited number of synchionizatUnnorudy Lial kind of fork instructio called scrd or start, hence, the granularity
be-in progress at once. work distribution is under compiler control. Typically, a compiler in-

serts send instructions as part of a procedure calling convention: a
5 Synchronizing Memory Operations procedure is invoked by creating a new activation frame (stack frame)

for the call-the frame may be on a remote processor-and then using

The join operation provides one means for computations to synchro- send to start one new thread on that processor for each argument,

nize; another is provided by synchronizing memory operations. These where the value register of each new thread is a parameter for the call.

exploitsplit-phase transactions and-presence bits to provide a variety Similarly, the called procedure returns a result to the caller by using
of ways to synchronize producer-of data structures with their con- send to start a thread back on the calling processor, which may then

ofoh t ways toea synhroiz producers ofe data strctre withe therson
sumers. An example are the splt-phase operations I-fetch and I-store, join with the thread that initiated the callin the first place. Task

a single writer, distribution is at- the level of procedure calls, even though instruction
which -synchronize many readers -of a location with a igewie. scheduling is at the finer granularity of threads.
Before an I-store,-the presence bits-of the location must be empty; a It has been tacitly assumed up to now that local variables of a
subsequent I-store request will set-them to present as well as storing t
the data. An I-fetch request to a present location behaves like-an or- procedure invocation, as well as the rendezvous points for its joins,

dinary fetch. An I-fetch request to an empty location, however, sets are collected together in an activation frame associated with -the in-

the presence bits to deferred and does not generate a response. A sub- vocation. (Activation frames are-like stack frames in a uniprocessor,

sequent I-store request will store the value and set the presence bits to except that because of the possibility of parallel procedure calls they

present, as before, and also will produce the response to the deferred form a tree instead of a stack.) This is accomplished through the use

I-fetch. (How the information to generate the responses is maintained of addressing modes that operate relative to a frame pointer that is
is beyond the scope of this paper; see [2].) Thus, the consumer may part of the register-set of every thread. One of the operands to the
issue an I-fetch without knowing whether the data has been stored: send instruction is a frame pointer for the new thread; for a procedure

the response will not-be generated until after the corresponding I-store call, this would be a pointer to the new activation frame created for

has-liappened. This sort of usage generally involves two types of syn- the call. The actual routing of the new thread-to the target processor
hsnapend. thi y sis accomplished simply by considering the most significant bits of the
chronization: the-memory synchronization as described above, and a frm- one ob rcso D
join back at the issuing processor-to synchronize the response to the frame pointer to be a processor ID.
I-fetch with the thread that issued the request.

Monsoon provides several forms of synchronizing memory opera- 8 Summary
tions, including take and put operations for building locks; different
operations are selected by chosing-an appropriate fetdh like or stor Though ddio1v ,rchite.res have gretna up in a tradition of radical
hikeopcode as the first phase. Of course, ordinary imperativcfctc-h and departuie fiorn -on Neuiann computing, they have progressed to the
store:operations are provided, their second phases of these operations point wlic. they may be asias an evolutionary step. The current
simply ignore the-presence bits entirely, direction 4, dataflov processor design is to exploit the ne,-found sim-

ilarity to conventional architectures, leading to processors that- match
6 Compiler Controlled Thread Granularity von NeU1,ianni cicercy vi, ak .ueatial 6ode while retaining the benefits

of a-truly parallel machine language.
It is oft.n said that parallelism in dataflow architectures is fine-grained.
In fact, the compiler has considerable control over the granularity of [1] Arvind and R. A. lannucci. Two fundamental issues in multipro-
parallelism exposed to the hardware. Thread granularity can be mea- cessing. In Parallel Computing in Science and Engineering, volume
sured by the number ofinstructions a thread can execute before it stops 295 of LNCS, pages 61-88. Springer-Verlag, Jun 1987.
or synchronizes with-another thread via a join. Now consider compil- [2] D. E. Culler and G. M. Papadopoulos. The explicit token-store. J.
ing an expression like (c*a[i]) + (c*b[i)). Assuming a and b are Par. and Dist. Comp., 10(4):289-308, Dec 1990.
global arrays, the fetches of a[i] and b(i] will be split.phase trans- [3
actions. There are two ways the compiler could express the remainder ] V. G. Grafe and J. E. Ioch. The epsilon-2 multiprocessor system.
of the computation: (1) it could join the two responses, then multiply J4 r. and i n. 1 an4):309-31usD e nNu.
each by c and add the products; (2) it could have a separate thread for [4] t. S. Nikhil and Arvind. Can dataflow subsume von Neumann
each response, each of which multiplies, and then those two threads computing? In Proc. 16th Ann. nt. Syrp. on Conp. Arch., pages
join together and add. The arithmetic in strategy (1) is in one large 262-272. IEEE, Jun 1989.
thread, whereas in (2) it is in three smaller threads. [5] G. M. Papadopoulos and D. E. Culler. Monsoon. an explicit token

The traditional dataflow style of compilation uses arithmetic in- store architecture. In Proc. 17th Ann. Int. Symp. on Comp. Arch.

structions that always join, and so that style is-a fine-grain style of IEEE, 1990. (To appear).
compilation. This is a. strategy well matched to-non.strict functional [6, C M Papadopoulos and K. R. Traub. Multithreading. A revision-
languages such as Id, as their semantics limit the size of grains that ist view of dataflow architectures. In Proc. 18th Ann. Int. Symp.
any compiler could discover [8]. Larger grains might be employed by on Comp. Arch. IEEE, May 1991. (To appear).
a compiler for an imperative language. What is interesting is that 71 S. SaKi, Y. Yamaguchi, K. Iliraki, Y. Kodama, and T. Yuba. An
because fork and join are so efficient, the choice of large grains versus architcctarc of a dataflow bingle chip processor. In Proc. 16th Ann.
small grains is often determined by addressing modes and register al- Int Syrup on Comp pages 46 53. IEEE, Jun 1989.
location, as opposed to the overhead of synchronizing. As Monsoon s [S' K. R. Trauh. Lr:..ci,; .aon of ,Von-Strirt Functional Prgram-
addressing modes are tined to the dataflow style of compiling, finer i,,in, L,1vaiVuo. Pit..mn PuvLivhing, London, 1991. Also published
grains can in many casesi result in superior code, even though there is by MIT Press, Cambridge MA.
more joining. 'Because Monsoon is pipelined, at any given time there may be up to eight

'There is a way to designake one thread as the *left' operand and the other as indupecniivi tlhr.ds v.iukng in dff.itnt stages. The number of threads queued
the 'right," regardless of the urder in which they happen to attempt the join. up for eventual exmution may be as large as 32,000.

743



DEVELOPING DATAFLOW ALGORITHMS

Robert E. Hiromto AND Anton P.W. Bohm
Computer Research & Applications Computer Science Department
Los Alamos National Laboratory Colorado State University
Los Alamos, NM 87545 U.S.A. Fort Collins, CO 80523 U.S.A.

INTRODUC11ON dataflow systems. When running our programs on the Id World simulator
we will examine the behaviour of algorithms at dataflow graph level,

The design and validation of parallel algorithms is a rewarding and satis- where each instruction takes one timestep and data becomes available at
fying -experience once the implementation has been completed and the next. This implies that important madune level phenomena such as
debugged. It is this latter task which can be extremely frustrating when the effect that global communication time may have on the computation
dealing with a general purpose multiple instruction multiple data (MIMD) are not addressed. These phenomena will be addressed when we run our
computer system. Errors in expressing parallel constructs give rise to programs on the Monsoon hardware. Potential ranifications for compila-
unpredictable execution behavior, affecting both the resulting answer and tion techniques, functional prograrrning style, and program efficiency are
the sanity of the programmer. significant to this study. In a later stage of our research we will compare

the efficiency of Id programs to programs written in other languages.
The notion of a high-level parallel programming language that insulates This comparison will be of a rather qualitative nature as there are too
the programmerfrom the perils of asynchronous bugs and booby traps has many degrees of freedom in a language implementation (on language,
been the goal of many researchers in the functional language community. compiler, and target machine level) for a quantitative comparison to be of
In the last few-years, significant progress has been made in this area. interest.
Language and compilation research has resulted in several very powerful,
inherently parallel programming languages. Notable among these is Id, We begin our study by examining four routines that exhibit different
the work of Prof. Arvind's Computation Structures Group at MIT. Id has computational characteristics. These routines and their corresponding
a functional and deterministic subset, yet is a completely general purpose characteristics are listed below:
language supporting- synchronizing data structures, and side-effects.
Compilation research is also being carried out at Yale University, Chal- (1) Fast Fourier Transforms (FF1)
mers University of Technology, and the functional programming group at
the University of Glasgow. * computolionaparallelim

* data dependences between the butterfly shuffles
-Up until now few dataflow computer systems have been developed for (2) Adaptive Quadratures
wide use. One of the first was designed and built at the University of
Manchester. This project resulted in identifying many important architec- * dynamic unrolling ofrecursvely adaptive grid refrnments
tural issues in the design of support hardware for the dataflow execution (3) Elgenvalue/vector Solvers
model. The Manchester- group used the purely functional, strict, single 9 application of cyclic rotations (incremenal array updates)
assignment language SISAL for writing their applications and produced a
compiler generating highly efficient dataflow code for this language. A (4) Stochastic Simulations

similar dataflow project was initiated at the Electro-Technical Laboratory * data accumulation
(ETL) in Tsukuba, Japan. Here a large dataflow system with 128 process- Details of our implementation and performance analysis will be presented
ing elements was designed and built. Unfortunately the lack of program- during the session's presentation. For economy, we chose to describe
ming software hasprevented the system from being fully tested on sub- only one of the four routines that have been analyzed at this time.
stantial application codes. Still from these and other experiences, a mul-
tithreaded execution-model with in the frame work of dataflow has FFT

emerged and has many researchers very hopeful of its success. Today A fast founer transform (FF1) routine was written in Id by 3. Michael
several research groups are senously involved with building prototypes of A'hley, a former summer student at Los Alamos National Laboratory.
these multithreaded architectures (e.g., Sandia National Laboratories' The FF1 exhibits both divide and conquer and loop parallelism. The
(Albuquerque, New Mexico) Epsilon-2, Motorola and MITs Monsoon, relevant Id program segments are:
IBM's Empires, and ETL's EM-4).

Def Mainjft Sizeqof.V =
We are now at a very exciting moment when language, compiler technol- (C = (-array (1, SizeofV) I [i] = Cmplx (t * 1.0) 0.0
ogy, and hardware are quickly maturing and becoming readily available Ili <- 1 to Size._of.Y};
for use. This moment also offers us the important opportunity to criti- In FFT C);

cally assess the advantages claimed by functional language and dataflow Def FFT V = (,Size_ofV) = bounds V;
advocates. In (if (Size.ofV = 1)then V

else
Our approach is to study the performance of a collection of numerical e(Left_, Right_) = Shuffle V; FFTL= FF1 LeftV;

algorithms written in Id which is available to users of Motorola's FF..R =FF1RighL.V;Mid =fix(SizeoLV/2);
dataflow machine Monsoon. We will study the dataflow performance of X =Two_Pi/Sizep_of_V;
these implementations- first under the parallel profiling simulator Id Coeff={ array (l, Mid)
World, and second in comparison with actual dataflow execution on the [i] = Cmplx (cos (X * (i-I))) (-sin (X * (-J)))
Motorola Monsoon, This approach will allow us to follow the computa- IIi <- I to Mid );

tional and structural details of the parallel algorithms as implemented on Prod = [ array (1, Mid) I [lJ = Cmplx.Mul Coeffli] FFT R[i
11 i <- I to Mid ); );

In ( array (1, Size.o.V)
1Thld work was done under the auspices of the U. S. Department of I [iJ = CmpxAdd FFT.L[i] Prodfil 11l <- 1 to Mid

Energy contract No. W-7405-ENG.36. I [Mid+iJ = Cmplx ub FFT_LiJ Prod[i] II i <- I to Mid
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ShuffleiV={ (.Siz LV)=b6undsV;M 1= fix (Size..ofy/2); the number of them that run in parallel is equal to the critical path
In (('ay (1,-Mid) I [i] =Y[Cei2>l] i i <- to -Mid}; required to execute an inner loop divided by the rate at which the loop can

{array(1, Mid) I [i] = V[i*21 11i <- I to Mid ); spawn off the next inner loop. Figure 2 sketches a parallelism profile for
WW6420:

Note that in FF a recuruive invocation of FF7 is applied to LftV and
Righty (the odd and evenelements of V, respectively) until the butterfly
shuffle on-V has been obnpleted. The array element data dependences (30)
occurring in the recombination of smallerlresults into larger ones are
expressed in three array conprehensions difining the values-of the arrays
Coeff;Prod; and the result of FF. Running the above program under the /
Id world 'simulator for a SizeofV of 128 gives us th. following parallel-
ism profile: 0 ....... 100 ....... 200 ....... 300 ....... 400 .....

Fig. 2. ParallelismProfile for a nested loop.

Clearly, the loop rate plays an important role in the parallelism of a pro-
(3400) gram. Phase B-in Fig. 1 show this loop behavior where the dominant

loop is the array comprehension in the main function creating the original
function values-to be transformed. Once every 5 parallel steps an array
element is created and sent through the log(n) stages of the FF1.

I I The completion of the FF is dependent on the loop rate and the creation

I of the last two elements of the original array. When the last two elements
go into the FFT (phase (C) in Fig. 1), the remaining stages of the compu-
tations can be done with divide and conquer prallelism.I I

I I (200)
The last sequential tail (phase:(D) figure I)-is-caused by the array

.. __. c- \ comprehension inFFTthatgenertesthe resulting array.
------- B ....-------- -c I, copeesDm0 .... 100 .... 200 .... 300 .... 400 .... 500 .... 600 .... 7oo.. .=80b 7=

SOLUTION

Fig. 1. Parallelism profile of FFT 128. The solution to this problem is to unroll loops fast enough so that they
don" cause unnecessary delay. This has bee recognized by a number of
dataflow teams, who invented specia instructions (very similar to vector

ANALYSIS instructions) to rapidly create parallel wo&doad e'specially in loops (itera-

The simulator assumes that each instruction takes one timestep and that tive instructionsirepeat mechanism). d does not have this type of instruc-
theret ftions, but it is still possible, although at a cotasirably higher cost, to createthe re-sultof an-insanecton execution are available the next-timestep. -g

This aproximation leads to an idealised graph itretatio in. nwlch array elements at a higher rate ii a nested loop. Tae the following array

maximally parallel execution proceeds along a critical path via a sequence comprehnsions:
of-indivisible timesteps. The graph in-figure 1 plots the-number of
instructions executed at each timestep, and consequently pictures the ideal DefAn = array(l,n)[ [i] =i 1 i<.- 1 ton);

parallelism profile of FF1 128. Def Abn= array (1 n)J [i] =i II j <- I to n by 16 & i <-j to j+15};

When studying Fig. 1, we observe the following. First there is explosive
divide-and coaquer iamalism (A), followed by (B) a stretch of low Some statistics:
parallelism. A second:less significant burst of parallelism (C) follows
which dies down to an almost sequential tail (D). For larger problems the A n Sl Sinf Ab n SI Sinf
two sequential-streches (B and D) are observed to dominate more and
more. The parallelism profile drawn in Fig. lis very disappointing since 16 223 101 16 277 118
the computationa! parallelism is known t6 be very large. To begin to 32 399 181 32 504 123
understand this, we know that the FF program takes O(log(n)) parallel 64 751 341 64 958 133
steps to unfold all FFT and Shuffle functions. This accounts forthe first 256 2863 1301 256 3682 198
burst (A) of the divide and conquer parallelism. Once the functions have
been unfolded, the loops (array comprehensions) dictates "h parallelism In the above table, SI stands for the number of instructions executed
and con sequently the sped-of the computation. In the first instance the and Sinf stands for the total cntical pathlength. Where array
dominant loop is the array comprehension in the main function creating elements are created at the loop rate(5) in A, they are created at a
the original function values to be transformed. rae of 16 elements in 5 parallel steps in Ab (i.e., an element

production rateof 16/5). This comes at'-he cost of higher Sl figures.Since a considerable -amnount of work may- go into the actvation of a-l a onsile aount oform ay gtwo sintope activation ofa This trick can be employed to make all loops in the FF program go at.
a higher clemern, production rate. Applying this idea to Mainjft, we

DefWWnm= {s=0; r=O; have:

In (while (s < n) do next s =s + 1; next r = r + W in; finally r)l Def MainJft S'zc..ofV-

where {C =array (, Size..ofV) I [i] = CmplX (i * 1.0) 0.0
ij<- I to size by 16&i <-j toj-15};

DefWn= s=0; In FFTC );

In (while(s<n)donexts=s+ 1; finallys) ; To apply this technique to FF1, requires keeping track of the shrinking

vector lengths. The application of this technique to the array Coeff in
Through an analysis of these two-loops, it is found that WW (a doubly FFT results in:
nested loop) requires five (5) steps on the critical path to instantiate each
inner Joo body, that is, every five parallel steps a new inner loop is
spawned off. As the inner loop bodies are skewed on top of each other,
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if Mid > 16 then
f Coeff= ( array(1, Mid)

I [i] = Cmplx (cos (X * (i-1))) (.sin (X * (i-1)))
II j <- I to Mid by 16 & i <-j toj15);

In ( array (1, SizeMofV)
I [i] =Add.c FFTLfi Prod[i]
IIj <- 1 to Mid by 16&i <-j toj+15:}))

else
(Coeff = ( array(l, Mid)

I [i] = Cmplx (cos (X-* (i-1))) (.sin (X* (i-i))-il<- Ilto Nid ;
In ( arny (1, Sizeo(.V)

I[i] =Add..FFLLli] Prodli] i<- I toMid ) )-

Its parallelism profile is shown in Fig. 3.

(3600)

I i
i I
I I

/ \
i I /\

__I \I \

0.. ...... 100 ....... 200 ....

Fig. 3. Parallelism of unrolled loops-in FF1" 128.

The critical pathlength is about 30 percent of that of the original program,
and the two ugly sequential stretches B and D have disappeared Now the
paralleism of the program is satisfactory. -

It turns out that the array comprehensions are rather inefficiently-imple-
mented in Id. In the talk we will address-the effidency-issue in some
detail.
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CONSTRUCTIVE ALGORITHMS AND PRUNING: IMPROVING
THE MULTI-LAYER PERCEPTRON

Mike Wynne-Jones
Research-Initiative in Pattern Recognition* RSRE, St. Andrews Road, Malvern,
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Abstract for which we aim in inductive inference, ie. in decision trees and au-

A number of techniques have emerged recently, which at- tomatically generated expert systems. It may be possible to extract
tempt to improve on the multi-layer perceptron training algo- information directly from the weights of such a network, allowing us
ritlim [1)], by changing the network architecture as training pro- to determine-the problem-solving rules that have been learned. Nat-
ceeds. These techniques include pruning useless or unnecessary
nodes or weights, and adding extra nodes as required. The ad- urally the reduction of the number of nodes to a minimum detracts
vantages to be gained are smaller networks, faster-training times from the fault-tolerance usually associated with neural- networks, and
on serial computers, and increased generalization-abdity, %ith a so sonic thought-is needed before sudi iiiiiialist techniques are ubed
consequent immunity to noise. In addition, it is frequently much for a-particular application.
easier to interpret what the network is doing. One can then be-
gin to draw analogies with other pattern classifying techniques
such as decision trees and expert systems. We review these tech- 2 The MLP training algorithm.
niques, suggesting the classes of problem to which they are most
applicable, and indican. possible future aork in this direction. We briefly summarisc tile training algorithm described in [1]. In the

notation, op. denotes the output of unit j, upon presentation of pattern
I Introduction. p. Unit j is connected to unit i by a synapse or weight of strength wi,

and computes

Multi layer perceptron networks are well established as a standard °pi = f( _iwjOp) (1)
neural network technique for pattern recognition tasks. They are ham-
pered, however, by -a number- of problems and arbitrary parameters where f is a differentiable, non-linear function. The desired output for

which make-them much less dependable and predictable than they output unit j on-presentation of pattern p is denoted tP, and the global

could otherwise be. The main problem is that there is no way of de- error of the network after the presentation of some training patterns

termining in advance how many units there should be in the hidden is defined as 1 2
layer. If there are too few, the network may not learn at all, while E = iZ (opj. p,) 2  (2)
too many hidden nodes lead to over-learning of individual samples in P j
the training-data, at the cxpense of forming an optinidl model of the where the miter bum is ouc-r ieurouis cunsdered to he output iudes,
data distributions. This leads-to an inability to gcncralc, so that and the outer bum is over the patterns hat la.e been preseted.
previously-unseen data are labelled according to thc nearest training Optimizatidon is achieved usuall, by gradient, descent, Newton's
sample, rather than in accordance with a good model of the prob method, or conjugate gradients,5,6' all of which use the dert aties of
lem. Despite numerous analytical and heuristic attempts to determine the network error with respect to the paraiiieters to be optiised. 'e
this number, 12,31 no general and reliable niethodhAs enierged untit defiiie an error menaure in teris of the actilatiois of output uits,
recently. which can be differentiated; the term back-propagation refers to the

Recent developments fall intV two catagories. Prunring lgoruihn, repeated .alculatorn of Lie uorrupUdig deraties fur the preuvuu
build and-rain a large network, and then renove nodes which con- layer. The hain rule for partial deri~ati*eb leads to the generalised
tribute little-to the network's operation, while coribructirlc algorahrir delta rule,11; which indicates how, thee quantities aid thc-appropriate
attempt to form an approximate solution using a small network, and weight updates are to be cakluIAted. Milkiuuiiatuor of the ui squared
then add further nodes to increase the prisionr as required. It has crror with respect to the free paramneters in the network leads the
been demonstrated [1] that a larger network is generally required to network to Uplroxiiiate the Bayes di srinminant eutor, tie probabilit
learn a classification task, than-is needed simply to implement a known of a class given the input to the network. (31]
solution using predetermined network weignts. To this end, an ideal
algorithm for determining network architecture might add nodes dur-
ing early training, and apply pruning selectively as a solution is ap-
proached. The need for additional nodes to enable the learning of a Early constructive algorithms built multi-layer feed-forward networks
solution arises because a network of the minimal size to solve a prob- of perceptron units,[7] which could be applied to problems involving
lem is likely to get stuck in one of many locally optimal solutions in binary input patterns. Convergence of such a network is guaranteed
the training-phase. In constructive algorithms we hope that the local if the training data is linearly separable.j j The Pocket Algorithm (9]
optima in which we find ourselves will represent a reasonably good is an extension of the Perceptron Learning Rule,[10] which allows ap.
approximation to the true solution, and we escape it by thc addition proximatesolutions to be found for non linearly separable problems, by
of more free parameters to the network. To work well, the new param holding in one's pocket' the best set of weights found so far. For binary
eters must be added with predetermined values so that the solution patterns, it is always possible to cut off a corner of the-binary hyper-
of the new network is at least no worse than that of its parent. By cube with a plane, thereby ensuring that we can learn a binary func-
pruning weights (or nodes) which do not contribute significantly to tion of binary patterns by repeatedly adding perceptrons to network.
the classification or mapping task, we hope to-reduce to a minimum These techniques have been implemented in die fiding algoritahm.[il
the number of degrees of freedom used by the network to implement although this been superseded by, the bpstart AIgorithnr,j12,13j vlich
the solution, thereby ensuring-we have a simple model of the system. is more efficient-in terms of the number of nodes created. They build
One way of making this obvious implementation of Occam's Razor, tree-like networks with finer reC'luton of the input space at the leaves
is to minimise the total activaLion in the hidden layer, which encour of the tree, and do not usually include a stopping criterion to halt
ages the nodes there to act orthogonally. This is the same hchaviour the addition of new nodes or layerb. Ifbis means that everj sample in
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the training set-is-learned, but has strong repercussions if the training 3.3 Cascade Correlation
data is incomplete, has -noise, or is derived -from a classification prob. In-this algorithm, which applies to real-valued inputs and outputs, hid-
lem where the-class distributions overlap. These networks are good for den-units are added with inputs from all previous input and hidden
learning-completelya logical data set, but cannot form a useful model units.[14] The weights to allrprevious units are frozen, and the new
of many statistical-distributions. unit-learn a mpighic a s th s se corelan- the

Later methods [14118,341 apply to non-binary functions of non- unit learns a mapping which has the best possible correlationwith te

binary inputs. They usually build a single-hidden layer, which has an errors of the previous network. The weights to the new unit-are then
advantage over the 'deep network' methods that the propagation time frozen, and the process continues until there are no more errors. This
for data from thedinput to tile output is shorter, and constant. This method is not limited to binary- classifications, although published re-

r . suits only cover these problems. There is no back.propagation, with
is particularly-important for real time signal processing applications, the-result that the networks train quickly; the spee compares very
but not usually in-simulated networks used for classification. They do favou ly th oth n aokpr an quicky; the he ear ning

not uarnte-tol~~ evry ampe i th trinig st, ut re ore favourably with both backprop and 'quickprop' [19,201 when learningnot guarantee tolearn every sample in the training set, but are more t eaaetoitrokdsias iepolmo erigidvda
lklthnthe-earlier algorithmns to converge to-solutions with good to separate two interlocked spirals. The problem of learning-individual

likely than t-lsamples from overlapping distributions might be addressed -by contin.
generalization ability for statistical problems, uing the development of a network until the error figure found by

3.1 Tiling Algorithm and Upstart Algorithm. correlation decreases to the value expected from prior knowledge of
the-problem. This could be a-noise model, or a measure of the degree

The Tiling Algorithm builds a layered network, with each layer ap- to-which the data distributions are known to overlap. Since Cascade
proximating the solution of a binary function of classification problem Correlation builds tall networks, with many layers and-connectivity
more closely than-the previous one. A master unit in each layer learns from each layer to all earlier layers, it has the advantage of enhanced
at least-one new pattern, and the ancillary units ensure that no pre- feature detection over the networks described in the previous section.
viously learned patterns are lost. The algorithm creates only as many On the other hand, the many-layered architecture leads to a variable
nodes as it needs-to-build a solution, and it has been demonstrated to delay between application of an input and the appearance of the result.
have good generalization capabilities. On-the down side it requires an
excessively large number of nodes, as most ancillary units just dupli. 3.4 Meiosis Networks.
cate the action of-those in the previous layer. This problem is avoided
in later methods (Upstart, Cascade Correlation), by allowing coriic- Meiosis networks [17; arise from an approach to niult; la cr percep
tions to sJ.an man) layers. A recent method which has grown out of Lrons which combines the usual gradient descet uptsa1atiuri with .a
the Tiling Algorithm is the S.curul Te,j33which makes-repeated use stochastl search. This has the advantage that it is possiblc fur the
of -the Pocket Algorithm to divide the input space into partitions fur network to escape from alval miinmun by d randumnperturbatiun
classification, and-builds a decision tree[36; as it does su. No results in-the weight space, With a probability which decreases as-the net
have-been published to date, but the method ivukb lery pruniiig. work approaches a good sulution. Th is iniplemented asng stochu s

The Upstart Algorithm builds a binar) trie of nodes. Fur each tic, weights, sampled -from gau ian distrbutons each -time a weight
node, one subtree corrects all errors where a ,ne i. expected, and the value is required. The learning algurithmn updates the mean, and the
other corrects all errors- where a zero is expected. Each subnude is standard deviation of this distribution. Thus there are threc learing
-guaranteed to classify at least une of it target. Lorrectl , and s, vik- rules. the mean is updated according to the normal learning rule de-
vergence is guaranteed fur the problem. The number of nodes growsv scribed in §2. The standard deviation is increased at each update to
linearly with the number of training patterns fur the theoretically hard- reflect the uncertainty indicated by a large update, and decays with
est problem, a randoni boulean function, and this is better than the Lime, allowing the weights eventually to become deterministic.
node growth -rate of the Tiling Algurlthm. Training .an be speeded Meiosis is the process of one node splitting to create two tlw ones.
up if each subtree is- trained- using only the patterns that have nut Tihe composite variance of-input and output %eights is computed fur
already been learned zlsewhere in the tree. Extensions are possible each node in tile hidden layer, and the spit occurs for an) node whose
whereby the trained network is mapped directly onto a feed furward composite variance, thatis thestandard deviation relativeto thernean,
network with-only one hidden layer. The Upstart Algorithm is eas- is greater than 100%.
ily extended to classifiers with several possible output classes, while
preserving-many of its advantages. Z;ai > I and ai> 1. (3)

3.2 Dynamic Node Creation in Standard MLPs Each new weight has a mean-which is a jittered copy of the original,

Ash [15) describes a system where te error rate is analysed as train and each has-half the variance of the old weight distribution. This

ing proceeds,-and a new hidden node is added whenever the error is kind of splitting policy has the advantage that it does not converge
to a complete fit of the training data, and consequently the result-

no longer decreasing significantly, but is not acceptably low. The new ing networks are likely to exhibit better generalization than the ones
nodes are introduced with small random weights, and the results are produced by the Pocket, Tiling and Upstart algorithms. It has the ad.
encouraging when compared with the training times required by stan. ditional advantage that the decision on whether to split is made using
dard networks of fixed size. The scheme includes an analysis of when only locally measured parameters.
new nodes should be added, based on the assumption that the error
rate decreases exponentially as training proceeds, but the author feels
that a better way is needed for determining the initial weight values 3.5 Summary: What to do next with constructive algo-
of the new nodes, as small random weights do not guarantee that the rithms
larger network is at least as good as the old one. The author feels that constructive algorithms lack a good mechanism

A similar scheme L16,31 adds new nodes to the hii,hdn layer, but for determining the weights of a newly added node, although Meiosis
speeds up training by freezing the weights of the pre'ious ones. BaLk is good in the context of stouchastic weights. Accepting the idea of
propagation's property of attempting to force each hiddni nuc t. adding new nodes by splitting an old one in two, we also require a
account indiidualy for all the error ;n the outpot la.n(r ncas tMat good measure of the degree to which a given node require- splitting.
tile newly introduced nudes learn the errors of imrc".ions network In our owa work,j1hj we propose a new split mechanism, and build on
with frozen weights. Interestingly, thb freature is .... ialla unsihrd a earlier ideas from pruming, to obtalli an ordered list of nudes with the
disadvantage, as the use of 'teamork' amongst nodC. Might be ex most prurale at one end, and the most .sphittable at the other.
peeed to find a solution more quickly.
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4 Pruning of

Pruning has been carried out on-networks in three distinct ways. The 
( 5

first is a heuristic approach, based on identifying which nodes -and giving a modified-weight update rule
weights contribute~ittle to the mapping. After these have been re-

moved, additional training leads to a network which is better than the wiDE + =
original.f4] An alternative technique is to include terms in -the-error 1) ,
function, so that the-weights tend to zero under certain circumstances. This-causes the weights to decay exponerttialytowards zero,-and this
Zero weights can be removed -without degrading the performance of tile
network. Finally, ifzwe define the sensitivity of the global network er- aproach was successfully used bylinton in sonei experiments on ana-ror to the removal ef a weight or-node, and evaluate ;t for-each such lysing the use of hidden layers and a representational bottleneck to en-
parameter in the network, we can then remove the weights or nodes to courage good generalisaion.32] Weights which come sufficiently closeparaete inthenetork wecanthe reovetheweihtsor ode to to zero in the weight decay scheme can be pruned out. This work was

which- the global error is least-sensitive. The sensitivity measurement token te wuight dy scheme an be prund ou h rk was

does-not interfere-with training, and involves only a small amount of taken a step further by hlansonand Pratt [221, and Rumelhart, with

extra computational effort. It is also well matched for implementation ed
alongside the node-adding scheme described in-§3.5. range-weights are-left unaffected. lligh-weights are discouraged for

4.1 Heuristic Pruning reasons of smoothness, while low weights can be pruned. These exper-
iments showed that different bias terms are indeed useful for finding

Sietsma and Dol% [4] haie described a pruning scheme based on ana- minimal arrhite;ture.s, but the blas term could not easily be-used in

lysing automatically-the activations of node:., in.response to-diflerent conjunction wLith the monmentui- teim used traditionally for avoiding

patterns in the training data. Their pruning takes place in three dif- local minima- Perhaps the biased cost function could be combined

ferent-ways: with-llanson's stochastic search MLP so that-the traditional-momen-

SPruning of units that do nothing, or duiplicate the action Qother tum-term would no longer be needed.
Biased cost functions have been used in other applications tco, first

units. A unit- is r~dundant if it has the same output for all for pruning nodes by including a total node rckrancc term in the cost

patterns in the training data, or duplicates the action of another function.j23i 1he relevance term is defined as a produtt of functions of
node. the weights into and out of a node, and minimising the cost function

* Pruning of units that provide unnecessary information. Ira node then minimises the total number of relevant- nodes. This kind of node

makes a distinction between patterns that are later recombined, decay (cf wightdecay, above) has not been analysed in detai!, but
gives promising initial results. A second example encourages the opli-

then ti. noec.mause of hidden units,-[29] by including the hidden layer activations

Pruning out an entire network laser. A netaork with man3 iaers in the cost fnrction to be mimmised, and hence furcing the ainis to act

ma. well have one or more of them redundant, especial after orthogonal!). This attenp.s to a.-ud unnnaxessar -ilts right-from the

the earlier stages of pruning hase been carried out. Indeed, At start-of traming, rather than ahitasing tem to deidop and eliminating

has been shosn j21,.33; that one hidden layer s theuretical., them later. Thi s-technique could pro'.c useful in the context ofr nte

sufficient to implement any problem, although thi, ma.l requre grating neural networks with expert systems or decislon trees, Since

more nodes than a multi layer network. these systems attempt to insoke independent rzlts a henever-possible.

The initial aim of itumelharts use of the biased cost function was

4.2 Pruning which-is inherent irs the learning algorithni to asoidiarge weigh, ani qaeati. to enasre smoothness uf the

This lower-level aproach is more appealing, as the constraints on struc- mapping implemented by a network. A sigmoid transfer function is

ture for the network come from the network itself, rather than-from a linearfor smal (nd hencues, but approximatesto a ste p function for

global monitoring system as-dcribed in §1.1. On-the other hand. sys- larger values (and hence for small weight%) stop functions are neces-

tems-have been proposed where processes such as adding nodes and sary to classify individual samples from a statistical distribution and

pruning would be carried ot by exactly this type of global control we have already been emphasised in §3 that this should be avoided if

process, which could itself be a rule based system or a neural network. at all-possible.
s wAn alternative approach to discouraging the fitting of individual

samples. again emphasising the power of the biased cost function, is
4.2.1 Minimising a Biased Cost Function to include a term in the cost function representing the curvature of

In standard learning techniques we optimise a network in terms of a the mapping. averaged ller the input domain."30 The elimination of

cost function which d-scribes the-goodness of fit-of the model stored high cmutature eliminates sharp tia.stions, and has a 41milal effect

in the network, to the data representing the problem to be learned, to the bia-s term in equation 5. In addition, if the data .:stributions

A secondterm can be added to the cost function ter.4 IIncorporating are smooth, and the cur,ature of the mapping s mlnised, the per

prior knowledge of the problem, such-as the kind of architecture %rch formance i. iikely to be imprcsed fu the das sfication of presiousl.

is likely to be most useful for the problem, constraints on %,eight 5al. unseen patterns. Minimal netoU1s ;apkmenting loss curvature map

ties, or constraints on the function impiemented b tie netliork. A ping s %oliid also be more ;ikely to perfizra uscfullk in extrapolation.

constraint on the function implemented might be that the network that is for the dassificatior of patterns outide the input domain rep

should -not learn to classify individual samples from overlapping or resented by the training data-

noisy distributions; elimination of such unlikely solutions leads to the
extra term being referred to as a bias or tugalla.q 9 ,cutm io tlue Felt 4.2.2 Pruning according to an ordered list of node or weight

of non.parametric statistics,. relevances

O= E 0 11 I) Mozer and Smolensty 12-11 opt for an 'all or none* approach to prun-
ing, rather than gradual pruning by means of wight decay. They

In-relation to pruning networks, or the production of minimal ar- Investigate the relevance of a unit in the network w delnl as
chitectures, the constraints we wish to apply by means of the hiast
term will be such that they minimise the number of active nodes or E,,i_, - E ,, (7)
weights in the network. These can he removed from the network before
training ;s continued, so that the relevanceof a unit depends ,n how much tthe network glohal

Rumelhart's pruning mechanvinii unpubiiedhja--h-hdhdu, s t-ai error sin increase if the node as rm,,ted. Prunng ,, l then be ap
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pi~d for-the least relevanturats. The relevankce ie&a ire is determined is sulved for Upstart-by transfuriniing the Tiiid-ew i m best
by the shape of-the-error surface around the mimnum-to inch the criterin fur-pruning appetr. tu bt. Ll.u nidueofdeaiitvt fthe

network has-bccn trained. This is best chara tenisedl fur a par.boic netwurk error to the piesene.e uf a iieituai, tind it is hiopwd thatt this,
minimum-by the first-and second deri,-atives according to the Taylur wvill vei) scioni be used as the haaib uf ain ilitVgiatUkl 6yateii fui buildinig
series, namely networks, incorporating construction in early trainingand pruning as

OE~a I 0E~a)a solution is reached, enabling an optimal architecture to he found.
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Neural Networks as Petri Nets

Hans Nicters, GMD, 5205 St. Augustin, Postfach 1240, Germany
Email: nit@gmdzi.gmd.de

Abstract <2

IA1-11 A2-12
Relative few -papers on the- relatioinship between xeuraJ networks (NNV) and it1
Petri nets (PN) are known (e.g. [1),[5)). Other groups try different approaches: <Al. Al> A (2
M:.J.Afurre (Leiden University, Netherland) and K.Lautenbach (University
Ko~blenz-Lindlau, Germany). Our approach is to use -Predicate Transition a31 a4l 1 3 4
systems (PrT systems). The -result is, that for nonrecurrent 1'N's a bet Fl- <Al>A A2
iorally equivalent PN canl be given. The proposed tech nique of transforming
NN's (with and-twithout backpropagation)-into PN's is demonstrated by ex- 3 j~1 2 etil.A2-AI,
amiples. We showY some differences betwveen both modeling techniques and A-l (14et3>;)-,I els '0 4-1f (Net4>0)-> I else
also, that both could perhaps gain benefits from each other, if they -were put
on a common basis. <3 A-

NN -as PrT systems 3

We follow about the NN definitions given in (4]. Predicate Transition systems AS-t (Net5)-> Ielse-C--A50 05
(PrT systems) are a widely used high level class of PN. Details about PrT sys-
tems can he found in [3)]A71. The representation of a NN (without ba-ckprop.)
into a PrT system is done by-associating- to each unit a transition and to Figure 2- The PrT1 net for the XOR NN.
each link a place. Weights occur in the 'equations' associated to transitions,
where-also the computation of activation-values is performed. Example: The
NN- for the XORproblem is shown in Fig -1, the corresponding PrT system results in marking < I > on place o5, which is the result expected for the
in Fig. 2. given input.

I 2 For NN without backpropagation that solution is straightforward. The update
(firing) is maximally concurrent, we dont need any extension of classical PAT

I -l -l Isystems and-the Prt net-can be generated automatically from the NN (and
this has in fact beeni done).

3 4,

I NN with backpropagation

5 The translation of a NN with backpropagation requires a single 'global' tran-
sition for setting the activation values (for input units), the target values (for

Figue I. A N fo theXORprobem.output units), and for testing whether to stop updating or starting thle next
Figre : ANN or he QR robemupdate with -new- input/target vector. We give now the Pr? transition(s) for

The input marking corresponding to the input pair (x,y) is placed in the input each (input, hidden, output) unit of a NN.
Places ii, i2 such that Md(il) = xMo(i2) = y, where Mso initial -marking. I
The corresponding PAT systemn is 'behaviorally equivalent' to the NN, in thle )l..T PT.- ).'u~f r-1,,K

sense that for each input given to the input units of the NN, the marking of <ittrained? WW~jr-W.jr(ata-_J"A~r).
the output place(s) becomes (after firing of the transitions) identical to the oKO) TR (00 ) J. , S0r

output values of the output units (after updating the corresponding units). controlt glb 7,<C etal (WW....K
Lets explain the PrT system of Fig. 2 in- detail. The transitions correspond IJ
one-one to the units of the ANN (I to 5). For input units we add input places (s.j c..r ar Wi ..J
(il , i2), for output units an output place (o6). For each link between two units rI.Kj,,Sr )j J-I...,'Srr
we generate a place and connect that with the units. The ares are labeled i.g.
with formal sums of tuples-< ij, - ,tiA > +. .. + < irml, . 1~ >, where
the tij are either variable symbols (starting with capital letters) or terms Figure 3: The global transition and the transition for an input unit
over some set of operation symbols and variable symbols. In our- example with B~p.
mn n = 1 and each tt; is a variable symahnl. The markings are taken from
that set of formal sums too, but no variable symbol must occur in the j. The
labels of arcs ic the neighborhood of a place must be of the same arity (it) as Global' takes-input from- three gLibal vlaces Imit', 'contrnl and 'trained.
the marking of that place. The emapty tuple s.. is allowed too in niark~igsian~d ini tucntains, Lim vectr vf iliput and trairiigs values lbr one criiip.La-
arc labels. To each transition a counjunction of equatiuns-betweeni two tcri LAncl, iuicudig -1 v alues fur die threbhold £Input uiiits. Foi (.xwiii
may be associated. The equatiuns niust all be satisfied fur the trarisition bc~ng plc, ii, c rs, of Lin,. XOR exaiile abuvfe, the initialinarking of Anilt could
enabled, be 1000 < -1,0,0,-l,-l,0 > +1000 <~.l0l-l-~ > +1000 <
In order to describe the dynamics of PrT systems assume as initial marking - 1, 1,0, - 1, - 1,1 , + 1000 % - 1, 1,1, -1, -l~ 1,1>, where the second and
e.g. Mo(ml) = 0,MAl(ml) =1. Transitions 1,2 are enabled now. Transitiuii third comipvnent3 of each .uphe s ... ., denote the input values, the last
I is-enabled for the substitution {0II1,0iAll, transittun 2 is enabled for coi.iiiit te target valuA; and dte others thle threshold input values. Thc.
the substitution {01II,tt1AI). bander these substitutions the equatioiis as- glvbal place; control' is initially marked by KC _>, where K is the number
sociated to the transitions become 0 = U aiid I =I resp. aiid hieiice are of iput, Units aild dll uf tliein amc iiasumed alien 'global' fires. The global
satisfied. Both transitions may fire concurreiitly, remrioin -the tokens fruit, la., 'traiiied'* initially comitairis a c. 0 2 token, which is altered to <I .,

their input places ii, 12 and adding tokens . U > to their output, placs a3l, hit c ia. of firing, wich inmay happen wnly if the eqluation Tr-0' is satisfied.
a41 (reap. <. I > to a32, a42). Next, transitions 3,4 are enabled under the I.e. glob~al' fires exaldy once for each comiputation cycle. The transition pro
substitutions {0/Ai, 1/A2, -1/Nct3,0A3) and {0/A1, 1/A2, IlNet4, 11,14.. dw ice otput tokens fui e~ach p'air of places c;,, aj, where r runs over thme
After concurrent firing of these transitions, tokens are rnoucd fromt pltmects at o f iimput. i~t ,uid j uv,.i the st vf sucsors S~r. of uiiit r. The ares
a3k, a41, a-32, a42 and- tokens <. 0 .> (< I .>) added to a53 (4.4). Last, arc labeled %ith a control token Mb, ep. With < 1, >., where 1, denotes a
transiton 6 is enabled under subsitution {0/A3, IjA4, I/AvctS, 1/A5) and ,.sriablc dyimbvl (f meplacd by th, samiiic. index as in its cortrespondimig plac).
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backpropagation,-updates the network in 3 seconds, wheras a dcdicated-NN
(c-r a-r W~j d-i ".~r)simulator manages at least 5 to 20 thousand updates per second.

PrT-systems (like-all other PN) canl be 'folded'. The result is often a single
<D tatoleasth fo pe ncitos The result of folding the PrT-systern

A-r r~~d~i*A0 Ir K u2.,. 0---"(--- E .Wr -D~ such -transition is of course faster than simulating the original system, since
r-K- I _,L (WW ..jr)wj- t-D jAr

-I -.Jr

( c..jr a..jrw.;Jr a-.jr) j-i..-s(r) init ________________________________

Figure 41: The PrT transitions for a hidnui wt bcpoaa . T-4> k.6-r( ZW-.61OA1 ,1-1,2,3

For cach-input- unit r in 1, .., K a transition u, is generated, which is part of cW..S D.77(A.1C7..)

the backward pass (cf. righthand side of Fig. 3). It takes its own activation W-50 <W 0 0-7-if (abs(DOT)PepsI In)->D_7,O.
vau ,(set by 'global'and used by its successor units), the old weights iY,~ TTR-if (3bs(O71)esOn)-)O~i.

(connectors to its successors) and-the error output D, backpropagated from <W.76, 0-65*A-6-0(-A-)D.71-W-7, WW.76*W_76*taD7*A..)

its successors (!). It produces new- v~Jgts W14', clianged-by thme transition W-1 W.74.w..74*Ista-O..7-A..4) WW63-W_63*I~ta'U...*A3),
equations, and a tokeii on the 'control' place. The transition has an cqua- w6 W 76 Ww.62w2.ts"O56A_2i, W6 I -W-.6 I *-5ta-0_.6*A.W.)

tion-for each-outgoing connection. All of them must be-computed in order <TTR WWS25-W.5O(Sta-D_5A_. .. )_1-a3---A
to produce-the IVI'1, values. (Symbols starting with capital-letters denote W5WOQaD-A0
variables). 'aeta' is a constant (0.5 for our example). tralna 07 - - -

For each hidden Unit two transitions must be generated (cf.-Fig. 4). ul, for tile-
forward pass, computing Lte new-acivation value, and U2,-fur thle ba~kward Figure G. The PiT systrin fur tlie XOR-NN (with B3p), completely
pass, computing time error signal-D, to its predecessors P(r) and then the new folded.

9 weights. The equation in ul, uses r', which is a sigmoidal squashing function.
In u2, the-denotation ,m = I_,.,Sr) is used both as summation index iii Since the considered -class of NN can always be folded in that way, the re-
the first equation (tle same as in-ul,) and as index for producing tile rest of suiting tranisitions can be used as building blocks in hybrid systems, leaving
equations. tile task of represemting-and analysing synchronization of complex systems

to time very-PN methods and tools.-im the future we will consider recurrent
(cr -i w..rt d..ri) I-.,Pr N and look for examples within which an answer can be established to the

(c...m &tiquestion hlow hybrid PN.NN models could look-like amd whether they can be
combined-in a fruitful way.

_? Re erences

rt-, ,M -it!? (zbs(D..r'1eston-OD..r,O -TP-,( rabs(D.r'beet!- on R [1] .J.Elz, Petrmnetzc zu Simulation von Neuronenverscmaltungen und eiii-

41(TTR>facmen Lcrnvorgingcn. (in German) Address of Author: J.Elz, _I1ans-
<TA - IT-Wilihln-llannen-Weg 9, 4600 Dortmund 50, FRG

traine2? ILE-..Fuss, AFAIG - tim asynclmroner Flussmedellgencrator. (in German)

Figue 5 ThePrTtrasitins or ll otpu unt wili-ackropaatill. GMND llericht. Nr 100, 1975
Pigre5Thm Prtraisiionforn otpuuniwit-bakprpagtio. [3] lI.J.Genricli, Predicate Transition Nets .-In--Petri Nets: Central Models

The scliema-for-generating thle transitions for output units should be clear and their Properties. -LNCS 254, 1987
now Time initial value of 'trained"' is < 0 > and gets changed only if the stop [41] ALindcn, fintcrsuichung von Ltackpropagation in konnektionmstischen
criterion for~that tramisition is satisfied The weight-places W,, are initially 5ysterncn. (in German) 1istituts-Bericit. No. 80, Dept. of-Computer Sri-
marked with thie inital values. Time result of generating the PrT system for ence, Boiin Uiiiversity bonn. 1990
the XORt example is left-as an exercise to time interested reader. [5] 1M.K.llabib, R.W.Newcomb Neuron Type Processor Modeling Using a

Tinmed Petr; Net. IEEE Transactions on Neural Networks, Vol 1, No.

-PN + NN =Hybrid systems? 4, Dec 1990

(6J Jl.Nieters, GraphimcalSmulationm of Petri Nets in the GRASPIN environ-
Some differences between PN and NN arc. (1) Simigle type of nodes (INN) ,ncnt. ESPRIT Project 125, Techiical Paper GIND 40/1, MarcliOD
versus bipartite graph (11N), (2) Continous activation values (NN) versus
djtseret; (rN). (3) i.Alsu utgau.vc.i rual %aluesp uf weigthis tNN)t versub-puk. [7 1.Nictcrs, tAcural Actwvorks as5 Prrcdnate Transition SI/stems. TU appear
tive inceger (PN). (.4) Units are often updated synchronously (NN) but asyn- as Arbeitspapierc der GMND
clironous transition firing (PN) (5) NN are deterministic, i.e. iio decisions (8 .akSefMdyigNt.AnurlEesonoPtiNt.i,
between alternatives are takeni even in-recurreuit NN (iiot considered here. (8R.alSf oipgNesAntrlEtniomoPtmNtsim
Hlence the-PHI representation opens up the possibility to model alternatives Ausiello,/hohmn-(cd.)LNCS 62, 1978, Springer Verlag.
additionally. (6) The embedding of propositioiial and first order predicate
logic in PH- theory hiss iio equivalent in -NN. Thle NH form of the logical
.or' is rather complicated. In PHN we know that a propositional implication
a A b * c V d is represented as a dead transition with a,b as iniput and c,d
as output places. The representation of (eveii) propositionial logic in NH is
much more complicated. (7)-PH are suited for formal analysis (reaciahility
trees and invariant calculus), since lPN are Used to describe exact solutioiis
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The symmetric logarithmoid : anactivation function for neurons
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ABSTRCtCT. The symmetric logarithmoid provides t The sigmoid and the symmetric logarithmoid can Lk
viable alternative to the sigmoid, while preserving manl considered to be-in a continuum of-activation functivns. Onk
characteristics of the sigmoid. The sigmoid is -very flat whein extreme of the activation functions is the switch (the sign
the absolute value of its argument, lad. > 10. In other wuds, function), a network based on which cannot-be trained bL an)
its derivative is extremely small, and has poor scnsitivity to of the optirnisation methods meart for continuous funLtionm.
its argument. This jb the root cause of the very slow rates The sigrnoid alleviates this problem by smoothening the
of convergence during the training phases-of neural networks, bwitch near its diseontinuit). The symmetnc logarithmoid ib
and relative insensitiv ity f the network to a fairly wide range continuous and first order differentiable. It-is a iunotonieall
of weights. The bynmetn. lugarithmoid overcorneb thecs increasing function with iinximum sensitivity iear zcto ad
limitations, despite perhaps treating some others of its own. monotonicully decreasing-ocnsitivity away from zero, as with

Feed-forward neural networks can be used as simulators the sigmoid. However, the symmetric logarithmoid never

trained from the gross observed behaviour of a system. becomes insensitive to the argument, and its output is not

This paper illustrates the applicability of the symmetric limited- to between -1 and 1. Networks using this function

logaritlimoid activation function in a feed-forward neural are a bit easier to train, and the convergence is better. The

network for such training exemplified-by a system identification other extreme of activation functions is the linear (identity)

problem of pressure -drop in a rough -pipe. The inputs to the function, which finds limited use in our work for statistical

network include viscosity, density of the liquid, diameter and purposes. This function, obviously poses no problems to the

roughness of the pipe, and-the velocity. The outputs are the usual optimisation methods, and the Levenberg-Marquardt

friction factor and the pressure drop per unit length. The method, which we use, converges in a couple of iterations.

networks were trained using the Levenberg-Marquardt method. 2. The flow in a rough- pipe

The symmetric logarithmoid is continuous, first order To study the applicability of the symmetric logarith-
differentiable and a simple,-monotonically increasing algebraic noid, we considered a simple system of a flowing liquid in a
function. While minimising the error square sum for the sough pipe, under turbulent flow. The pressure drop in a pipe
outputs, convergence is generally fast compared to thr is of vital interest while sizing pumps or compressors, and for
sigmoidal activation function. Extremely large weights irr calculating flow rates. It is estimated by empirical correlatioun

not commonly generated by the training process, but is a such as the one shown below [ 2].
usual feature with-the sigmoids. The symmetric logarithmoid,
evidently, does not mix well with other activation functions, AP7 = .
especially- the sigmoids. T id

1. Introduction C 2 logd+ 1)]2 Re>2300

A lot of research has-been done on feed-forward neural 3d.7 1-

-networks taking the sigmoid for granted. The sigmoid, however,
has its limitations and -its applicability is not universal.
Sigmoids are meant for outputs contrained between 0 and 1, Re = !d

or -1 and 1. A linear mapping can extend this range. But V

many variables do not have such limits, and it is not always The pressure drop, Np per unit length is proportional
desirable to map them to a range of 0 to 1 since sensitivity to the friction factor, ,, a measure of retardation of the flow
can be lost in the process of mapping. Feed forward neural by liquid viscosity arid pipe wall roughness. The pressure drop,
networks can be used for systcm identification of processes obviously, has no natural limits on the positive bide and so doeb
[ 1 J , and one often comes across variables like temperature, the friction factor.
pressure, viscosity, concentration, etc. which have no upper
limits, although for a system under consideration, they may The pressure drop depends on the density, p and the

stay in a particular range. If the range is more than a couple kinematic viscosity, v of the liquid, the flow velocity, w, and the

of orders of magnitude, it is customary to deal with their diameter, d and roughness factor k of the pipe.

logarithms in the mathematical models. For the sake of training a feed-forward neural network,

The sigmoid is very flat when the absolute value of its examples were generated at random in the following range of

argument jai > 10. In other words, its derivative is extremely inputs.

small, and has poor sensitivity to its argument. This is the
root cause of the very slow rates of convergence during the P 0.5 - 1.5 x 10 kg/in
training phases of neural networks, and relative insensitivity of k 0.1 - 1.0 x 10- 6 m
the network to a fairly wide range of weights, 0.5 - 5.0 x 10-s m2/seCw 1.0 - 10.0 in/sec

The symmetric logarithmoid, given by the following d 0.1 - 0.5 m
equation overcomes these limitations, despite perhaps creating
some others of its-own. This guarantees that Il > 2300.

a'

1= In ( +Plil)
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3. The -Levenberg-Marquardt method

The-Levenberg-Marquardt method [3-6 J was used to
calculate the weights in the-neural networks which minimised
the sun- of squares of errors. Most algorithms for least-
squares, optimisation problems use either steepest descent or
Taylbr-series models. The Levenberg-Marquardt method is.
a restricted step method, which uses an interpolation between
the approaches based on the maximum neighbourhood (a "trust 05
region")Iin which the truncated Taylor series gives an adequate
representation-of -the non-linear model. The method has been
found-to be advantageous compared to other-methods which 0.0
use only one of the two approaches.

4. Results -0.5

The results give a clear-indication of the applicability of ________ analytical

the symmetric logarithmoid-activation function. (5,5,1)
-.-- - - (5,5,2)

(5,7,1)

4 . Training -the neural networks - - (5,7,2)

A table of 200 training instances was createdby random -. 5 8 10.0
selection of inputs in the ranges stated in section 2. The 0.0 2.0 4.0 6.0 8.0 10.0
pressure drop per unit length was tabulated in-units of 101
Pa/m. Yet, it often had-large values (greater than 10) which Figure 1. Logarithm ofpressure drop per unit length

would-,require the argument of the symmetric logarithmoid to vs velocity.
be very large. Therefore, the-logarithm of the pressure drop
per-unit length (in units of:10 3 Pa/m) was tabulated instead.
Similar- results were obtainedwith actual pressure drop values. References

With one hidden layer, the number of hidden-nodes was
varied-between 2 :nd 7. The configurations with 5 or more
hidden nodes resulted in good fits of the training data. The 1. Bulsari, A. and H. Saxdn,
error square sums (SSQ) for (5,5,2), (5,6,2) and (5,7,2) were "Applicability of an artificial neural network as a simulator
0.189, -0132 and 0.080 respectively. Networks with-two hidden

for a chemical process",
layers are not as easy to train as the ones With one hidden layer. -Proceedings of the fifth International Symposium on
This has been observed with the sigmoids, and was observed
with this activation function also. The configuration (5,2,2,1) Computer and Information Sciences, Nevsehlr
had aSSQ of 0.341, but (5,3,3,1) with 34 weights-had a SSQ Turkey, (October 1990) 143-151.

of 0.0583, less than 0.084, the SSQ of (5,5,1) with 36 weights. 2. Streeter, V. L.,
The SSQ for (5,4,4,1) was 0.0316. "Fluid mechanics",

McGraw Hill Kogakusha, Tokyo (1962) 215.

4.2. Testing the trained neural networks 3. Levenberg, K.,

The trained neural -networks were then tested with "A method for the solution of certain nonlinear problems
various Velocities, while keeping other variables- constant (P-= In least squares",
103 kg/n 3, k = 10- 4 M, V = 10- 6 m2/sec, d = 0.2 in). A plot of Quart. Appl. Math., 2 (1944) 164-168.
the logarithm of pressure drop per unit length (103 Pa/m) vs 4. Marquardt, D. W.,
velocity-is shown in Fig. 1. "An algorithm for least-squares estimation of nonlinear

It can be seen that for various configurations shown in parameters",
the legend of the figure, the predicted values are quite close to J. Soc. Indust. Appl. Math., 11 (June 1963) 431-441.
the analytical values. This accuracy is sufficient for engineering S. Fletcher, R.,
purposes. Typical error is about 0.05, which is about 2.5% of "Practical methods of optimization, Vol. 1,
the range on the vertical axis. Unconstrained optimization",

John Wiley and Sons, Chichester (1980) 82-88.
3. Conclusions 6. Gill, P. E., W. Murray and M. H. Wright,

The feed-forward networks trained with the symmetric "Practical optimization",
logarithmoid activation function performed well in the testing Academic Press, London (1981) 136-140.
phase. Convergence during training was faster than is usually
encountered with sigmoids. The weights generated after
training were never very large, although that happens often
with sigmo'ds.

The symmetric logarithmoid, thus provides a feasible
activation function for the nurons, instead of the sigmoid,
when the outputs are not in a well-defined limited-range.
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Robot Vision Based on
Coarsely-Grained Multi-Processor Systems
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Abstract single board computers. This made it easy to replace its
Concepts are introduced, hich allow robot vision systems -parallel prv,.ssors by more puverful ones later. Suc.h an

to be-designed according to the inlirent strudure of the task improved version of the BVV 2 has been used for detecting
of vision. Practical results obtained Aith such systems aic and classifying obstacles on the road while approac.hing them
presented. with a speed- of about 50 km/h on an unmarked road

<Regensburger, Graefe 90; Solder, Graefe 90>.
Introduction Recently, the BVV 3- has become operational <Graefe

Coarsely-grained multi-processor systems have been 90>. It employs Intel microprocessors 80286 or 80386,
demonstrated-in numerous practical applic.ations to be-partil.- augmented by a ,ustum-deigned ,Upru.essur for feature
ularly well suited for building powerful robot visiun systems extraction. The BVV 3 is:intended to be us ed, for instance,
<Dickmanns, Graefe 88a, b>. The real-time vision s)stm, in future experiments with an autonomous vehicle-partic.ipat-

BV-V-1, is an early example. Conceived in the late seventic, ing in ordinary highw, ay traffic. <Graefe, Kuhnert 88.>. The
ituses only a few 8-bit microprocessors (Intel 8085A)- v..-, BVV 3 should generally perform feature extraction about 5
by today's standards are rather weak -and slow devi,es. to 10 times faster than-the BVV 2, depending on the task.
Nevertheless, the BVV 1 as-a system was demonstrated in Tests have indicated that in some vision related applications
1982-to be sufficiently powerful for sulving a demanding task it is actually more than 100 times fi.ter than its predecessor.
in robot vision. the stabilization of an inverted pendulum It shuuld be noted that the good performance of the BVV-
<Haas 82, Graefe 83>. systems is not a result of utilizing any particularly fast elec-

Its successor, the BVV 2, was comeived in the early tronic components, but rather of a system architecture that
eighties <Graefe 84>. Based on much stronger 16-bit pro- matches the inherent structure of the task of robot Vision.
cessors, Intel 8086, it enabled, for instance, the experimental
vehicle VaMoRs in 1986 to -follow a road at a speed of System Architecture
96 kin/h, making it by far not only the world's fastest fully A robot's environment contains a limited number of
autonomous road- vcicle, but-also exlusively the only one physical objects that are in some respect relevant for the
whose-speed -was limited by-its engine and nut by its vision operation of the robot. Among them could be landmarks,
system <Zapp 88>. The BVV 2 is an open system based on obstacles, the pathway, objects to be grasped, or various
the standard Multibus I and- using cummer.ially available other objects. At any given moment only selected ones of

these objects-need to be monitored simultaneously, provided
the robot is able to switch its attention from one object to

Video Section another one within a fraction of a second.
A robot vision system should, therefore, have the ability

to observe a small number of objects, say half a dozen,
simultaneously. At the same time it should be able to main-

Object Object ... Object tain internal -models of a slightly larger number of objects
Processor Processor Processor existing in the robot's environment but not demanding imme-

diate attention according to the perceived situation.
If the structure of the task to be handled is reflected in the

Situation-Processor structure of the vision system a particularly high degree of
efficiency may be expected. This has been discussed in
greater detail in < Graefe 89 >. In short, one "object proces-
sor" each should exist within the vision system for each

Robot Human Operator relevant object in the robot's environment. Figure I shows
Figure 1 the conceptual structure. It comprises a video section, a

Conceptual structure of object oriented visiun systems number of object processors, and a situation prouessor.
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Video Section processor may then be implemented on separate-hardware,
The cameras, digitizers, and a means for distributing the possibly a transputer network.

-video data to the object proessors make up the ',ideo bec Tw& o new implementations of the object oriented architec
tion. In addition, it may ontain c.amera .ontrol deNies-hke ture are -urrently being developed. Both of them will be
platforms or lens controllers. Each object proc.essor has based on a standard PC equipped with a commerciall) aail-
direct access to the digital video data. For tle effi,.ien.y of able video digitizer and a few .utom built micro.omputers
the vision system it is of utmost importance that allobject to be utilized for f.ature extra.tion and 2-D object models.
pro.essors have independent a..ess to these data. Therofore, In one implementation the Intel 376 microprocessor will be
each objectpro.essuor should have its uwn image memury. A used with an expec ted performan.e similar to the BVV 2
single shared image memory is, of .ourse, .heaper, but it level and its software largely .ompatible with the BVV 2.
tends to create a severe bottleneck. The other new implementation will be based on theIntel 960.

Its performance is hard to predict, hopefully it-will approach
Object Processors the level of the BVV 3 at a lower cost and smaller size.

Each object processor receives digital image data from
one or more cameras and outputs a description of one partic- References
ular external object. The des.ription may relate to the shape, Dickmanns, E.D.; Graefe, V. (1988a): Dynamic Monocular
location, state of motion, or other .hara,.teristiws of the Machine Vision. Machine Vision and Applications 1 (1988),
object. An object processor is a conceptual entity, not a pp 223-240.
physical one. In principle, it does nut matter-if such an objet DiLkmanns, E.D.; Graefe, V. (1988b): Applications of
processor is implemented on exa.tly one piece ofl ardware, Dynamic. Mono.ular Machine Vision. Machine Vision and
or if it contains several computing elements, or if several Applications 1 (1988), pp 241-261.
object processors share one .omputing element. -Given the Graefe, V. (1983): A Pre-Processor for the Real-Time Inter-
present state of mic-roprocessor technology, an object pro.es- pretation of Dynamic Scenes. In T. S. Huang (ed.). Image
sor for a typi.-al robot vision appli.ationma, be impl,.mented Sequene Pruxbsing and Dynamic Scene Analysis, Springer-
on-one to three microprocessors. Verlag, pp 519-531.

Graefe, V. (1984): Two Multi-Processor Systems for Low-
Situation Processor Level Real-Time Vision. In J. M. Brady, L. A. Gerhardt and

The object decriptions are fed into a bituation pro.essor. H.F. Daidson (eds.). Robotics and Artificial Intelligence,
This is, again, a conceptual entity. It will typically be-imple- Springer-Verlag, pp 301-308.
mented on a number of micropro.essors. The main task of Graefe, V. (1989): Dynamic Vision Systems for Autono-
the situation pro.esbor is to deal with the interactions of the mous Mobile Robots. Proceedings, IEEEiRSJ International
external objects with the robot and among ea .h other. Workshop on Intelligent Robots and Systems (IROS '89).
Besides, it assigns objects to the object processors. The situa- Tsukuba. pp 12-23.
tion processor also interfaces with the human operator, Graei'e, V. (1990): The BVV-Family of Robot Vision Sys-
exchanges sensor and control data with the robot, and con- tems. In 0. Kaynak (ed.). Proceedings, IEEE Workshop on
trols the video section, if necessary. The .omplexity of the Intelligent Motion Control. Istanbul, pp IP55-IP65.
situation processor's task depends highly on the complexity Graefe, V.; Kuhnert, K.-D. (1988): Towards a Vision
of the robot's task and on the environment the-robot is sup- Based Robot with a Driver's License. Proceedings, IEEE
posed to operate in. Follovwing an cmpt) road, for example, International Workshop on Intelligent Robots and Systems,
involves hardly a situation to speak of, because the road is IROS '88. Tokyo, pp 627-632.
the only external objet. On the uth,.r hand, driving autono Haas, G. (1982). Melw ertgew innung durch Edlhtzeitauswer-
mously in ordinary road traffi., will certainly require a very tung von Bildfolgen. Dissertation, Fakult~t fur Luft- und
powerful situation processor. Raumfahrttechnik der Universit~t der Bundeswehr Mfinchen.
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Abstract

The-use-of.NMarkov Randomn Field (MINi'1) statistical models ha !,L(s),v,, = (s) and wU = cy, s E S) In the model con-
recently brought new po~%wrful soluitionls to clasqicaI image analysis sidered -hero elocitIes dre dcfined on the same-grid S as the pixels
problems. lin recent papers, -we hiave presented -a new class of spatio- andl the velocities5 are discretLized acrding to a-discrete state space
temporal MR7 imodels tahkihhave been appliedl -ithb slicess to differ- W' = (-Umax ;Umax, 5 1

,nar -Vrnaz) Wvith a step-size of b. The Mill'
et; basic-tasks in visual motion analysis. lin this-paper parallelizatiomi model is associated to a 8iieighburhood andl specified by following
methods for those relaxation-algorithmns are investigated and a new energy function
hierarchical- approach, based onl the interactions-between diffcrent-re-
laxation-processes running in parallel at different scales is presented. U(f,mD) J fs,t)- f(s+m0.dI,t+dt) }2
Tile liierairclmical-nmethiod-lhas-been simulated in-the case of optical flow S E S

estimation. -It-shows good-performances (quality-of thme estimiates, gin + Cr 2 i11
lin number-of iterations)-when compared to sequential algorithms.

1 Introduction The first ternm in% the energy (knownm as the "displaced frame differ-
ence") expresses the constant brightness assumption for a physical

Markov-Random Fields-(INRr) in'idels have beeni successfully intro- point over time. Tile second term balances thme first one through
duce insevralimprtan isuesof til imgesaalyissuc asim- weighting-parameter ca, it can-be interpreted as-a-regularization-term
duvhicl favoursra smootht-ssie souios sthls discreteys state sasc im- t0 p

age restoration, segmentation or edge detection, 161 Our-group has tich flor estmot proletins leads toiscole saense lndscape
recently extended thme MNRF models to the analysis of image sequences shafowngsmim to rbe ed oacmlxeeg adcp

for motiont detectioii, [3], optical flow estiiatioil, [8) and motion-based soignmrous local mninima. Ilence this model is as a good bench-
segmentation, [5). lIn vislial-mulotiomi aiialysis, IMILF appear as an-eff- mark-for parallel stochastic-relaxation algorithms.

= cient and-posverful tool-for combimning spatial and temporal informa- Tmesohtirlxaonlgihsaebsdonheeeain
tioni. For details conceriiing the models desigmelim each case, we-refer of e r tohathrlaatioiino (ams oslimitr bdii eeertion repn
to [3, 8, 51.ofraiainoflar-vCaiwhsliiditiuincrepd

teThe subject of thme paper is the study of-parallel approaches for to the Gibbs (distributioni p~f 4Z) -1 exp) -U(f,O), (6]. Two -basic
tierelaxation algoritlins, [6) associated to NIRF in image aiialysis relaxation algoritmis are gemierally used :tile M1\etropolis algorithm,

Indeed, one very attractiveproperty of NMRF is that, though the inod- (11]or Lte Gibbs sampler, 16]. bIthe case of optical flow computation,
els are global-and non linear, the involved computations remaini local thme Gibbs Sampler cal be dlescribed as follows, [6]:
and are intriiisically parallel. We present here anl approach based on let (n1 , n2, .m1 , ni E 5 be asequence ii which thle sites of the vector
relaxation-algorithmns runiming iii parallel at different scales and inter- field 0 are visited-for upidatuing (raster scani will lie coiisidered- here).
acting periodically. This parallel algoritmn is compared to sequential The corresponding label- configurations are doiioted C(1 (J (j)
stochastic-or determniistic algorithmis ii the case of optical flows conm- Z~is anl initial confligurationi thosen at randmidn. Let T(t) be a (IC-
putation. It exJmibits-fast comergemce hirupecrtieb aiim omil requires a creasing seence of tmjrnm-.At ihnai I .4ie 1,i of Z"- is
small number of hirocessors. updated by dra-wing a sample froni thle local characteristics of thle

Gibbs dlistributioii :lT(f,W,) = h exp ZL/1.It is straiglitfor-
2 Mvarkov Random Fields for motion analysis %Vdid to -ho0% OWaL tlil 4oiitiualaoi i I-Iual, Lhanik. Lo thu niamloilait

property of thle model amid oiily involves site 11, and its neighbours.
Tile imodelinig and analysis of inmges bN NIRPs lias beeii discubsed { AO),j..(I)... ) defilnes a Malros Chain ahose conkergence
extemnsively In Lte litterature, J1. Io extract labels describinig nlio- properties 1ia-v heema, 'tddc.ti~l,I, G'. A logarithmic de
tionl from image sequences, observations related-to time siatmo-temiporal craii eiprtm cidiei ruuidt na. uj rcict

variations lin thle image seqIileiice' are cominmed withm a, priori generic global mrmamimiimm of thke enc-rg fuuautio. To a~e cuoiiutatioli time, we
knowledge onl the explected sohitiomi, iii order to dense estmima~tes ofthme Imese conisidered less eonsr ~~vjcspocmtiat cadj e of thme form
uiknown-labels. Tile labels are biuar features iii motion (detectioni, T(I) =ru.Af. A1 < I (% hmich dare oftem iisedl III practLice).
vectors iii optical flow e-stinmation anld region numbers iii mnotiom-based
segmentation, (3, 8, 5]. MI111 iimodels dhescribie tile localI statistical in-
teractions- hetu elli these difc-remt s armables. X\~ lhen a immnamamn a puz, 3 Parallel algorithms for stochastic relaxation
teniorN (AP) estimate of thle uiiknowii],lael v-ariables is looked for,
MRF-based image ainalysis reduces to thke umminimiza1tmom of a global parallel iinplemmentation- of stochastic relaxation have been ronsid
eniergy-function U wichI depenids on t( hesiole obserxatmoii1 and a- ered for globai olptiiiii/aticiiiii1, applications such am comiputer-aided
bel field, [6). Minimmlzmimg thle global emergy fuinct ion I is aii int ricate circit design, [1) or iniaige processing, [6, 9, 41j Until now. three main
piroblem thLie number Of possible label (onfigukrationsis 11leilk approaches liase been imisestigatotd . parnllke~d .ifarkov rlmainis , .7].
t'cru large aiid the g~obal energy, fiumimto ( 111.1% exhibit 110uummieromm1. sinumltancoums updating of I(ini oi %jtc s, [6, 91, and paralkeli-ation of
local - iima. Comniptationally demlaniding stochastic rela~atioli aI- the local laticl uipdiaim. I'll
goritims are therefore general necessary. to compute exact MAP Parallelized Markos Chain,. have been proposed by Aarts et a[ for
solutions. Deterministic desceiit alhgoritlis, such as 10M, [21 canl of- globial optimmzaiutn prolems~ based oin simnulated annealing and thle-
ten be uisedl instead, when a good iititial gmmes., is available. Metropolis algorithm, [ll. The basic principle of tile applroachi is to

run iii parallel several relaxation algorithms, each of thm exploring
A simple model for optical flow measurement differemtly tile space of all possible label coinfigurations and interact-

iiig from time to time. This class, of algoritim may lie rmii onl a ID
We consider here a very simple modti-for optical flow conuputa- or SIMID mnacine by assiging each available process;or to a differeint

tiom, which will-he used-for comnpanikon purpose betwecen the parallel relaxation algoritm.' Thle iiiter.mctioii are based on periodic transifer of
andl sequential versionis ofstoclinstic relaxatioii (for in1oresoplisticated global label configurations betneen timle different processors. A similar
miodels iiicluidiing disconmtiinuities aimd occlmioni proce.ssitig see [1-4). method lias recenbeiitl I n-e died by mlraffigie, (-,I
Let f(s. ij deiiote the observed intenisity fiuictioii, where s (x. y).
s E S designate the 21) sfpatial imiage, coordinmate,. aind I the. time Our own approicli of thme problem is also based on parallelized
axis. Thme velocity vector at point s~ is (lemteu V4m5  ), U. Mankov Chains but derive, profit from a hierarchical representation
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of data-and labels, whiuch leads to anl efficient, parallel ailiealillg al a (equ. 1) wvas used fur-the e, s itiou t each level uf the
goritlim with a speed-up larger-thait the miet of pivbub Th label py ramuid (u2 - 20). lik evViy -case-the eUlklelg(!HLU eiiterioii Was
method canl be outlined as tullowsb . data pyramid js fiiA t cosi ul.ed the saic. the Aieldxdtioi~ wvas stopped a., boli as Like iiaxiliiu mliik-

by low-pass filtering and mubbaimphiig Lihe iiagvs of thw etlawite. At,- bui of iiiodified labels betaeii twou-suclessive iiidge bkIveeps (at tle~
cordingly, a hlierarchical I s~ epietmUh is a1Ulso couidel~i for the, ldal filitet mesulutiulk le~clj weiiL-beloiv soie ,puiificid tlhieshiold ktypicdly
fields which are estimated in-parallel at different resolution levels onl 10).
reduced grids (rig. 1). Relax\ationsb are PLmfomlind ini parallel by 4b- rigure 2 sliovs Lte cittigy plots obttaied fui a diveigeiit moution
signing one processor at each level of the p) ranjid. onl G-1.04 images by Lte diffeieiimt algonithis. Four lesulutionk levels

Followving (71, the different-relaxations are performed at fixed-tern- are used in the py rainid andl urn m ~ ini this case. PIll?
perature. To the low resolutionsa levels of thle liieiaichy arC associated produces estimaites close iiAi quahry tothet one obtaified by .5SR kthe
high temperatures. At-lowv resolutioiis, coaise estimiates of Lte label enieigies uf thle fin1 .d Lonliguiativii aie-rejpecLiaey 9LA70O aid b7300).
field are visited. Since-the total nnimbcr of possible label configura- The Slight degradatin of PIUR %vth-iespecl, to .51?ioriginates from
tion is reduced-at those scales, Lte coarse configurationk spa(ce cani be the block effect due t., Lte iiteiseale:-iiiteiae tii inie. PHR exhibits
visited very efficieiitly. A high teniperatuie enalbles to escape fiojin fast contVLrgeceL propjel ties (biikilai to SDR. but With e.stimaites of
local minima of the energy -fuiictjon. Tv the ;iitei imediate resolution significantly bettei quality). Ont-ah average, tile comnputational gain
levels are associated oertipatis.At tlic levels, tike iclax- (;itn iumber of iteratioisj of Pill? uver 5511, over several sequences,
ation process becomnes-wioe-senitive. to local iii iiinia andi vitb Lit, Was about 10. Ani imipleiimitatioirof- Lite proposed algorithm oin .ami
large or medium scale valleyls of the energy landscape, 171. At tile iPSC/2 supercomputer is currently ivestigated.
finest resolution level a- temperature close to 0 is adopted. Very low
temperature in the stochastic relaxation coimespomids to nearly deter-
ministic descent of time energy function :tile estimation is ultimately REFERENCES
refined at that level.

The explorations-at the different levels are cooperative . esery p [1] E.ll.L. AARTS anid P.J.M. van-LAARIIOVEN, Simlulated ain-
iterations - one iterationk , rrespuiidiiig to a full sweep onl tile Aliiage-- ticailing. tlicuri, and ulimtoiD.-Reidel Publishing Coipany,19zs .
a processor attempts to transfer a small label block to the next finter 12] J. BESAG, Oil the statistical amialysms of dirty pictures, J.
level (Fig. 1). The i nteraction -process is controlled as follows . a. block Royal Statist. Soc., Vol. 18, Scrie B1, No 3, 198G, pp. 239-302.

B,.at resolution level r is-interpolated at level r - I using siumple rep- [1] P. BOUTIIEMY an-.LALANDE, Detectioii arid trackimigof
etition of the label estimates at the missing positions of level r -1 niuvimig objects base~d ol Itatisticadl ic'gularmzatiun nietlhd AAA space
(Fig. 1). The energy Of-tile resulting Ilal configuration is untputed aiid timie, iht Pro,. Poist Euriopicw Cvitfcciicc onl Comptcy 'I ismton,

and ompredto he eerg-ofthecorespodin blck -I7 at time Antibes, France, April 1990, pp. 307-311.
finer resolution r- 1. The local label configuration on the block B"' [4] 11. DERIN anz .. ~OAprllliaesgetto

kalgorithm using relaxation with varying neighibourhioods and its map-
is replaced by thle interpolated configuration-of block X,. if thle latter ping to array processor, ('omput. Vision, Graphics, Image Processing,
is-better than-thle former, that is, if its energy-is lower. Loca ener'y Vol. '10, 1987, pp. 54.78.

= on blocks are obtained at reduced additional cost from the local cli;.r- [5] E. FRANCOIS and P. BOUTIIEMY, Multiframe-based iden-
acteristics of thle Gibbs distribution. tification of mobile components of a scene with a moving camiera,

in Proc. IRCE lilt, Conif. Computer Vision Pattern Recognition,
Experimental results Ilawaii, June 3-6, 1991.

Exprimntshae ben ariedout i tie cseof iledicree o- [6] S. GEMAN and D GENIAN, Stochastic relaxation, Gibbs
Exprimntshav ben crrid ot, n te cse f tme isceteop- distributions and the Bayesian restoration of images, IEEE Trans. on

tical flow measurement model, on several synthetic and real world se- Pat0 nlssadlcimchtlgne o.,N.,Nv 91
quences. Three algorithms have been simulated :a sequential stochas- Pp.er 721-741.arachiclgec.Vo.,No6 ov 94
tic relaxation (SSR) based on thme Gibbs sampler with anl exponential [7] C GRAFFIGNE, A Parallel Simulated Annealing Algorithm,
schedule (A =0.97, To= 300), a sequential dletermimistic relaxation Technical Report, CNRS, Umiversit6-Paris-Stid, 1990.
(SDR) algorithm known as ICIM, [2), amdtlie proposed parallel-liierar- (81 F HIEITZ and P. BOUTIIEMY, Multinmodal Motion estima-
chical relaxationi (Pill). In our-experiments the same parameter value tiomi and Segmentation using -Markov Random Fields, 10th lit. Conlf.

Pattern Recognition, Atlanitic City, Vol. 1, June 1990, pp. 378.383.
[9] D.W. MURRAY, A. ICASlIKO anl 11. BUXTON, A parallel

approach to the picture restoration algorithin of Geinam aind Gemaii
on anl SIMD machuine, Image and Vision Computing, Vol. 4I, No. .3.
1986, lpp. 133-1,12.
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systems. Section 3 describes the image processing systems already
realized, using two different approaches. The first system, designed

Abstract. and built at the Fhg-IITB_ Institute, FRG, uses a modular functional
In this paper, we present concepts related to the design of parallel approach, whereas the second one aims to implement a

computer architectures for use in realtime vision applications and recoifigurable, flexible and fully programmable structure. Both
based on combinations of heterogeneous processing structures. The systems are able to carry out most of th. 6ovu level image proessings
corresponding realizations will bedescribed and the use of such in video real-time.
systems illustrated by a representative application, e.g the 'n-line Development of methods and design of ne, architectures call thus
inspecion of manufactured parts. for earefull -studies and possibly experimentation. This should be

facilitated by the set.uv of development centers trouping hardware
1 Introduction and software resources. A possible configuration of such an

Most of the current industmal applications of-machine vision, integrated developrncnt system for computer vision applications %ill
relying on image processing systems with high computation power, be indicated.
are concerned with inspection, quality-control, assembly, control of The paper is concluded by an illustration of the use of such
manufacturing processes, autonomous vehicle guidance and robotics. systems, an-automated system as a solution to the 100 % control of
Optical sensing of the application environment, evaluation of the manufactured parts in a EMS environment. The technique used is
images of the scene and physical reaction after interpretation of the based on comparison between images acquired through-a ,ision
image contents are among the most effective and efficient means for system and the corresponding data gained from a CAD system.
the analysis of the environment and for acting-in an appropriate way. Comparison takes places as ,ell at feature.le-vel than at-image level.
Machine vision is thus a way to automate the applications previously 411 kind of inspections, ranging from conformity checking up to
described in a flexible and intelligent manner. The goal of computer metrology, can be achie, ed through use of an user friendly planning
or machine vision is to extract high-level information about the system.
environment from the low-level information contaiied-in one or a
sequence of images of that environment. This should contribute to the 2 Machine Vision-Systems
desigi/development ofso-called intelligent machines. Because of the In vision applications, two differen, processing steps can usually
amount of information contained in an image, machine vision calls for be defined.The first step-deals ,with the so-called low-level image
high computing power. Provided the-required hardware is available, processing, which transforms an input image into a modified output
this leads to the development of visionsystems with the aim to solve image in order to enhance the quality of the input image (e.g. noise
these problems automatically, with a computation speed compatible reduction and distortion correction) and prepare a subsequent feature
with the application to be solved 1], [2]. extraction. Then some segmentation of the enhanced image is done in

This naturally leads to the use of parallel .omputer architectures, order to delimit different regions in the image. The extracted features
and more precisely to heterogeneous pipelinid structuDres. t1o, eN ver represent (or model) some charactenst properties of the information
the different systems, proposed for th. indust,.al applications quoted content of the scene (penmeter, ,onnexity, moments...). Thus, after
above, are often not able to provi de the pcrforinan,.,c and pro.esing hav ing computed a descnpion of the image content, the second step
speed needed at reasonable costs. This is also the- case for more exploits this debcription in order to compute statements about the
sophisticated applications such as, for-example, the automated, ision meaning of the Image content. These statements are then further used
based on-line inspection of manufactured parts in order to detect and for firstly defining and secondly .arrying out the actions to be
locate different defects on the part under control for the optimization performed on the environment implied by the application. Thus, this
of production rate. Specific requirements for the -vision systems interpretation ofthe image is used to achieve a vll defined goal ke.g.
running such vision tasks have thus firstly to be defined and secondly recognizing obje.ts, taking decsions, v et.hc guidante, inspection,
to be satisfied. acting on the real-world,...).

With the technology available today, in order to run the application Imaging dev ices (gcnerally a CCD ,.amtcra; produte as input for the
in "real time", it is necessary to use heavily parallelism for the image machine vision system a pixel image. Thc purpose of the vision
processing and some higher level treatments required by the sy.stem is to transform the low levcl information content of the input
application. More specifically, one has also to mat,.h hardware to the image into a number (as small as convenient) of high-level
envisioned processing. This leads to the design and implcmentation information pieces, in order to deliver a dernpiaon of the real-world
of heterogeneous pipeined structures, in whi.h each .omponent Ja scene. This dcription can bc furthet used to take a decision, which,
optimized with respect to the type of processing it has to perform. in turn, leads to one or more a.tions to be arned out on the real-
Furthermore, the elements of the pipeline often imply an internal world through a feedback-loop. Instead ofa fcedback free proessing
parallelism (for example, systolic procesors, arrays of proes.sors model, a more c-omplex processing s.hcme, including a feedback
such as Transputer networks). Last but not least, the synchronized loop called interpretation loop, can be imagined.
use of such systems calls for a carefully designed programming
environment, relieving partly the user of the burden of programming Figure ! above shows the model first proposed by Kanade [3], [4]
such systems. miie byve [h]w t 6e [odel is ipoban se [hat the

The following section introduces the definitions and concepts and modified by Nagel [51, [6], [7].It is important to see that the
osuch machine vision model of figure 2 allows iterative image interpretation and eventual

involved by the design and implementation of scontrol of the data acquisition parameters. Furthermore, the model
implies different types of knowledge for the interpretation process in

I Part of the work described in this paper has been camcd out under "[[PRI both the image (low lc, cl) and scene (high level) domains. More and
PLA Application A413; and LSPRII Projevt 2091 vIIMP tv ion Based on. more industrial vision applications rely onsuc.h a proccsingscmC,
line inspection of Manufactured Parts. Comparison of CCD and CAD Images ). as the examples in section 4 vill illustrate.
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-Each processing level has to be implemented on hardware
Generic Description specifically tailored for it, in order to perform efficiently itsParameterlzed Model, for Scene. tasks.Taking this matching into account leads then directly to the

Lighting and Sensorie System design of heterogeneous pipelined image processing structures for
.... complex vision applications. The amount of data to be computed is

decreasing from the low-level to the high-level stage, and less and
3D-Sceri less computing power is needed, but more ano more flexibility is
Domain Scn Feature (Partial) Models required.

According to figure 2, the basic structure of an image processing
system can also be defined around three parts, having each different
requirements to the processing architecture:

- The acquisition, pre-processing and restitution of images.
2 [image cene Projection. - The proressing in the image domain or the so-called iconic
Doin m re~to, Synthetic lae.. "processing step. In this case, the needed algorithms and data

structures are nearly directly related to the pixel organisation in the
Sinlimage.

Digitized Image - The model based exploitation of image primitives and content or
Le the so-called symbolic processing step. In this case, the data

structures implied-are almost exclusively a function of the type of
Figure I: Computer vision as an iterative interpetation process (after [61,171). computation to be carried out.

Image processing thus implies very different processing tasks with Three basic structures (for a dib.ussbon, bee for example, [2], [91),
respect to applications. These image processing tasks are verU for so ,alled-general purpose s),tcms, are today clearly emerging.
different in nature and imply ,er) different data structures for the Aiia.ys of mesh-connected processors with more or less
computations. From the system designer point of view, these levels computation power,
are usually refered as low, medium and high-level image protesbing - pipe lines and cascaded struturc, chaining different hardware
(see fig. 2). This sub-dividing of a complete vision task into three modules with more or less flexibility,
processing levels, reflects the nature of the operations to be crred - bus oriented processing struc.tures with poverfull, more or less
out and the nature of the data structures used. Figure 2 defines the specialized micro--processors.
three processing levels and indicates how the different stages are
combined in a sequential processing scheme, implementing the direct For special purpose processing, systolic arrays or dedicated LSI or
processing path of the model offigure 1: VLSI integrated circuits can also be very efficiently Used [10].

- Low level image processing transforms images into images. However, bootlenecks are usually encountered when the low-level
They are essentially pixel oriented operations threshold, lowpass pixel data has to be matched with the high-level data structures [ 11],
filtering, mathematical morphology. [121. It seems therefore not possible to design a system able to

Medium-level image processing needs images as input and gives perform well for all the algorithms needed in computer vision.
features as output. Extraction of lists of contours is a widel, knon However, heterogeneous structures for the three levels of processing,
example. with an integrated control strategy and incorporating different modes

- High-level operations transform- features into features. Other ofparallelism, appear to be today the best compromise. With respect
sources of information than the initial images can be used (a priori to the use of'such systems, two approaches, exemplified in the next
knowledge, databases, artificial intelligence). High-level processing sections, are possible:
also has in charge the control of the interfaces between the machine - The first is based on a modular functional approach, where the
vision system and its environment (e g man-machine interfaces, user has just to choose the appropriate chaining and parameters for
communication network interfaces, actuator interfaces), image processing operations,

- The second is based on a fully programmable approach, where
ACQUISITxoNt the user can develop his own software for all the system components

and organize his own data flows and image processing sequences.

VE. IMAGE -' IMAGe PROcESSiNG 3 Parallel Architectures for Computer Vision
RSophisticated vision tasks like those mentioned in the introductionMAINLY PRE-PROCESSING AND SEGMENTATION imply numerous requirements for a vision system, which have been

- IMAGE ENHANCMENT
FILTERINO implemented into the systems to be described:

- SIMPLE TRANSFORM ,ATIONS - Bottlenecks should be avoided either by extending or by specially
organizing the system. Addition of supplementary modules for
parallelization and the support of general purpose processors with

[MLEVEL iMAGE -p. IMAGE O i special hardware processors help to remove these bottlenecks
IMAGE 0 DATA STRUcTUriS Image acquisition should be separated from the image processing

PROCESSING and interpretation steps (see figures I and 2) in order to process data
MAINLY FEATURE EXTRACTION at maximum speed.

CO.- R - Organization of data should not be fixed in order to give the
TrEXTUiR..E system the greatest flexibility.

-SitAPE FEATURES - With respect to signal acquisition, storage and display, different
USER KNOW.EDGE sensors must be available, differing in format but also in physical

4 4 nature,- in order to be able to process multidimensional images and
DATASY~~cTUES DAT Sr~cTIRES multisensorial signals.nuAA STRUCTURaESS DATA srRUUR - Processing of images, isolated, endless or in sequence, shouldPROCESSNG . be possible. Furthermore, the system hardware must be able to adaptMAINLY RECOGNITION AND UNDERSTANDING to particular classes of tasks, varying in complexity, in order to allow

USES ARTIFICIAL XNTE LX " TEc SY.O,^CR a cost effective match of the system to the application to be solved.
^EAAMPLtL. 6UL. A ,,,L-N uLvc, ,,.E o,, Bus-oriented multiprocessor architectures whose modules are the

processing elements can efficiently be used. The modules can be
ACTION(S) classified into three categories:

- Video IO modules for acquisition, storage and display,
. pixel oriented image processing modules working

Figure 2: Processing levels in machine vision. synchronously with the image acquisition rate and offering the
possibility of parallel and pipelined processing, for data compression
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in the iconic stage (image processing and feature extraction), processing algorithms oer the tvo stages, taking into account the
. not pixel oriented data processing modules working characteristics of each processor and the kiad of algorithms that each

asynchronously with the image acquisition rate, fut statement processor can optimally execute. Consequently, the feasibility of an
generation in the symbolic stage. efficient combination of the SIMD and MIMD approaches for low and

- The system-should offer-the possibility of being used as-a medium-leel image processing has been confirmed.The-processing
development system (e.g. for testing the image processing or capabilities in actual applications has also been verified (sec section
evaluating the p rocessing steps needed for-solving a specifit. vision 4.). This should lead to a tentativ e definition of the domains of use of
task), or as part-of a workstation (e.g. for the solution of real each type of parallelism, leading to rough rtles for finding an optimal
problems in industrial environment). A hierarchical layered approach architecture fut a given application and,'or a giv en time performance
can be retained for the software organization, which does not require requirement.
the:uiser to bea-low-level programming expert. Furthermore, an
exhaustive package of image processing-and evaluation programs The High -Lev el-Prucesing Unit. The high lev el processing unit is a
should be provided. The development of problem oriented software SUN 4,330 workstation. This workstation is receiving features from
should be possible using high level languages and ergonomit, man- the medium-level processing anit in order to interpret the initial real-
machine interfaces helping the user in his application software worl&scene content. Programs running on this workstation are
developments. written in C++, an object oriented programming language, which

The architecture of the parailel vision machines developped (see allows a flexible and eas, manipulation oflihe feature data coming
fig. 3 for an example) implements the requirements stated in the from the medium-level stages and usually packed -iito specific
preceding section and is matched with the three processing levels objects. The SUN,w orkstation-initializes, configures and loads the
described in fig.2. The image to be interpreted is sent to the low-level two ,ision systems and the Transputer-networks % ith appropriate
processing unit. The result is then fed to the medium-level processing algorithms and is used as an interface between the machine vision
unit which produces features for the high-level processing unit. system and its enironment o (Ethernet, robot control, )

A feedback-loop has to be foreseen from the high-level stage to the Communication (and feedback loop) with the low; medium level
medium and low-level stages-(use of high-level knowledge to guide stages are done using either specially, devclopped Transputer based
the processing of the lower stages). The-general architecture looks interfaces, or a Transputer board (BBKV2 from Parsytec) with dual-
like a system of pipelned processing elements, each of the processing ported RAM between the Transputer memory bus and-the VME or
units being able to make use of its own internal parallelism, adapted Multibus-bus of the low level stages, or a bus interface between the
to the type of computation to be performed (leading to the ,oncept of workstation bus and the low-level system buses. Communications
multi-parallelism), with the Transputer network are performed-with the help of another

The Low-Level Processing Units. The low-level processing is Transputer based board (VMTM from Parsystec).

performed either with a VISTA system (Visual Interpretation System When planning a vision system, it is necessary to provide
for Technical Applications) devclopped at the Fraunhofer Institut universal" tools m order to reheve partly-the user of the burden of
IITB in Karlsruhe, FRG -[131, [16] -illustrating the modular programmtog such complex systems. Due to the envisioned
functional design approach- or w ith dedicated hardware build around appations, a grgat varty of ks results, leading to er distinct
a mesh of I bitprocessors-at ENSPS in Strasbourg, r [14], [15], operating facilities and system performance. Furthermore, in
[161 -exemplifying the reconfigurable, flexible and programmable laboratory, tools are needed for the development of methods and for
design approach. the implementation of algorithms in order to test their time and logical

Wbehaviors. The tools must provide facilities enabling the user to take
advantage of the underlying hardware without special knowledge
about this hardware. On the other hand, the requirements for
industrial applications are high performance, short reaction time and

.,,,, minimum user interaction. In our systems, image processing steps
. . can be run autonomously or interactively. The compiled code for the

i F-- Uprocessing steps is downloaded into the user program, where it is
IlT...,- V34.. parameterized and started. Once a step has been started, it continues

,autonomously, independently of the calling user program and
T Il -synchronized with it via an autonomous control software. The

software structure is also in charge of the high-level unit. It can be
, _,*seen as the overall system management software, including the man-

a t-! - machine interface. This man-machine interface is running on the SU.N
T- I... , workstation and is developed under X-windows and OSF,IOTIF,

wh.ch allow the development of menu-driven applications.

£U.... O -- A Distributed (Transputer Network Based) Development TooL.
- Within the Parallel Computing Action Application PCA 4137, two

Figure 3 :Ile machine vision system devetopped at TAKS Transputer networks will be interconnected using an optical fiber.
The two systems, located the first in Strasbourg -France, and the

The Medium-Level Processing Unit A-network of sixteen T800 second in Karlsruhe -Germany (see fig. 3), will be interconnected
Transputers (Multicluster 2 from Parsytec or T NJode from Telmat) through an already existing optical fiber between the two institutes
has been chosen as a medium-level processingunit The Transputer involved in the application, The protocol chosen for data exchange is
technology has been retained because of its flexibility allowing to the newly available FDDI standard. The performances of this
efficiently accomodate the computation needs, as the complexity of standard arc such that the overall performance of the distributed
processing increases from the low- level to the medium-level ,t this transputer network should not be lowered. The connection also
level, OCCAM has been used as the programming language f, r punctually allows the access by one institute to the whole sharedTransputers, because it provides the advantages of a highlevel resources, when high computing poer is required. The distributed
language andperm it oesexploit concurrency The OCCA system can then be seen as a very complete development system for
compiler is also -very well optimized as regards executable code si7e vision applications, joining the resources of the two institutes and
and execution time. As the inputs of the medium-level stage arc enabling te use by each istitute of mn two different low-leel
images, an interface between the low-level stages video-bus and processing units.
Transputer links of the network has been developped to optimize data
transfer rates between the low and medium processing stages. The 4 Applications
integration of the Transputer based systems is shown on fig. 3. The The machine vision systems described are able to deal with quite a
integration of the specialized 1/0 interfaces, the low level processor lot of applications. A brief description of one of these follows. An
modules, the medium level Transputer networks and thecooperation example of more sophisticated application, currently under
between the two levels is achieved through partitioning of the development and to be run on the described hardwares, is the
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inspection using computer vision, on line in the manufacturing - A kernel of image processing-routines for software. A general
environment, of parts being manufactured [173,[181. Inspection takes software kernel for visionsystems would allow the designer to go
place through comparison of CCD images and corresponding from one application to the other only by changing the knowledge
conceptual representations gained using the CAD model of the piece. specific to the application (model of the scene under examination and
Comparison takes places as well at feature leiel as at image level. All of its content), instead of changing the whole software.
kind of inspections, ranging from conformity checking up to - An heterogeneous -parallel machine for hardware. The
metrology, can be achieved through use of an user friendly planning demonstrated feasibility of programmable nardware for image
system Due to the limited resolution of the imaging sensors used processing enables faster implementation of a wide range of industnal
today for digital image processing, the sensor is moved in order to applications. With only -.ne programmable parallel machine, it will be
scan larger workpieces in their entire cxtent. CAD-babcd kuuvwludgu possible to solvc a nurbc of diparkadt Gumpuier visions applications
is also required and used for efficient performance of such hybrid related to various domains.
mechanical and electronical inspection tasks. To inspect the However, "urther work is necessary in this field, as research must
geometrical properties, the image of the current field of view lb be continued -with the aim in particular of buiding a better SIMD
compared with the information stored in the data-base of the machine and ofimproving the coupling with the MIMD machines. In
associated CAD system, with or without use of structured light. addition, it is necessar to deelop ,n cxteiisae software support, as
Comparison takes place after segmentation and registration of the software implementation ofalgonthms will definitively be the major
actual image with A synthetic projection of the CAD module. cost factor in dev eloping ne- applications. turthemore, the future
Furthermore, the 3D data coming from the CAD system are used to realization of vision systems w llbe influen ced in particular by the
generatea2D representationcorrespondingtotheangleofvev, of the integrability of vision systems- as sub-systems in complex
sensor. The output of the inspection stage is used for retrofitting by applications, possib -in the feedbacLk path of the control loop tsee
the manipulator in case of a possible remanufacturirig. figure 2) of these systems in order, in particular, to control the

The advanced inspection system described consists of knowledge sensors and/or the lighting conditions (atIve sensing) for an
processing and engineering at high level, but the first layers will automated, dynamically optimized, data acquisition.
consist o f simulation, preprocessing, feature extraction (e.g. filtering, Sach vision s)stems are likely to run a lot of applications, among
identification, segmentation) follovwed by recognition (registration, which comparison of CCD and CAD data for automated workpicce
inspection) and decision taking. Again, the inspection task is the inspection was described. The type of computer vision architcctures
chaining of different processing tasks. The three processing levels presented seems to be very promising for the future, as anificial
defined in section 2 and implemented in the systems described vision is becoming a-more and more important. The approach
sections 3 can easily be recognized. It is noteworthy to see that the described could also lead to more "intelligent" robots, using such
same model can be used for a wide range of applications (pick and vision systems to understand their environment.
place, autonomous vehicle guidance, robotics, for example) just by Acknowledgements
changing the a-priori knowledge (e.g. the CAD database).
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Abstract Front End

In this paper, we show how data parallelism can be used for Micro-controler
two low level vision algorithms based on deterministic relax-
ation techniques. First, we review the architecture and pro-
gramming model of the-CM2. Then, we give-some details
about the implementation. Finally, we compare both algo-
rithms in terms of running time per iteration for different News
image sizes. We also present a comparison between parallel Router
and-serial implementations of the same algorithm on a 0M2
and on a SUN4 respectively.

I The Connection Machine Memory Pros Communications

Figure 1: CM-2 architecture
In-this section, we briefly describe the architecture of the Con-
nection Machine, a mule detailed decriIption can be found in rut a gisejn applicatiu,. L i o, ,.ak dyiianiiclly, define
131,15].The Connection Machinc s i sgle instruction multi- a-partiulai geumctt.v fi do .. t 1, h.-l ,t processors that
ple-data (SIMD) parallel computer with 8K to 64K proces- has been attached.
sors. Each processor is a -bit serial processor, with 32K
bytes-of local memory and a aMlla duck. The Connection The prucessui rebuuit .a. :',t ,;ttuized hen the num
Machine is accessed '.ia a ftuit end cuniputer which sends be" of dataeeinent tv uc jnukvtsC't as gteatet than the num
macro-instructions to a naic ruwtiill i. All prucessurs are bet of physcal ,rutmvir. it. ,utt. h .ae. a seseil data ele
cadenced-by the microLentrulle in rcceing-the same nano- ments are processed u sii agle lh-ital procesur.
instruction- at-a given time frum it. Ph.sically, the architec Such a data-paialllisaa-mudd adchatect,,e is vell suited to
ture is organized as followed: computer vision as it is expresad in 1.11. [61.

* The CM2 Chip contains 16 1 bit processors. 2 Parallel implementation of relax-

* A Section is the basic unit of replication. It is composed ation algorithms
of 2 CM2 Chips, the local memory of the 32 processors
and the Floating Point Unit. 2.1 Mathematical model

* The interproce sot coinumiiatioa architecture is com- We use a probabilistit nw-,t'. ., :.,t ;ii dj I.ased on Markov

posed oftwo distinct networks: Random Field. JMRF). To hl- are used to model the im-
age: one for the intenitv to 1he re-.ored. the other one for the-A -nearest-nei-1hbour-network, the NEWS Network d0cnmte egbl, rl~~ -teapoiaino

(Norh.E~t.W~.-Suirl). nteconect Prcesors discontinuities ledges). T.- problemn z' the approximation ofth.interconnects Processors a surface given notsy depth data on a regular 2D lattice-of
in-groups of four. sites. The value of the intenitv field at each site i.e. each

A more comle~l~ x tiiwork called the Router Net- pixel) is given by the srfare heiglt at that site.

work is usti! ta provide general communication be-
tween any pair of l r,sos. Each group of lIC pro-
ce.sors is connected io the aine router and each - - -
router is connectd t( 12, other routers forming a I ! I i
12-dimensional liyt-r nhc. - i:tenity ield y,* * * j - line pro-c

"The authrs woult lik- to amnk ID, Ray azid IL Veorhes from Figure 2: li a.iM

Thinking Malhine r,,.ro-a-i,-an1 . ,z- hi ,1t a-n1
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tile mean field values at different locations. Once the parti-
-Vesuppos, tie nr*y image is described by: tion function 7 has been appro.mated, it is easy to derive

a set of deterministic equations for the mean field values 9,1
.= y,., + n,. (1) and-ify of the intensity and the line-processes.

wlz -re n i is a white Gaussian noise and yi, is the original
data. 2.3 Parallel implementation

The energy can be-expressed by: Botl, methods are based on the weak membrane model (cf.(2))

and both algorithims are inheliently serial: each step produces

E = D + S + P (2,1 a pixel map which is taken as input for tile next step. For the

where: GNC, we implement a checkerboard version of the successive
-- )( over relaxation method [1] to minimize the energy and for the

MFA, we use an optimal step conjugate gradient descent [7].

S = \((yfo - Y,1-j2(1 - i) Although both techniques at. deterministic, it taKes a lot
iJ of computational time on a sequential zomputer to get the

-, --!1.'")
2(1 -ll/)) edge map and the restored image. Our attempt in reducing

this time :z based on-the fact that, in early vision processing,
much of the time is spent in performing local-computation.

dhich models the nivvthiiig .v uia~tiai (A *y, adicnt2 ) Herein, we use data ,aialQhhM vIUc pixcl per %irtual pro-
and: cessor) and fast local commui,ication; (NEWS)-provided by

tile underlying architecturel3, 151. For global operations like
P = Z a(., + m,,,) (4) computing the energy value over the whole-image, we use the

reduce primitives.
which is the cost to pay for introducing an edge.

The problem is reduced to the minimization of a non- 3 Experimental results
convex energy function. Usu.lly two kinds of techniques are
used to-solve this probleiu. These two algoritlias have been run on a great variety of im-

ages. The discussionthat follows is about their running time
o stochastic techniques sch as Simulated Annealing, on-the CM2 using 8K processoxi. Qualitative aspects are dis-

-- deterministic techniques such as Graduated Non Con- cussed-in [8].

vexity, Mean Field-Annealing, Iterated Condiional Mode. Table 1 sl'ows the number of different types of instructions

XVe are interested in dctemmmstu,. algorithms and their for each algorithm. All thee instRuttions are 32-blt floating
parallel implementation. point instructions. Th? interesting point is that the inter-

processor communications are-local and tile ratio-between the
number of communication instructions ant 'be number of oth-

2.2 The algorithms ers is very low.

In -this section we (lescribe twu deterministic algorithms for
edge & Jin and image restoration: the graduated non con k..\rith.and Compar. NEWS Global Ops.

vexity technique tGNC) originally l)roposod-by Blake & Zis- G, C- 117 10 1

serman-fi] and the mean field annealing (MFA) used by Geiger v IA 123 24 4
& Ciros; [2] and Zerubia & Chellappa [7]. Table 1: Number ofCMl instiuctions per iteration.

For-the GNC the basic idea is the followir.g: The GNC and MFA piallel algoitlhms implemented on
the Connection Machine are compared. For each one, we give:* The first step) is toebuild a convex app~roximation E" of

the energy E. -The Virtual Processor Ratio (VPR) i.e. the number of

* The minimisation: of E" gives a global-min;mum. virtual processor per physical processor.

* Then a sequnce E(P) is built so that E' = E" and - The CM time.

E 0 = E for p=1, 1/2. 1/4, 1/8. - The total time.

the-minimisation of E(P1 uses as initial conditions the
result of the minimisation of E (P'- - The number of iterations foi each algorithm.

- The CM time per-iteration.
The MFA algoithm is based on Mean Field a:,proximation

used-in statistical mechanics. "'h, approximation cons'sts of In table 2 and 3 ate dipla~cd the iesults for two images:
replacing tile stochastic interact'on among the fields at differ a noisy aerial image (cf.fig.3) and an infra-red image.
ert locations by the interaction of the field at each site with
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processor. However, as the niumber of pixels per processor
-.- ~'-;~-groIS tlic rdtio IJULAVVU&A ILL .LAiiholl tidLi ju iteratiunrlid

S. ~ thle [Lumber of pixelb pe.i plousso~bl i a-i lowecr. Thib ib dueI
to the fact that, thle highi i.s thu N PR, tile higher-is tile per-

'K centage of local communications.

Fortran-Sunit *Lisp-Cll

-''- 'Total Time Total Timle

time Iper it. time p'er it.

0' 4 MFA 25min. 7.97s 19. 13s 0.tOMs

~ ~Table 41 Noisy Aciial lmdage 128\128

U,' 200 - NIFit4-

CIM 150
time

-Figure 3: Noisy aerial ing 128x 128, (S1NR 5db) per
100 it
isc~ 100

0 -

0 20 .10 130 s0 100 120
pixt,19 per processr

Figure 5: Execution time of-4Ike GNC and -NIA Algorithms
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ABSTRACT - The massive computation requirements of an increas- High computational capabilities arid possible parallelisation of the
ing number of apphcations in electronic measurements need dedicated basic computation are two basic features to iniplemenit eficieit archi-
hardware architectures-to match-the high throughputs of real-time tLCtures fur real-time applications when massive computation is --on-
environments. This paper presents some results about design and Lerned '3; j4 . In the application case presentcd above, these charac
implementation-of an integrated -measurement-system based upon a teristics allow to guarantee a very low response time in driving the
multiprocessor architecture. electric power system for armonic compensation and, thus, to achieve

an effective and optimal power distribution.
I. INTRODUCTION In this application, there is also a very large set of input data,

Anumber of high-computing- applications are nowadays practi- which are composed by the samples of three-phase voltages and cur-Arnunte Since-omutn appliatron actriie nowadays onyractegalfomo-c
cally-feasible and appealing due to the availability of realisable, reliable rents Since control activities operate only on integral forms of such
structures for massive computation at reasonable costs, e.g. in digital inputs, the high-level management of the system does not need a de-
signal processing. In particular, it is possible to implement specialised tailed and complete knowledge of the samples' values In fact analysis

architectures for management of large data in real time for extract-. of the electrical behavior of the distribution system can be performed

mg-a reduced-amount of essential information. Complex and accurate by extracting the characteristic figures both in time or frequency do-

data observation and system control may be implemented by using mains. A pre-processing and compacting function must therefore be

this characteristic figures of the input data. A great number of exam- executed to reduce the quantity of information This is useful to allow

:ples:may be found in electrical- and electronic areas: one of the most acquisition, manipulation and storing only of the necessary data in

important applications that becomes now realisable is constituted by the control computer Data compression and reduction-are an impor-
-the systems for real-time measurement for-power and-armonic control tant step towards the implementation of real-time control of complex

in power distribution, system at reasonable costs.

In this paper we present- a new integrated approach to real-time To satisfy strict computational requirements, the computer archi-

measurement of electrical parameters which is based upon a multipro- tecture must be able to guarantee a high computational power and,
cessor system. Such architecture allows to satisfy the massive through- above-all, an impressive input throughput Output is generally very
puts and requrements of complex, high-level measurements, In par- smaller than input flow, due to the characteristics of the computa-
ticular,-we present the overall hardware architecture and the dedicated tion input/output management is thus strongly unbalanced towards
software environment for developing application-specific measurement input activities: Neither traditional computers -nor known architec-
algorithms, tures of parallel processors [31 [41 are able to provide a flexible andhigh-throughput connection between the processing units and the ex-

Our parallel architecture is composed -by a SIMD multiproces- ternal environment, at least at reasonable costs. Therefore, a new
sor sil' iystem for parallel computation and by a front-end for an easy dedicated sclution, as the one we propose, is needed to achieve an
user interaction and-zontrol. Both such components are connected to a efficient system without using- expensive structures.
standard VME bus and to a dedicated control bus. The front-end com- By looking at the algorithms used in electronic measurement and
puter is a standard Motorola's 68020 board, with mass-storage devices in system controls, we can identify a low number of typical mathe-
and input/output subsystems. Such computer provides the high-level matical operations that are common to the most of the algorithms.
human interfacefor designing, testing and executing the application- Traditional arithmetic operations are obviously widely used in all nu-
specific measurement algorithms. The front-end computer allows to merical algorithms. Therefore, the architecture, specialised for mea-
loadthe measurement algorithm in-the program memory of the multi- surements, must greatly optimise execution of data transfer, addition,
processor subsystem, to overview and control the computation in such suract, mutipliati a ivis ion
subsystemsubtraction, multiplicatin and division.A second group of more complex operations constitutes the basic

kernel of a large number of algorithms to compute electrical quantities:
the data transformations. Different kinds of data transformations may

-I. APPLICATION AND MATHEMATICAL REMARKS be identified in the most of the popular algorithms. Some examples

-Electronic measurements require execution of high-couiputng al- are Fourier, Walsh-Hadamard, s.ie arid cosine tranSformations, con-
gorithms to extract basic characteristics and features from a large ',ulution and cc relation k5; j7;. These operations allow to extract the
amount of data. Usually, when the measurements are used-as informa- different spectral contents of the input data arid to generate composed
tion sources for chosing the suited actions in plant or process controls, iontrol signals. The previous mathcmatical operations require execu-
all-operations mustbe performed in real-tirie. This constraint makes tion of many simple arithmetic operations (e.g. additions, subtrac-
impressive the amount of data that must be treated on-line during tions and multiplications) A5;, efficient generation of the corresponding
system management. coefficients and proper data addressing and use. An effective imple-

One of the most recent and important applications in the fields of mentation should therefore be tailored to perform the most of such
electrical engineering is the i-al-time accurate control of-high-voltage ac'ivities directly in hardware to increase the overall computational
transmission and distribution systems. In this application, real-time power of the architecture Configurable devices should be preferred
electronic measurements are used to compensate the armonic contents tn hard-wired solutions to guarantee the flexibility of the system and
of current and-voltages due to the characteristics of the distribution adaptability to different specific applications and measurements.
system-and to the electric loads. The basic aim of such operation is in
fact the optimisation of power distribution with minimisation of power II. HARDWARE ARCHITECTURE
losses. Real-time control is important to measure dinamically the ar- The parallel architecture, presented in this paper, has been de-
monics and to provide continuously updated feedback infremation to signed especially for advanctd measurement applications, its features
the-armonic compensator. This power electronic system suppresses are thus strictly connected %ith the specific algorithms implemented
unexpected and-undesired frequencies and :orrects reactive power. in measurement procedures. The processor design has been studied to
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obtain the-hest performances not only fur some traditiial arithmeti rathm characteristics. Flexibility and adaptability of Lhe architeLturC
operations, but also for high-speed digital signal processing operaLtuin to a large class of measurement algurithms is needed tU iniplemcnt a
(e.g. Walsh and Fourier transforms). unique computing structure that may be used for a number of differ-

Our parallel architecture is composed by a multiprocessor subsys- ent applications Adaptability should hold alsu at run-time by means
tern and by a front-end computer, as it is shown in fig. 1. The first of a software reconfiguration of interconnections to guarantee a high
one allows to execute high-speed parallel computation, while the sec- availability and flexibility of the system Many of these features where
ond one provides an easy user interaction and control. Highly-parallel achieved by adopting a sinple, dear, high-speed, modular architecture
computation is supported by using the 32-bit VME system bus and a based upon standard components.
70-bit dedicated bus for instruction transfer-and broadcasting. High 7 multiprocessor subsAstem is composed by identical prucrssin9
throughputware achieved by using dedicated -16-bit data busses (one units anU by a controller unit (see fig. 1). The pruessing units pro-
for each processing unit) which connect the multiprocessor subsystern yide the parallel computational power by working on different data sets
to.the external data sources, contemporaneously. The control unit has been introduced to overview

the multiprocessor activity by imposing the sequence of instructions
that must be performed-by all processing units in parallel. The num-
ber of processing units depends on the specific measurement algorithm
required by the user. We have found from extensive experiments that

COMPUTER a good balance between the multiprocessor performance and host com-
puter operativity in the minimal configuration can be achieved when
the units are no more than 8.

---mm a Each processing unit is composed by two boards: the AL U (Arith-
VME metic Lugic Unit) board and the local memory. The ALU board is

CONTROL the heart of the computational structure to implement high-speed al-
Bus-m gorithms for electronic measurement. The memory board is basically

UNIT BOARD used to store measurement data coming from the external environ-
ment, during execution of the application-specific algorithm. Perfor-
mant data transfer inside each board is guaranteed by an internal
high-speed bus for data and addresses. Our implementation of the
experimentalzmultiprocessor, discussed in this paper, considers arith-

PROCESSING metic units for 16-bit data and operates at 10 MHz to avoid hardware
complex structures and to provide high flexibility, powerful computa-

DMA tional capabilities and high-throughput data management at reason-
able costs. Thestructure of the processing unit is given in fig. 2.

SPROCESSING
UNIT 2DM

MULTIPLIER10

DEDICATED BUS n
Fig. I - The multiprocessor architecture COEFFICIENTS

Our structure differs from many cther parallel structures since it GENERATORS
behaves basically as a co-processing unit of the front-end computer.
In fact it may be used to extract some characteristic figures from a
large-tinount of input data by means of traditional signal pocessing
algorithms. This pre-processing activity greatly reduces the quantity
of data that-must treated by the front-end computer, in particular for
applications in electronic mesurements and automatic control.

The front-end computer is-a standard Motorola's68020 board,
with hard and floppy disks, printer, plotter, serial and parallel com-
munication channels, graphic display. The main goal of this com-
puter is the definition of a standard Unix environment for the user
activities. Moreover, it provides the high-level human interface for
designing, testing and executing the application-specific measurement MEMORY MEMORY
algorithms. In particular, the front-end computer has been designed to
support loading of the measurement algorithms in the multiprocessor BANK 1 BANK 2
memory and controlling of the parallel computation. The multiproces-
sor subsystem and the front-end computer are connected to a standard -=
VME bus and to a dedicated control bus for data and control exchange.

The multiprocessor subsystem is a SIMD architecture, in which F
a single instruction is performed-at the same time by all processing
units[3) [41. The main goals of our design approach to a multipro- SYSTEM BUSES
cessor architecture were performnce, modularity, expandability, flex-
ibility and adaptability. Performance is an obvious requirement to Fig. 2. The processing unit
implement structures for massive computation. Modularity allows to The ALU board As a custurni structure fur executun uf bast, arith-
achieve a compact standard architecture in which the component can nietc operation and some cumplex algvrithmic kernels ,f digital sgnal
b, modified and improved according to the requirements of the .pc- processing. The ALU board is based upon AMD's 29501 ALU's and
cific applications. Simple and fixed interfaces, interconnections and AMD's 29517 multiplier.
protocols guarantee the expandability of the structure (at least ii a Two three-purt VLSI ALU's perform the cumiputatuni on 16 bit
reasonable range) by addition of identical modules to match the algo- data using a riu;.bus and riuitregibter arrbLecure. A h,,lg perfor-
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mance 16x16 bit multiplier completes the arithmetic hardv.are and crates the proper control signlls, which correspond to the current in-
provide the suited computational support for a high-speed implemen struction, by looking at them into the its own private memory. Finally,
tation of FFT algorithm. The two ALUs can perform multiple data the microcuntroller moves to the next instruction. Due to the modu-
operations during the same clock cycle using their multiport struc- lanity of the multiprocessor architecture, in the second relese of the
-ture (two input-output ports and one input port) and the six register .untrol board, the mitrucuntroller will be substituted by a nuropro-
operating indepcndently by the internal ALU and MUX registers cessor. when properly prugrammed such nurruprocessur will be able to

The memory board has been designed to obtain the best per generate autonuouuusly sequences of nultiproc.essur instruiounes that
formance and-to reduce data transfer time without limiting system will execute cumplex operations on data. In this case die coitruller

capabilities. This-board is strictly connected-to ALU board Never- unit will behave as a traditional rnicruprogranmed unit.
-theless, it has high autonomous capabilities for data management A The-program memory is composed by twelve 8x4k bit high-speed
double memory -bank has in fact been developed to allow contempo static CMOS RAM. In this memory, we store the sequence instruc-
rary memory:management from both internal processor resources and tiuns for the multiprocessor, which are 29-bit long. The memory is
system ALU. Every bank s formed by four 8x32 kbit memories con- loaded by front.end computer through the system bus before com-
nected to the internal 32-bit bus. These two bus can be alternatively pution is started. The 96-bit control s 6 .nals, generated -by the pro-
switched to one of the three possible connection paths (ALU's, direct gram controller in correspondence to each ...ultiprocessor instruction,
I/O, system bus). are imposed to every processing unit by using the dedicated control

Two independent data paths are provided by the memory board bus.
in order to exchange information with the external environment. Program execution is started by the front-end soumputer. after

- the main data path, which is connected to the system bus, loading the program in the program rimemory of the rnultiprocessor
- the secondary data path, that provides a direct input bus for data subsystem, the front-end computer enables the autonomous coniputa-

acquisition by using the DMA tcchnique. tion of the multiprocessor by stating the proper signals-to-the control
While the-processors are working on odd banks, the host computer unit Results computed by the multiprocessor are stored in the local
performs data transfer operations from/to the main memory for the memory of the multiprocessor itself The front-end computer may read
even banks, and vice versa. The switching system provides the control them through the VME data bus and provide delivering to the user or

of active paths in order to avoid bus conflicts, storing in mass-storage devices.

When DMA tecnique5 are adopted, at first the control logic exe-
cutes memory reading operations (performed by the main CPU) and, IV. SOFTWARE ENVIRONMENT
then, DMA acquisition from secondary data port since data arc writ- The use uf an advanced hardware architecture generally prescents
ten -in-the same storage. Both these activities can be implemented a number of practical difficulties, which reduce the usability of the sys-
while the processor is working on the other bank because their exe- tem and a complete exploitation of the new features. In our architec-
cution time is smaller than time- required -to-complete a Walsh or a ture, this drawback is essentially related to the complexity of the struc-
Fourier transform. ture and to the non-traditional parallel programming style. To avoid

The sine and cosine generators (for FFT algorithm) or Walsh this drawback and to give access to new computational paradigms also
function generator (for FWT algorithm) and latches providing the bus to non-expert users, an integrated environment become -necessary.
switching during computational activities have been arranged on the In our research we-developed different tools which guarantee a
memory board to limit the ALU complexity, high-level view to the hardware architecture and easy programming of

As we have seen, the multi-access structure and management of a large class of numerical-intensive applications. A general schema of
input data and memory banks are the most important novelty of our .he software environment is shown in fig. 3. The main entities and
approach to multiprocessor design for apphicatiois in electronic mnca- tools we developed and integrated in the standard Unix environment
surements. The vaiiuos possibilities of overlapping data input and of the fron-end computer are:
internal computations greatly increase the throughput and the coin- the low level multiprocessor assembler and the related translator,
putational power of the system to match the massive requirements of tie assembler run time library fur direct access to all features of
real-time applications in measurement and control. While one half of the system,
a processing-unit is computing the nominal algorithm, the other is - the high-levc! language C and the related compiler,
supporting the input/output mechanism. - a high-leve! run-time library for traditional programming in C

Parallel computation and management of the boards of the pro- language,
cessing units must be performed by activating the proper control sig- - a program loader,
nals on the dedicated control bus. Due to the complexity of the dif- - a symbolic debugger for C language,
ferent activities- that can be excuted in parallel and to the number - an interactive control environment.
of control signals, direct control from the front-end computer is not
feasible.

To provide an efficient mechanism for operation fetching and de-
coding- in the multiprocessor system, we defined a set of instructions
that can be executed by our architecture. Each instruction corre- user interface
sponds is the compact coded representation of the control signals that
must be activated to impose execution of the desired operation. A
program for the multiprocessor- system consists of a sequence of such
instructions.

Since our multiprocessor is a SIMD machine, only one control unit loader/
is needed to supervise and manage all processing units. This board is
composed by the program memory and the processing controller. The library
program memory-contains the sequence of instructions (in the coded debugger assembler
formt-t) that the multiprocessor must execute. The processing con- s embler
troller performe the fetch and decode operations of the multiprocessor rn-time
program.

The processing controller is an AMD's 2910 microcontroller with m
its own control circuits, private memory and latches. The microcon- processor
troller fetches and decodes the operations for the multiprocessor. For hardware
each new instruction, it acquires the coded representation from the
program memory and identifies the current instruction. Then, it gen- Fig. 3 - The software environment
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To allow the user programming of application-specific algorithms due to specialised high-speed- data paths for concurrent I,1O opera-

for-the multiprocessor architecture, it is necessary to deifne4he e- Lions. A powerful support to direct signal processing is the availability

quences of instructions in the assembler of the multiprocessur itself. of dedicated hardwar- inside each processing unit for high-level math-

Such-instructions are the coded representation -u the cuontrol signals ematical computations (e.g. DFT). The traditional FFT alghorithm

which impose execution of the desired sequences uf operatiuns. When- 'an be implemented in our architecture by using ten ist"uctions they

ever the multiprocessor controller fetches a new-instructuon, it decudes are iterately executed for a number of times equal to the number of

the compact representation and generates the proper signals to acti- butterflies required by the computation. If-the number of-sampled

vate-the devices required by the operation. points is N = 2 ', the total execution time T for the FFT in a single

The symbolic representation of the assembler instructions of our processor board is T = IOTkN/2 = 5T k2k, where T, is the clock pe-

multiprocessor is similar to all-traditional assembler languages of mi- iod of the system In our experimental implementation, a 1024-points

croprocessors [1). An instruction is given by the n-tuple FFT is executed about in 5 ms.

-(opcode, op-1, op-2, ... op-n) As software aspects are concerned, our system provides an inte-

where opcode is the operator (i.e. the symbolic identifier of the desired grated environment for development of application programs. A li-

operation), while op.i are the needed operands (i.e. immediate data, brary of basic mathematical operation has been implemented, It is

registers, memory addresses). The complete definition of the assembler continuously updated and expanded to cope with the requiremets of

language is given in [2). On the front-end computer we developed a new- applications we are experimenting in the area of electronic mea-

translator which generates the machine code from the assembler source surements.

code of the user program. Parallelism and data transfer are demanded Further researches are presently in progress to improve the ab-

to the proper design of the assembler program. straction level for the programmer of applications. In particular, we

To write new application programs in the multiprocessor assem- are studying a user-friendly interface and programming style based

bier in a simple way, we provide a modular, expandable run-time i- upon icons: non-expert users-will create the computational graph,

brary. It contains the most used basic mathematical functions (e g. which describes operations performed upon input data, through graph-

trigonometric, exponential and hiperbolic functions) and the advanced ic interaction with the development environment. The user will select

DSP operations (e.g. DFT, FFT, lIFT, convolution, correlation), functional building blocks from a menu and connect them into the

Such functions are coded as efficient as possible by exploiting all hard- computational graph.

ware parallelisms. A second research topic is the automatic identification of paral-

For loading, debugging and executing the machine code, the front- lelism in the user program. Compiler and assembler translator should

end-provides-a user-friendly environment, The user can select- the pro- be able to describe a sequence of simple operations affecting disjointensetsrofideviceusin-the same processingtunitebysmeansnof aeuniquepin-

gram file that must be loaded, can transfer such program in the mem- sets of devices in the same processing unit by means of a unique in-

ory of-the multiprocessor subsystem, can run the program -Possibly, struction. Whenever group of operatins can be executed at the same
he can also execute the multiprocessor program in a step-by-step mode time, the compiler and the assembler must detect this event and col-

or by introducing break-points to observe the behavior of the system lapse the operations into the unique instruction.

and to correct errors in algorithms under development.

A higher programming interface may be achieved by adopting a
standard programming language and custom libraries for multiproces-
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Abstract - A paper presents some theorems- series-parallel system of order m, mEI. If

giving sufficient conditions for a reliabili- for all i 1 ,J 1 ,..,ti

ty function to be an asymptotic of large- (ij) (iJIi 2 J2 )

series-parallel- and parallel-series systems. k k

I. INTRODUCTION k k(il ji " mijm - )

We are interested in a wide class of systems and

-which every--twoo- elements -are connected- to (iJl) (iiji*"*mijm'l)

each-other-either parallel or series. In the il 12  " i-") 1l

investigatiomof these systems it can be no- 2

ticed that -their elements can be arranged- and

-numerated this way that the system lifetime X then parallel-series and series-parallel

is given by systems are- called -regular. Moreover, if

random variables of the family X-have the

X m i n m a x ... same distribution function F(x), i.e. ele-

- l~ii rents have the same reliability function

R(x) = I - -F(x) , then these systems are

m- i nk m oa x Xi±j .imjmD ... called homogeneous.
m Jm1"

Now, assuming k = kn and 1 = In, where n

or by tends to infinity and kn and 
1 n are natural

numbers, we obtain sequences of parallel-

X - m a x m n ... series and series-parallel regular homogene-

i Jl ous systems of order m corresponding with the

sequence (k 1n) For these sequences of

m a -x m i n X. , systems there exist sequelices of reliability

m Jm functions IR n)(x) for parallel-series and
iR(m)(x) for series-parallel system.

n
where-

II-. ASYMPTOTICS OF P,,RALLEL-SERIES AND

= (Xi j : iI  ,2,...,k, 1, SERIES-PARALLEL SYSTEMS

(±J .mij) Definition i.

-_ ' " A reliability function IR(x) is called an

asymptotic reliability function of a sequence

1 I.... M) Im(x) or an asymptotic of the regular homo-ImI n

m -geneous parallel-series system of order m if

there exist constants a m) , 0,.b 
(

is the arranged family of the random varia- such that

bles corresponding with the lifetimes of the

particular elements. In a first case the 1 i m IR (n)Cm) x + bn ) =lR(x)

system is called-a parallel-series system 
of n---- 0an n

order m and in a second case it is called a at all x where IR () is continuous.
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Similarly we define an asymptotic of the Theorems I and 2 provide sufficient condi-

regular homogeneous series-parallel system of tions for a reliability function to be an

order m. asymptotic of the regular homogeneous para-

llel-series and series-parallel systems res-

Theorem 1. pectively. These conditions allow to search

Lat for the possible asymptotics of the-conside-

red systems in case when their reliability

d = sup-x : IRWX)7,O . models are fixed. First, one should assume

any reliability function and next try to find

If-IR(x) is continuous at point d in case when a-norming-constants sequence Ca ( m),bm)) sa-(m) m) n n

d / co-and sequences (am),b m)) ' (kn*ln) have tysfying the sufficient conditions for the

the following properties assumed reliability function to be an asym-1
- ptotic of the system. Some examples and more

1 1 m 1m-i k n -o for m>,i general theorems about asymptotics of the
n .. n n

parallel-series and series-parallel systems

S im- 1  m 1 of order I can be found in [1,2,3,5]. Some1 i m k n -[ F(a m) x  +  b n j - n

n [ n n examples of asymptotic for nonhomogeneous

systems of any order m can be found in [4].

* -inlR(x) for -m>, R
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Abstract This paper presents an extension to the use of generic
algorithms for Recursive-Spatialdiecompositions (RSD) to design a
hierarchical substruc Jring (IfS) scheme that can be easily coupled to
the automatic-mesh generator and can be embedded in a self-adaptive
meshing.analyis procedure. The-geometric algorithms for RSD gen- S , S. s

erate-nested-dissections-(analyptcal substructures) of the domain that
are-used for the analysis scheme (11S) described in this paper. An
evaluation of-the -IS scheme-for parallel processing is discussed with
reference to-the results of-implementation of the scheme on a vector.
concurrent machine.

-1 INTRODUCTION

This paper desribes a 3-D FEM analysis scheme based on Re- (a) oain,** d0.o aot, Of 'S

cursive Spatial Decompowntions (RSD). The scheme forms-an integral
part=of an- automated FEM meshing-analysis system that is ideally
suited- for parallei-computing- [1]. Specifically, spatial decomposi-
tions are used to(1) transform automatically a solid model into a
finite element mesh, (2) perfora incremental analysis via hierarchical
substructuring, (3) produce hierarclhical data structure that allows
coupling between~mcshing and analysis, and (4) perform incremen-
tal self-adaptive analysis. The parallelism in the meshing scheme
has~been-earlier described'in [1]. In this paper the applicability of
thei hierarchical substructuring scheme is discussed in the context ' E 0

of-parallel processing environments. A brief overview of-RSD based s ,,.,,.,,t
meshing algorithm-that forms the basis of time substructuring scheme I' L I
is-given in the followingsection.

2 AUTOMATIC MESHING SCHEME
(b) Suviww Cdlved via Ff50

A two-stage automatic meshing procedure is used for automatic
generation of the finitc element meshes. -or a detailed des.ri,tion Figure 1: A 2-D structure and the associated substructures
see Reference:[2j. In Stage-4, the solid-to he meshed, fl, is approxi- derived via RSD
mated-bya collecticn of variably sized- octants through the recursive
spatial decomposition-of the original geometric domain. Such an ap. This process continues until the root node of the tree is reached.
proximation-is conveniently -represented by a logical tree structure The mathematical formulation of this stage can be described as fol-
-Whosemode-have eight-sons, popularly known as "octree". Stage 2 of lows: Let b and-i denote respectively the nodes on the boundary and
the-meshing algorithm transforms the RSD into a valid FEM mesh, the interior of the substructure. The equilibrium equations for the
through-further-processing of the individual ortants. substructure can be partitioned as

Each-node-of the-octree represent& an i nfornation ally complete Kii K1 b
subdomain wi and, in terms o the finite element model, a substruc- = (1)
ture. Thus, for the purpose-of analysis, the octree can be regarded as IKb Kbb bXb b
a- cataloging structure with-geometrical and analytical information
directly mapped on-to it - see Figure I for a 2-D example. Such a where X is the displacement vector, t is the load vector, Ki b are
substructuring scheme, whereby all the-substructures are hierarchi- the stiffness coefficients related to the interior nodes alone, Kbb
cally organized and a.e derived through the recursive spatial decom- the coefficients for the nodes on the boundary and Kib the cross-

position (RSD) of the original doain, is referred to as hierarchical coupling terms linking boundary nodes to the nodes in the interior.
- - By eliminating the interior degrees of freedom a new system of linear

substructuring. Note that tie analytical substructures produced by equations is obtained:
the RSD are equivalent to the nested dissections described in [3].

3 HIERARCHICAL SUBSTRUCTURING KbXb =R (2)

There are three distinct rtages in Jllerarchical Substructuring. where Kr. (- Kbb - KbiKC'Kb) and Rr ( Rb - Kb)1 .%.-1j)

In the first stage, stiffness matrices are formulated for the low- ate reduced stff.ess matrix and the reduced load vectors, respec-
est level nodes of the octree which consist of assemblies of linear tively.
isoparametric elements. The stiffness matrix formulation is based on The third stage involves root level solution and recovery of dis-
the degeneralion of the eight-noded isoparametric brick element, placements and stresses. The reduced system of equations, obtained

Second stage is the assembly stage of analysis. Starting from at the end of assembly stage, is solved for the unkown boundary dis-

the-bottom of the tree, the stiffness m.tricei of tlhe offspring of the placements, 1(bb. Once the root level displacements Xb are known

sanie-parent- cell are asrembled into a substructure and the interior time interior nodes are computed by solving he system

degrees of freedom are eliminated by static condensation. Once all KiiXi = Ri - KibXb. (3)
the substructures at a given level are assembled and cond,-nsed, the
procedure begins to-operate on the tree lvel imfedCaLedt, ,%bo. liecaii that KRi has already been redued to.a upper irfaiglilatr mati,;.
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during assembly- stage. Thus Xi can be derived directly through next non-empty substructure ; is assigned-to the second avail-
backward substitution in -Equation 3. Finally, the-displacements at able-processor P 2-and so on. Once all the eight sibling of an
the element level are used to compute-the stresses in the solid. octree node are-computed, the substructure corresponding to

the-parent node is marked as available for assembly.a = DB~e, (4)
3. The process continues until all the-first-level substructures are

where D is the material property matrix, B is the strain-displacement computed.
matrix and 6 e is the elemental displacement vector.

4 PARALLEL IMPLEMENTATION Table 1 shows the speed-ups and efficiencies for the example prob-

Tour domains were meshed using the octree-based mesh generator lems. p, %}, T$ and Tp are the speed-up factor, "fficiency, serial, and

described in Section 2, and analyzed via hierarchical substructuring. parallel time, respectively. All the times are reported for implemen-
Figure 2 shows the meshes used, the applied constraints and loads, tation on Alliant FX/8 machine configured for 8 processors. Ap is the
as~well as the-deformed-shape, percent increase in the efficiency achieved by using the balanced pro-

cessor load scheme, described above, in contrast to a scheme whereby
eight level-I substructures are assigned to separate processors. No-
tice that the increase in efficiency is marginal for the bracket problem.
This can be ascribed to the fact that for this particular problem, con-
densation of one substructure dominates the whole execution cycle.
Therefore, the processing time is only marginally influenced by the
way the other substructures are assigned to different processors.

Object Ts (sec) TP (see) P -n(%) Ap (7)
__ Block 9.19 1.222 7.52 94.0 4.0

Housing 23.30 6.154 3.79 47.4 45.0
I ,, Cyl-cyl-int 12.74 1.727 7.38 92.3 85.0

Bracket 85.67 30.853 2.78 _34.8 30.0

Table 1: Speed-up-and efficiency for balanced-load scheme

Problem IT ., (sec) 7'T,."a' (see) I P
Block 12.123 5.613 2.16
Ilousing 56.866 13.475 4.22
Cylcylint- 3.560 1.650 -2.15
Bracket 270.064 46.565 5.79

(d) Table 2: Speed-ups due to vecdorizalion of root level solution

Figure 2: Analysis via hierarchical substructuring - original on the ALLIA N!) FX/8

meshes-and derormed shapes for - (a) block, (b) housing, (c) athe speed-ups produced by-exploiting vectoriza-
cyLeylint, and (d) bracket. tion for solving the root level substructure. Notice that the efficiency

of vectorization increases with the length of the associated vectors
To study parallelism, it is convenient to identify three stages of (i.e. the size of the stiffness matrix), as illustrated by the speed ups

varying computational complexity as follows: 1) substructures as- for housing and bracket problem.
sembly and condensation except the root level (this includes compu- 5 SUMMARY
tation of element stiffness and condensation of all the substructures
up to level I in the octree); 2) solution of the final root level sub. This paper has presented a view that emphasizes on the use of
structure; and 3) recovery of interior d.o~f.'s. Stages 1) and 2) are RSD for 3-D Hierarchical Substructuring (lIS) scheme that can bein-
the dominant factors in terms of solution time and, therefore, only corporated in a parallel FEM analysis system consisting of automatic
-these two stages are considered for parallel processing. Stage 2 of meshing, analysis via hIS, and self-adpative incremental re-meshing
processing consists of assembling the eight level-1 substructures and and re.analysis. The octree structure provides a tight coupling be-

then-solving the-final root-level substructure. As such, stage 2 must tween geometrical and analytical data, thus allowing for an efficientthengrte mesonganaysg prceur final Intle concluscture Eli recur-ge2 us

be-performed on a single processor. However, since it requires the integrated meshing-analysis procedure [1]. In conclusion, the recur-
reduction of-a:arge, nearly fully populated matrix, stage 2 can take sive formulation of the algorithms maks the scheme ideally suited

full advantage of vectorization. for parallel processing.
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ABSTRACT Proof: Assume K(G) = U K.(G.)+K', and assume for k E K', k' =
{uj, u2, -, u, and ul is with the smallest label among A(u,). According

In this paper, we try to solve clique finding problem, one of the most to Lemma 2, we have k' E G t,, contradicting to our assumption. U
famous NP.Complele Problems, in parallel. We propose a new sequen- This theorem, in other words, means that the cliques in graph G can
tial clique finding algorithm, the empirical and theoretical performances be found by discovering all the cliques in the restricted induced subgraphs
of the algorithm are further analyzed. The -empirical results show that of every vertex in graph G.
the average time complexity is about k. e' 148", whfich grows in an ex- NexVstep, a parallel clique finding algorithm based on MIMD shared-
ponential order. flowever, this algorithm can be easily parallehzed if an memory machine with n processors is demonstrated.
MIMD shared-memory machine is used-and then a parallel clique find- For an n vertices graph, initially the processor PE, of the MIMD
ing algorithm is obtained. Therefore,-the time complexity of our parallel shared-memory machine holds a vertex vj with A(vi) =, and graspsalgorithm is about k.- e0 148n/n, hrdmmr ahn od ete . ihAvi ,adgap

a its restricted induced subgraph G:, independently. The K(G ,) can be

obtained by unifying {v ) and the cliques in G'(V* - vi,E - AE(vj)) -

1 Clique Finding Problem and Algorithm So in the first step, we add v, to a clique list. The clique list is a list %hose
elements are the members of a clique. Besides, it constructs the essential

The clique finding problem is defined-as follows, part of clique.
Definition. Given a graph G =-(V, E),-the clique finding prob- Next let's take a look at G'(V* - vi, E* - AE(v,)). If this subgraph
lem is to find every subset V'C V , such that every two vertices is a clique, then any combination of this subgraph (optional part) can
i-verties Ware joined by-an-edge in-E [3]. form-a clique with the clique list. The exploration-does not-need further

Clique finding problem is one of-the most famous NP-Complte prob- extend and the entire procedure can be terminated Ifthesubgraph is nota
lems Generally speaking, exponential time is needed for it, however, there clique, the processor PE first picks up a vertex, say vk, compute Gk,(V*-
are some special cases which can be solved in polynomial (2] [4] [5] (6! [7. tk, E* - AE(vk)), push G"(V* - v, - vk, E* - AE(v,) - AE(vk)) into

Next, we define some notations and terminologies used in this paper. memory pool, and exploit the algorithm recursively to find the solutions.
Degree of a vertex v is d(v);_A(v) is the adjacent vertices of vertex v If a processor PE, finishes the job, the subgraph pushed into the mem-
whereas AE(v) is the adjacent edges of vertex v. Clique k(G) is 6 set ory pool previously can be dispatched to the free processor PEI and repeats
of vertices which are mutuallyconnected in the graph G, K(G) is a set entireprocess.
of cliques in the graph C and-all of-the cliques in G constitute of a set The output of our algorithm contains two parts - an essential and an
called K4n(G)- k,(G) is a clique which v E-k.(G) ; likewise, 1K(G) is the optional part. For the essential part, it is easy and straightforward, just
set of cliques that all cliques in this set include vertex v. The output of output it. However, for the optional part, if we need to k,.ow every clique
our algorithm is composed of two parts, essential part and optional part- in the graph, we may adopt any arbitrary parallel combination generating
Every vertex in the essential part is-a clique and each combination of the algorithm on it and combine the output of the combination generating
optional part forms a clique with essential part. algorithm together with essential part[J].

If we give every vertex I-in graph G a label, then A(V) is the integer In the previous paragraph, we have not pointed out the labezng method-
value label of the vertex b. G(,E) is said to be a restrlfed indaced logy used in our algorithm, but sometimes the labehing scheme may dra-

bgrapi with respect to -ertex v in graph C iff GC(V', E) is an nuced matically affect the load uf the pruccsor and the performance of the algo-

subgrapi of G and (1) V* = v A(v) - {t/Iv' E A(v) and A(V) < A(v)). rithm.
(2) E* = ((u, w)Iu, w E V' and (u, w) 6 E). Thus we proposed the following labeling scheme. Label every vertex v

Now the notion of our algorithm is stated as below . according-to its degree d(u) in ascending order, the smaller the degree of
Given a graph G, let- k(G) = {Vi ,V2,.--, v b} be a clique of G , I < a vertex is, the smaller it labels.

m < n where n is the number of vertices in G. It is trivial that in graph G, By applying out algrithm and labeling scheme, w- prune the smaller
fcr any arbitrary clique k, either t, k or i v k This idea can Lc extended cliques of the graph and left the largest clique not processed. This concept
to a set of iqes, that is, for a %tcx t, we ha c, = K. U K;, where is based on the "Largest clique is the most tnme consuming part in
K. = {klv r k) and Kr= {klIu V k. kite graph in computation".

Second, if a vertex v is connected to all vertices in graph G, then the
cliques 14,(G) may be either [v) or {klk = k, U (v},L- 6 k(G')), where

' is derived frum C 1., recnuvng i and it, adjacmit edges. Su i~c have 2 Time Complexity Analysis of the Clique
the following lemma. Finding Algorithm
Lemma 1 . If i is a vertex which connects to all vertices in In the following Eection, we try to analyze the time complexity of the
graph G(V, E), tlen -A.G) = {{v, {klk =cu {aj,c r= k(U')) where parallel clique finding algorithm. Note that under the MIMD model when
G' = (V - v, E -AE(v)). any processor is free, we assume it gets a job and no communication exists

From Lemma 1, if v cunne.s to all verti(.c .n G. then hiWG.) lnust between an, two subtasks. S, we may suppose the speedup of the parallel
be either [ul or {v) U K(G*(V* - v,E* - AE(v))). algorithm- is n relative to its suquential version. Thercfore , if the time

If the vertircs of the graph G are labelled ith psativ. integers, then -. mplex.: y of sequential algorithm be denoted as En(p) then the time

we have the following lemma, complexity of parallel algorithm is certainly En(p}]n for an n processors
machine.

Lemma 2 . Vu E k,u i v if A(t) < A(u) then k CI V" where V The judgment criteria of the algorithm here we define is the number of
is the vertices of G,. cliques output. Therefore, according to our algorithm for random labeling

Proof : Suppose the lemma is false. Ihat is, k. g V". rhen there scheme, first step a vertex X is picked cut for computation of the restricted

must exist at least one vertex wE kW,.w) 6h and u; g VI, such that induced subgraph. Suppose the degree of the picked vertex X is z. Then

either A~(w) > A(v) or A(w) < A(u). For the former, it contradicts the fithe probability of the restricted induced subgraph

definition of G, because that if a vertex t ,t (, w)6 E and A(tw) > Gf is (" I] )pc(lp).--z.
A(u), then o must be a vertex of G., that is k. C t'. For the latter, it
contradicts tile prerequisite of the lemmasince Atvj is the smallest number For the rc3tz..tcd ,nduo- subgrap,ls C a c lque I* output and then

among all vertices in k. Thus w ean nor- exist in k.. the vertex X is deleted from it The rest restricted induced subgraphs will

According to Lemmas I and 2, we have Theorem 1. he recursively exploited by the algorithm, so the time steps required for
this algorithm is 4 (p) fur the rest restricted induced subgraph therefore

Theorem 1 . K(G) = U K14G;). the time Complexity for G; part is

(n1,) u(l _ pr -mi (p)+ I

Tbds rtieArdt wA psritaly sponjred by the NAtinanl S-inae Counaml tint -, where I is the time used for the essential part.

NSC79. 0105,E MOo - 17
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Figure 1; E.- and Regression- Curves, Semilog chart
Figure-2: Number of vertices vs. average time

Note that z may-vary from 0 to to -- I, so the time-complexity for--n
from 0 to n - I is

_n ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ W~ 1 015p. -p-0.Ep)+Ib.r)ins, Serrllog Curve and Regression Curve-

After computing Gx* part, the graph G'(V -X,E-AE(X)) obviously ].S
contains n -I vertices, so the time needed is E.-o(p). Therefore the total
time complexity-is V

_E (P) n- ( '( 1) f( p)---i .Ez(p) + I + E0.1 (p)

And solve the above equation, we may get
E,1(p) = t + Zkj_-](g.(k + 1[FmI1,(' + g.Qoi))](n - (k + 1)))+

__(n ) _ fl,-(+_(_))

From semni-log-chart (see Fig. 1), iveinow that-, ;-- ke 0.27. Its

3 -Simulation Results 5 I 13 Is l It 21 23 25

Since the performance analysis of our algorithm with sorted degree labeling .I*~~
strateg is quite hrteefore-a set of-simulation is-held in thle last E.hnRu

section.
In the simulation, first, for evcry probability p and number-of verticesFiue3 mloChr-sLnarRgcinApoxatn

-n , the experiment ite rates-129 times. The range of n is from 1 to 25Fiue3SmioChrvsLnaregsinApoiatn
step.2 whereas p ranges-from 0.00 to 1.00. Graph representation for-the
simulation results is-shown in Fig. 2. Semi-log-graph for Fig. 2 is listed in
Fig. 3.

After-carefully examining the figure, the curve seems- to be a straight References
line when n >-5, so-Elie technique of linear regression-is used to approxi-
mate this curve. Approximate line is also shown in Fig. 3. Undoubtedly [1SGAI h einadAayi fPrle loihs
* itted curie is very proximate to the original curve. So-the average time 1 Arenti lal ew esey, an nlyi f aall Agr.lis

used-in the our-algorithm i-about log(Ea) ;z 0.148* a + c where E. -is

averge imeusedforouralgoith,-nis he nmbe-ofvertces-c s a [21 V' Alron- J Kerbosci, "Finding All Cliques of an Vndarceg., Graph".
usetnta d for4 oui lihO s the number-of threcs~ isaih aie C. ACM, 19 (1073), pp.675-577

Expandng is he slope srigt :k li4n.
Expndig te frmua, e gt E k eOi4S~.(3J NM Gary and D. Johnson, Computers and Intractability : A

Goide to the Theory of NP-Conplcteaicss, Freeman and Co.,

4, Discussions SnFacsu 99
[41-F. Gavril, "Algorithm for.NMinimum Coloring, Maziximumn Clique.,Nfi-

Maximum Clique Problem is to find a clique kc where Iki ? jk'I, L-' E imurn Covering by Cliques, and Maximum independent Set of a
K400. This problem is an NP-Compleccproblem. Chordal Graph", SIAM J. Coinpuit., 1 (1972), pp. 180-187.

A-slight modification on our algorithm will be more efficient for tile
maximum clique problem. For sequential algorithm, first, we gencrate al [L P arl,"loithm fur a Maximumn Clique and a Noiaximum Inde-
restricted induced subgraph for the graph. Say, G(), G.(2), I G~ 1 ipendent Set of a Circle Graph",Ntok 17) pp. 261-23
there are a vertices in thc graph; since maximum, clique is the clique with
greatest- number of vertices in the graph, next step compuitation starts [61 If C Johnston, "Cliques of a Graph - Va-riations on the [Iron-
with G* where the number of vertices of G,)is the largest among Kerbosch Algorithim", International-Journalj of Coinputer and

G, SG- G the above procedure will be repeatedly executed lIformiation Sciences, 5 (1076), pp.200- 238.

until-the maximum clique is found. During the procedure we shall keep [7) C. IL Papadimitriou and NI Yannakakis, "The Clique Problem for
track of the size of vertices in the restricted induced subgraph generated Planar Graphs' Inforniation Processing Letters, 13 (1981), pp.
Once-found the size of restricted induced subgraph generated is smaller 131- 13.3.
than any other restricted induced subgraph G4, then the procedure jumps
to process G4. This algorithm is somewhat similar to the breadth-first
search.

For par.allel algorithm, we should keep a location for-maintaining the
current maxi-num clique size III, and every processr gets a restricted
induced subgraph With the same number Ikd of vertices and then repeat
the sequential algorithm.
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NEW ALGORITHMS FOR POLYNOMIAL AND
TRIGONOMETRIC INTERPOLATION ON

PARALLEL COMPUTERS

ILAN BAR.,ON AND AVRAM SIDI
DEPARTUMENT OF COMPUTER SCIENCE, TEOJINION,

TECIINION CITY, IhAIFA 32 000, ISRAEL.
Abstract.
An interpolation-polynomial of aider N is constructed from p inde- ity. We, therefore, look for a generalizationi of the bary centric

pendent subpolynomials of order n -N/p Each such subpolynomial is representation that is appropriate for the formula given in (2).
found-indcpcndently-and in-parallel. Moreover, evalluation of tile poly-
nomnial ats ay given point is done independently and in-parallel, except

tor a-final -step of summation of p elements. Hence, thc algorithm has TiEOREM 2.2. Let Q.(x) be as in Theom ('2J), and

almost no-communication overhead and-can-be imnplemented easily on let R,(z),i = 1,... ,p, be the polynomial of degree at most

any parallel computer. We give examples of finite-difference interpola- IXid - I that satisfies thc interpolation conditions
tion,-trigonometric interpolation, Chebyshev interpolation, and conclude

with-the general ilermite interpolation problem.R,()w. z X.(3

1. -Introduction. In this paper we study the problem of Then P(x) can be express.1 in the form

polynomiland trigonometric -interpolation on large parallel ~-a) ~ .,z 4

M~IIMD computers. There are well-known-sequential-methods z7=) - .R(x)Hl.,.x, - X.) -, 0-M~z)

for both -problems. However, these methods- are not easily Pz 'lA 4

adaptable- to-parallel systems, and especially to loosely con-

nected- systems- such as-rings, stars, because of the overhead Proof. See[I. 0
due-to interprocessor commnunication, see for example[2.-3, 5]

In this work we present new algorithms for polynomial Given p processors, we assign processor-i- 1, .,p,-to com-

and -trigonometric interpolation that require almost no com- putilg the corresponding -terms j(z) and V'4z). The comi-

mrinication- between the- processors. Given an -interpolation putation of the w,aj takes O(ni(N --ni)) additions and- iul.

problem of order N =-np,-p being the number of processors, tiplications in the worst case, where ni IXJl. Hlowever,

we iivide it-into p smaller interpolation problems of order as will be seen in the following sections-, in many cases of

ut. T -se problems are-solved independently-and in parallel interest these values can lie computed analytically in much

using-.n appropriate sequential method. The value of the fewer operations. Assuming that the wij are known, and-that

interpolation~olynomial is then a combination-of the corre- ni~ N p, i = 1,. -,, each processor is faced with an

sponding subvalues. interpolation problem of order n that can be sot-ved in paral-

2. The interpolation polynomial. Let-fkx, beafunc- Idl with no-need of interprocessor communication. Once the

tion defined on- (a, bj, whose values on the set of N -t- I dis- interpolation- polynomial is known, its abeat points not in

tinct points X = {zo, z, .... ,oXN}, is givent by f, _JIkx). the set are given-by sunmming and dividing tie. corresponding

0,1,..., N. W~e are interested in constructing a representation subvalues; in (4).

of the polynomial P(z) of degree at most N that interpolates In Sections 3,4,3 we consider the iprublenzs of finite dififer-

f(z) on X and is most suitable for- parallel computation. Let ence interpolation, trigonome- tric interpolation, and Cheb,)-

{X1, X 2,. .. , ,} be a partition of X, shiev interpolation. For ease of representation we will use
a slightly different notation Ls follows: WVe assume that the

X = UPIX, and X, nl X, = (D', i 5$ j. function f (z) is given at N = np distinct points and that
each of the p subsets Xi, which are now numbered by i=

The-following theorem indicates how P(x) can be constructed 0,..., p - 1, contains exactly ni points. W~e denote the points

independently and in parallel by p processors, each solving a in the subset Xi by zjj, j 0 n. .,-

smailer interpolation problem on one of the subsets Xi. 3. Finite Difference Interpolation. Let~ X be a act of

THIEOREM 2.1. For i = 1,._, p, define equally spaced points in the interval [a, b],

wJ ,=a+ih, h= -a,-~ for i=0,1,...,N-I.
J, zEX, N-1'

and let Qi(z) be the polynomial of degree at most 'X,,- 1 that Wec assum-e for simplicity that N = sip and p is the number

satisfies the following interpolation conditions. of processos available. We consider here two partitions.
In the first partition we assign the ith group of ni consec-

Q i(ZA~ = W. j " X. X. (1 utive points to the ith processor,

Then P(m), the interpolation polynomial on X, is giren by X= Xy=vn.; j =0,...,n - ),

P~z)= ~Q,(zfl~~xz - A).(2) for i =0,... ,p - I. ilerce,

Proof. See ji]. ai = L-o - flZns-Z

It is known[.I, 6, 71 that the barycentrkc representation for La. = l-)

grange interpolation enjoys a, large d. ;rcc of numericalstabil.
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whce C (~)NnN 1!I~--1)!is ndeendnt f-i-C yields-the balanced complex trigonometric polyno-
and j. W~e-note -that if-the same-constant C multiplies all mial P(z) =_T(8) of degree M,
the tvi.jitllows-from (1);(3)Ahat the subpolynomials j(z) 1s-
and-A-(z) are-also-multiplied'by the same constant C but-the P (Z) C- - + Ck ?iZ + -Cs.
interpolation polynomial P,,(x) remains invariant by (4). In 2- -, +

view~~~~~~~~ oftC a f p o e s r h s o ~ n p t k r ~ u i w ith -z-A = c,,, w hose co cffiuent5_c* are related to the at~
polynomials Qj(x) and JAi(z) that satisfy the interpolation and bk-in (5) through
conditions

X i.+ k . Of course, P(z)-satisfies the interpolation conditions

(l in )If )Pz)=( )f, -r= n-1 cil qN. (6)

for j=0,... ,n -1, and-this computation can be carried-out for j- 0, 1,.. -,N - 1, and the coefficients ci,
using any finite difference-formuia. I1

In the secondlpartition the subsets Xi are formed-accord- L_ 0o
ing to can-be-computed in O(fflorN) operations using the FET. In

= = ~ ~o,. . ~ ~,thi3-section we-introduce- a-rnew-representation for P(z' ;that
can-be evaluated in parallel using the-FFT on smaller sets of

= for-i- 0, 1,.. . ,p- 1. Consequently, points. Let N =-np with-n = 2mn, and -consider tha partition
__J ZO, Zi,- . ., .)-of the set of points-Z = (;bzj.

-i - 0 -9i z -) ~i -z&)-where
- id '*"' Xjl(i,,z,, ZI = (Z z:.7,:z roz,.n- , U= 0'I,...P-1.

=C 2(-..)i+friP-)(nT - i-7. 1 'TH~EREM 4.1. F*!- 1 0,1, -P - 1, 101

where C.-= ClfpP- 1 is independent- of i and j. Each-proces- "

sor has-to-compute the correspconding pcoiynomials-Qj(z) and
Ri,(z)-that satisfy- the-in terpolation conditions and let- Q1(s)--be the balancod coniplex rinointIric iVokjno-

mid~ ~ ~ ~~~_ ofc dejumIhfis leicrpolo#_fia- co di.:cn

R~~) ~~1+AiN 'y-.I) n-I) ontlMe suhseL of points Zj. Tif - P(sJ. tht 64-211hdd, trigono.

for j 0.. a 1. As before, this computation can be (6,can be ezprcs-ted in the form
carried-out us;ing any-finite difference-formula.

We have the following operation count for constructing P(j=:kj"£ z z4j3
and evaluating the polynomial, when p--C-N:

Proof. S~~J
sequentia I parallel j 

e or-Conistruiction J(JN - 1)NV/2 Jim - I)n- As before, wve Iwk for a 9feradi724d bavccntric fo 'ua- 'i
I-Evaluation N 12(n + p) I1.4 inula IS developed in1 -nesirern 4.2 telow.

We obtain a.speed up of order e/2-in-the construction stg, TIOt .. FrI=01.. -1 e () e1
and a speed-up-of order-p12 in the evaluation stage as C4in- Tiot 4.2 r 4noi o ogr mt

pared to the ordinary sequential-finite difference mctiods. baifithe eo moalio I-pri,&mtiono-ege a t

4. Trigonometric- interpolation. Let 0,. be equally ~''" ~ =%~ .-.- 1
spaced points-i r ,2;) ive y. -~

2ri ~ nte~b~ int-4 z,, Then ther ubkned frigano-efric

andi let f(9) be a function defined! on rlrl,2;r whiose 'aluezs pmnze,,d-in 1ks forri

f, f(G,kI = 0,!,.1, N - 1. are given. Furthermoire., let~
N =2,1f. Then there exists a unique balanceM trig,-onetrie- P )~{::~zif) -I~

polynomial T(0) of degrev M1, Rs sueitesml o
I U-1 I

T7(9) 2 a + £..kor + bk,,i l) +I,- if Pix d.,
k- I1'4s if P is cen.

interpolating f(O) at the pointsG0,,j = U1. . -
A conple.% interpretation of TO() in lenn,. of tl~e V.1ria'le Pr-.f We~1. a]
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Now-that we have obtained the barycentric form of P(z), we THEOMht5.2. Let p be even, and for 1 =0,1,. ,-1,
can-obtain-that of-T(O),,the real form-of P(z), very-easily as ktixbe the-polynomial of degree 2n - 1 that satisfies -the
follows: interpolation conditions

T(O) = zPI-01-1'l5(0 - Di)f-sin m(O - 01) 1(xk,r) = -fk-+,.p k ,' 0, 1,...,n- -1.

Then P(x) of Lemmna 5.1 can be expressed in the for
where O'j( ) =_ 0(s), with s = e i 0 is-the balanced- trigono.
metric-polynomnial of-degree m. that-satisfies the-interpolation P(X) =~ (-1)' sin2nO&Q(X)/(T2n(X) - TnX)
conditions Z'-(-1)' sin 2n0i/(T - T ) -

&0,=(-)1-f~p r = 0,1,... ,i~~ nhr T2 n(X) is the Chebyrshev polynomial of the first kind.

and '()is given by Pof e~]

f1 if-pis odd. :THEOREM 5.3. Let p be odd, and for I = 0,1,. .. ; q - 2,
I om f i vn let Ql(x), be the-polynomial of deg) e 2n- 1 that satisfies thecos m if-~is-ven.interpolation conditions

We have the-following- operation -count for constructing
and evaluating the-polynomial, when-p ~< N ,(k)= (1f+rp, k=I r=01..{ (-)r 4~fv,+,P r = 0,'

Contrutio Isequential- parallel
Contrcton Nlog NT no n Furthermore, let-Qq..I(x), be the polynomial of degree n - 1

Evauaton ~ ~that satisfies the interpolation conditions
We obtain; a speed-up of order p both in the construction and -q~)=f-~,r 0 ,. n -J1.

evaluation of the-polynomial as compared to the sequential
PET algorithm. Then P(x) of Lemma 5.1 can -be expressed- in the form

5. Chebyshev interpolation. Let x, be N-Chebyshev P(z) tq- (-)U nln + (-1d)- (8)
points += ~()TnX T z

n;=cs2j + I~rj0,,..Ni Proof. SeeN. D

We next show how to find the corresponding polynomials
in [-1,11. Let, f (z) be-a function defined on [-1, 11 whose L(z), I1 0,1., q-- 1 using the -FFT algorithm. We give
values-f1 =f(xj),j = ,, ,are given. Let N np, explicit formulas for the case where p is odd. The case where
and consider- the -partition X = {XO,X 1 ,.. .,X,_1 }, where p-is even- is solved- similarly. Let-Q(x) be a polynomial -of

of -degree m - 1, and let its representation in terms of the
X1  {iT~l~p~ V O,1...fl1, 1O1,..'j 1 hcbyshev polynomials of order-less than m be

We define a new partition, Y = {YO, Y,..., Y,-,), q UP [+ 1 r-1

1)/2j by Q(x) =-iao + E akTk(x).

Yj=XUXI -l='1' 'q-1' l=p- _l.Rewriting thle series in terms of x = cosO0 z = Ce, we-get
the corresponding complex Ohiebyshev polynomial of degree

L~IzMA 5.1. ly1-',1..q1 define rn-I

= ]7J (xg, 7 - -,"), r= 0,1, 1, C.) . , kc.k=-k -= 1,.,m1
k$1,11

and let Q'(x) be the polynomial of degree I', - 1 that satisfies Let Q(x) staisfies the interpolation conditions
the interpolation conditions j-+ ~I j= 1 1

QIQzk'r = fk+p, , = Cos' 0T =j 0,=.. 2m -1 1..
QI(X~r)= fkp~~r, = , 1, , n-4,Then (7(z) satisfies tile intcrpolation conditions

on the-subset of points-Y. Then P(x), the interpolation poly-.
nomial on X, can be expressed in the form ((0) = 1-x,) =g,, , - eie

qana vice versa. Hence, Q(z) can be obtained from (7(z).
PWs- E Qg) Hl (z - xk,1).(7

1=0 k&1,'THEOREM 5A4 Let 6(s) be the balanced complex trigono-
metric polynomial-of degree n that satisfies the interpolation

Proof. The-result in (7) follows from Theorem 2.1. 0 conditions

In developing the barycentric formula we distinguish between n(zj = f (zl~) =
the cases in-which p is even and odd. 2 1 2 j'

fanj 0 ,,.,., n- 1, where j' n- 1- j and z, ehr/2n.

778



Then C(z),.-the complex Chebyshev polynomial of degree nl -- 1 e 1 z eth oyoilofdge t ost n, -1,
corresponding'to Q,,_..zx) in ('8), can bc e~ipressed-in-the form ZjeXj k,, that satisfies the following int erpolation conditions.

C(Z) =_6(Z/x1'2)_+ 6(1L(ZZ1I2))Qi(x)=tqt-01 . h-.

Proof. See[1]. 0Then P(x), -the interpolation polynomial-on X, is given by

TiHEOREM 5.5. -Let 6(s) be the balanced complex trigono- P p
met ric -Polynomial of-degree n -that satisfies the interpolation p(x)=EQ()1., 0X.(XX- ,= Q,(X)lj(X).
conditions ,1 -

-(x) fi+,P, 6(zn~j) = f1'+1'p Proof. Sec(1J. 0

fori = 01, ... ,n--1, where j' =n - 1- z1 = ei21r2n and
I < q - 1. Then O(z), the-complex Ohebyshev polynomial of THEOEM 6.2. The general Ilerite Interpolation poly-
degree 2n -1 corresponding to=(-2isin 2n0iq (x)) -in (8), can nomial P(z) of Theorem 6.1 -has-the -barycentric form
be-expressed in- the form

C(Z) -((±' z 1 1 ________________

V, -vir Vi ZVI," - V1 ZVI)C - P = 1 Rj(X)I1,EXi(x -Xj'

where Rj(x), like Qi(x), is a- polynomial of degree at most
Proof Seel. 0 i - 1 that- satisfies-the same-interpolation conditions with f,

replaced byl1, and-ffzby 0, t = I. k- 1, for all j.
Again we obtain a speed-up of-order p both for the-construc- Proof. As in Theorem 2.2. 0
tion and evaluation of the-polynomi al when N -n(2p),p <

N, We can find-the formulas-for vf,, s =-0,,, k- - 1, in

I-- I-sequential I parallel 11 O(_E k,IX_-XI + k?) < O(n.IX_-XI+n2
I Construction N1- og N 12iilog(2n) ex

~Evalatio N - 2(n + ~operations, and the formulas for-th~qw 2 s 0,1,..-. ,, in

6. The genera Mer Jnite interpolation-problem.- Let
M+ 1 distinct points X = {xo, X1, . .-, X0, in-the interval O( E k~j):5 0(n?)

[a, b), be given-and let f (z) be a function defined on [a, b), for XJexi

which operations. Let fli ~-' n- N/pli-= 1, ... ,p, and assume that
th v* "aekown. -Each processor is then faced with a general

fl 40)(A t 0, , - k -1, 0 M.liermite interpolation problem of ordcr-n, that can be solved
W~e-are interested in constructing a representation of-the gen- in 0(n') operations.
eral Hermite interpolation polynomial P(x) of degree at-most-
N, NV+ I- =f k,-thiat interpolates -f(x) on X,I.e., 7. Conclusion. We have presented a new interpolation

polynomial that-is especially useful for parallel -computers as
P(g)(X;)-= f"' t = 0, 1,.k, - 1, j = 0,1. .M, its -construction-and -evaluation requires- almost -no commu-

nication -between the processors. The -interpolation -problem
and is most-suitable for parallel- computation, is divided -into smaller- indep endent, subproblems that can be

Let {fX12X2, ... , , be a partition of X, solved -independently using any known sequential-interpola-
X=U~~ ~tion method. Thus we havc reduced the-problemn from order

1 ~ = ~fori ~.i.N to order n - NIP. rurthermore, we have developeda

The following theorem indicates-how P(x) can be constructed barycentric-forinula that enjoys a high degree of numerical
independently and-in parallel-by p-processors, each solving a stability as in the case with the barycentric formula for the
smaller general Ilermite interpolation problcm-on~one of the ordinary Lagrange interpolation.
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A NEW DIVIDE AND CONQUER-PARALLEL
ALGORITHtM FOR THE CHOLESKY

DECOMPOSITION OF BAND=MATRICES

ILAN BAR-ON
DEPARTMENT OF COMPUTER SCIENCE, TECIINION,

TECHNION CITY, IIAIFA 32 000, ISRAEL.
Abstract.
We present a new divide and conquer parallel algorithm for finding Here, A!,i = 1,... ,v denotes the ith principal submatrix of

the Cholesky decomposition-of a-band symmetric positive definite ma- order2'n/p, i.e., ros and columns (i-1)2'n/pl,.., i2'n/p,

trix. This is the first time such an algorithm is presented. All previously
known parallel algvithms for this problem are direct implementations of A The offdiagonal block-elements L;, U,' are given byof the sequential methods, which as though, offer almost no speedup.()( )Hfere, fr-the first time aparallel oriented algorithm is presented, with oj 0 0 ), .- 3
an approximate speedup or order p/3 given p processors. Moreover, the L12' 0 i 1' -= ,

algorithm can be implemented on many existing parallel computers. / 0 Lit2 /
We further discuss the more- theoretical aspects of the algorithm, 20 /_ ( 2 )

and show-that it can be implemented in 0(og in log n) time-using p = U" 0 0 ut'(
(n/m)M(m)/(o9 in log n) processors. Here, M(m) = m,2 < pi < 3,

and mO/Iog m denotes the least number of processors required in order -

to multiply two matrices-of ordermin O(og in) time. This improves where L,, U,' E M(2'n/p x m).
by a factor-of log m the best previously known result for this-problem. Let E,, Fi, G, Hi, matrices of order m, be given by

We conclude with an application of the algorithm to the finding of

the eigenvalues of a non-singular band symmetric matrix. We show for B s -
the first time how to implement each iteration of the Q lt algorithm in A X ! = L ! XS col d = 0 .. /2 - 1. (5)
the same-complexity as above. 'i ° _

1. Introduction. In this paper we study the problem ( G' s=0... k-, (

of finding the Cholesky decomposition of a band symmetric AY = Uit,., Yi 3,5...p/2-' -1. (6)
positive definite(s.p.d.) matrix on large parallel MIMD com- Hj'
puters. Such a decomposition is-important in many-numerical We further let D A, with similar notations for D as in (2),
methods for solving systems of linear equations and-for com-
puting the eigenvalues and- eigenvectors of a corresponding D!, i = 1,2,... ,p/2-, s = k,k- l,...,0. (7)
matrix.

All previously known parallel algorithm for this problem We describe the main stages of tie algorithm in the following:

are direct implementations of the sequential methods, see for for s-= k k -1,..0 do in~parallel
example [4, 6, 7]. As such, they suffer from the inherent
sequential nature of these methods and in most interesting = A - U 1 (D. 5 )-'L!, i = 2j, = 1,2,...,p/2s +' .
cases, where the bandwidth is small, they offer almost no (8)
speed-up.

In this work we present a new divide and conquer -paral- Frind in parallel the Oholesky decompositions,
lel algorithm which offers an approximate p/3 speedup over
known sequential methods, given p processors. The problem D (9)
of finding the Cholesky decomposition of a band matrix of
order n, is reduced to the of finding p independent decomposi- Let,
tions of small band matrices of order n/p. Each such problem ,
is then solved independently and in parallel.IU, L, 2

£ = .. -. (10)
2. The algorithm. Let A be a band s.p.d. matrix of Iij,,- 2 L , )-,

order n = qir. and bandwidth m, i.e., Uj, 1_- Ljj

UI A2  L2  U,,Aj, Li E M(m), Solve in parallel the triangular systems

AU-" Aq U- L it,  i=1,2,...,p-1. (11).... = L! is
Uq_2 A q_- /,9-, upper trian ular.

U9_1 Aq The decomposition A = LL is then given by
(1)

We assume for simplicity that-q = lp, where p = 21"" is the
number of processors. Let A °, s = 0,1,..., k denotes a block £2

structuring L ... ".(12)
A, L', v = p/2' s =0,l,..k, L - I r-P-t
U18 A32 L2 LP_

As ". ", Ul,, Lir M(2n/p),

AV.2 A-.' L.-

-t A A band s.p.d.(2)
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TIOREM 2.1. Let Ri G k(m),i =0,1 ... ,p - 1 be We then climinate' 7-",i i2.in parallelin a similar way, i.e.,
given by we subtract 7W71(1J 7'7)-1 times the last row of T2,'- fro

the last row of T-', and 62-'-j(S2:") - 1 times the first row of
,2, i =-2j +1, j 0, 1.... ,p/28+1 -1, 'r2,' from-the first row of T2,:. The ith row of A' finally

(13) receives a similar form to-(17), i.e.,

fors=O,1,...,k. Then, • - , 0 0 s

-= +H Rj2o12 +, ( --GfR,2,+1) E, R0  O. (14) = * . (18)'H: 1- 0 0 W; 7i,

Proof see[2]. 0

COROLLARY 2.2. Suppose that the submatrices TEOREM 3.1. Let T,,s = 0,1,...,k be as in (16).
Then at the end of step s of the algorithm

ELFt i =1,3,...,p/2'- - O1
" ~ ~ ~ 0 L ,.,]"- ,1..,z (15) .. .1•s = 0,1,..., k,

G f, H j' i -_ 3 , . . . , p / 2 ' - 1 s B ; -- ( V ) & , F s = ( W j' ) - 7Y ' , i 1 , 3 , ..., p / 2 ' - I

ar '-own. Then "we can implement each step of the first stage (19)
of the algorithm in O(m3 ) operations. and

3. Computing thcE's,F's,G's,H's.. Thealgorithm we G.' = (V,)-, H, = (W)- 17.lH, s 0,1,..., k- 1,

present is part of the author parallel algorithm for solving (20)
band s.p.d. systems of linear equations, seell] section 2.1,
and we will review here its main new ideas. We denote the Proof The first s steps of the algorithm may be viewed
ith-row-of Al, s = 0,1,..., k,.given in (2), by as an elimination procedure applied to the linear systems

T' (0 ji_ Af X; A!i12.,/'16 _ •, -
= ( A 0 1) 2,.. .,Ap/2 Iz-,, A Y=-Ujt, i=-1,2,...,p/2', (21)

Step O. We diagonalize the submatricesA 0 , i = 1,. ,p. in (5) and (6). The result- now follows easily from (18). 0
Let,

Vi Q Vo 0 0 E Complexity and Processor assignments. In Step 0, we

0 ". 0 , (17) assign processor number i-= 1,2,...,p, to the ith row of A0 .
W9? 0 0 W? .7,, Each processor then diagonalize its corresponding submatrix

in parallel in approximately 2nm'fp operations. In Step s =
debote the corresponding rows of A ° aftcr step 0. 1,2,..., k the pair-of processors

Step s=1 ,2, .. ,k. The ith row of A, has now the-form (i - 1)2' + 1,i2' i = 1, 2,... ,p/2', (22)

T= (Tr21 , i = 1, 2,. .. p/ 2 -, is assigned to rows 2i - 1,2i-of As-'. Each such pair, per-

S ,T forms the corresponding elimination-step, exchanging O(m)
information and performing 0(m) operations. Hence, for

.. , m,p < n, the algorithm performs approximately

0 2nm 2/p + 0(mlog p) - 2nm 2/p operations. (23)
Till C'-7' o:- o' w'2 I

0 2s["t  )3i" 0 0 -t 4. A pseudo code. Let A be a band s.p.d matrix of
* order n = qm and bandwidth m, and let A = L!I be the

7-, 0 0 'y',' - Cholesky decomposition of A as in Section 2. We assume for

_ith V' o and W = W .Weeiminateg'", -l simplicity that q = lp where p = 2k+1 is the number of pro-
w it - ),+1, andors.' j2 Wt

in parallel by subtracting gC7I'(W2',)-' times the last row of
T2- ' from the first row of T2-', a d 7,-21 (V,- ' ti esthfistIrowa from the st row of T2', an a times the Bottom-up sweep: We compute the E's,F's,G's,lI's.

fi As a result we Step s=O. We compute in parallel:
obtain

K-1 V? 0 0 0 ° o AF =7' L , for i=1,3,...,p-1. (24)
_Ho = A'U_-,, for i=3,5,...,p-1.

i, = 7" 7 , 0 0 T7T2, 0 0 0 * Step s=1,.... k-1. We perform in parallel step s of the elimi-
• * 0 0 0 s ' 0 0 -' nation procedure as in Section 3, and then compute in parallel:

* =r (Vfl -'_, F,' = (WV) -'YFl, i = 1,3,... ,p/2' - 1.

0 fl1 0 0 Vl' -, (,,-,t , HY=(VV,')-'1q, i=3,5,...,p/2"-1.
(25)
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Step s=k. We perform step k of the- eimination-procedure
and-compute qm2/log q < p - q.A(m)/(log m !jg 7,,. -We proceeds

Fill (W- . (26) as in the previous case, using only the basic matrix operations
such as-add, subtract, and multiply. Here, M(i ) = mO, 2 <

Top-down sweep: We find A = LV. f < 3, and m0 /Iog m de.- .es the least-number, processors
Step s=kk-1,.. . ,. We compute in parallel required-in order to-multiply matrices of order m O(iog m)

time. For example, using- the standard multiplic.r'ion algo-
S= ' + HR 2'+3(- GfN12,+1)'El, No 0, (27) rithm = 3, parallel implementation-of Strassen'- method

-for i = 2j +1, j -0,1,... ,p/2' +1 - 1. gives P-= log7 - 2.8 see Chandra[5], and for huge s:-. 'atri-
cesO can be reduced even further, see Pan and Reif[8.

S We compute in-parallel The bottom-up sweep is implemented as in[l] section 3,Step s=-. Wwith complexity O(qM(m)/p). In the top-down sweep we

= A+i -UjRN, i = 1,2,... ,p- 1. (28) have the following:

Find in parallel the decompositions 1. We multiply matrices of order m in

%£, for i=1,2.... ,p, (29) O(A4(m)/p) time, using p<_AM(m)/logm processors.

and finally, solve in parallel the-linear systems Consider the inveises

L jjL = L il for i = 1,2,...,p- L (30) V G )' Z)', Z ON,

The triangular factor L of A = LL' is then given-as in (12). in (27), -where we denote for simplicity-Gf -by G, and Rj2,+,

by R. Here, we observe from[2 that

Complexity and Processor assignments. V have consid-
ered the bottom-up sweep in Section 3. In Step s=1,k-,... 1 I - Z)-' - II -< E 1 Z ij < a51 /(l - o), a < 1,
of the top-down sweep, processor numbers w=e

i2l, i=2j +J, j=0,4,...,p/2 +1 -J (31)

compute the corresponding R,2,, performing 0(m) operations S = M Z=i (I + Z2'),
and.exchanging 0(m2) information in parallel. Then, in Step io i=o
s=-o,-processori= 1, 2,..., p, performs approximately i ms2/p and the solution converges quadratically. For example, let
operations. Hence, -for m, p ~<n, the complexity- is a=2/' n e h rcso sdb ' hwo

a = 2
-t/' 0 and let the precision used be e =2 "t. Then for

0(.malogp) + nm2fp -nm2/p operations, (32) t > 8, eleven products suffices i. get an a,.curate inverse. The
actual convergence rate ;s cle; zly a dependent, and even forfor a total of -e 3nm2 p operations. We conclude that the a = 1 - 1/mO() the series convergcs in O(log m) steps. We

algorithm can be-effiiently implemented on many existing will assume for simplicitythat a is independent of m. The
parallel computers with- S , p/3speed-up, and with low actual properties of this new iterative method requires further
communication overhead. research.

5. An O(logm logn) time algorithm. Let A be a 3 We finally find the Cholesky decomposition of 'he dense
band s.p.d. matrix of order n = qm and bandwidth m, and s.p d matrices A in (29), using the author-new divide and
let A-= LV be the Cholesky decomposition of A. We show in conquer parallel algorithm des(ribed in[3j. A similar iterative
this section how to implement the algorithm given p . q/log q scheme used there gies a coniplexity-of order
processors. The algorithm proceeds as for the case where there
are min(q,p) processors, only now matrix operations of order O(-M(cm)/p) time using p - .W(m)/log2ra processors.
m are done in parallel. We show how to implement efficiently As a by product we obtain the inverses of the triangular fac-
each matrix operation such as add, multiply, invert, and find
the Cholesky decomposition, in parallel. We distinguish be- tirs and the triangular systemsin (30) can be solved by mul-
tween two cases as follows: tiplication.

We conclude that the total complexity is
q/lg q <p <_-qm1/log q: We perform each step with as O(q,4(m)/p) using p S qM(m)/(log rn log n) processors,
many processors as available. For example, with q processors,
we implement each operation in Step 0 with one processor, with S, = O(p) speed-up over sequential algorithms. Fur.
and Step s = 1,2,...,k, with 2' processors. Using standard thermore, there are only O(log q + log m) = O(log n) steps
parallel methods, each of the above matrix operations require each dominated by the time to multiply matrices of order m,at least O(m) time. As there are only-,, 2log q steps the total an operation which can be efficiently implemented on many
complexity is parallel computers.

0(nin /p) + 0(mtog q) = 0(nmn/p) time, (33)

and S. - p/ 3 , as the total operation count remains the same.
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6. An application to -the QR algorithm. The -QR
algorithm finds the- eigenvalues of A by -repeatedly performing Solve ti parallel-the triangular systems

F Find the- QR-factorization A = QR. F, foi 12,.,q-. (6
*Set-A =RQ. R'j=P, fr(6

until the offdiagonal elements become negligible. The-re- Solve in--parallel- the tinangular systems
suiting diagonal matrix is similar to the original matrix and
therefore-has the-sa -me cigenvahies. Sainch and Ruck have R.X. = , - S ,Y,, for i 1) 12,... , , (37)
presented -a parallel- QR algorithm for tridiagonal matrices Complexity: The complexity of the algorithm-is domi-
see[1O) which can-not be applied- to -general band matrices. -ae ytetm-ofn h eopsto- R
We present-for the first time such an efficient-and- fast parallel ntdb h iet idtedcmoiinB RR
algorithm. 7. Conclusion.. We have-presented a practical parallel

Let A-be a Eand symmetric non-singular matrix of order algorithm for finding the Cholesky decomposition of a-gen
ni = gm and bandwidth mn, and let A =QR be the-QR eral band s.p.d. matrix that does not implement Lhe known
decomposition of A. Then it is well-known, see Parlett[91, sequential method. We have suggested a divide and conquer
that Q is lower H-essenberg-of bandwidth m,-and R is upper approach whose inherent tree ;tructure make it simple to im
triangular of bandwidth 2m, i.e., plement on many parallel computers. Moreover, in most prac-

tical cases the operation count is approximately only as thrice
0,-j < i -7rn, and r, = 0, j- <i, j >-i + 2m. (34) as the sequential- method -and- the overhead due to interpro-

cessor communication is negligible.
Hence, RQ is lower llessenberg-of-bandwvidth in, but since -Other numerical algorithms such as-the-conju,;a~ezgradi-
RQ-= Q'AQ-is symmetric, it--is again-a band matrix-of band ent algorithm for -solving sparse systems of linear cquat Uons,
width m. We have therefore the following algorithm: and Lanczos methods for fiiwiing the cigenvalues of s~mmetriL-

* Se B A - A a and ~p~d matixsparse matrices-are also sequential in-nature-and wve believe '
e Find the Chrlesky decomposition B =LLV. that more parallel oriented dlgorithms for these prublems can
e Solve the triangula-systemn LX = AL.befud

Now, since A = QR it follows that L = Rt and therefore

X = L-1 AL =- R7AR1 = Q!' = RQ, (35) REFERENCES

is the transformed -matrix sought. Let us denote X by 'tI 1. BuR.-ON A praduzcalparallelaolyprihm for .solmn.g band symnmct-
ric posit ive definie .sys teins of linear equations, ACM Trans.

Ar Y, Math. Softw., 13 (1087), pp. 323-332.
ZI X Y2(2) -, Efficient logarithmic time parallel algorithims for the

X ~Zi= Yi' is Cholesky decomposition of band matrices, Tech. Report 661,
'upper triangular , Technion, Computer Science Department, 1000.
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Z'-1 XqTechnion, Computer Scitice Department, 1000.

and let (4I) R. P. BRE' T MmD F. TP L'JK, Computing the Cholesky factor.
ization using a systolic arhteccture, in Proc. Sixth Australian(R, S, Computer Science Cont., 1082, pp. 295-302.

I R2 S2  *I(5] it. K. CIKANDitA, Maximal parallelism in matrix multiplication,
R Tech. Report RC.6193, I.B.M. Watson Research Center, York.

11 = . .town Heights, IN.Y., 1076.
IR_ Sq - 1 C6) 3. J. DONGARRIA, A. SAMEII, AND D. SOiRENSU, Implementation

k R, of some concurrent algorithms for matrix factori:ation, Parallel
Computing, 3 (IOSG),-pp. 25-3-1.

where all submatrices are of order -.n. Then, (7) S. P. KUNIAIL AND J. S. NowALiX, Parallel factOri-ion Of a
positire deftnitermaliznso an.WIMD computerin International

AEii Conference on ParahI11:l Processing, IOS-1. pp. 410-116
E2£ F2  (h)] V. PAN AND 3. 11. Rewr, Efficient parallel sclution of linear .sys.

* * £~F3 E,, F 6 M(m), tems, in Proc. Seventeenth Annual Synipeaiem on lite Theory
E3 R. Iof Computing, 1095, pp. 1413-152.

AL- E 4 F4  Fi(owr [) 13. N. PARtLETT, The Symmetric Eigenratse Problem, Prentice-
F, is ower Iall, Englewood Cl~ffs., 11080.

Eqtriangular , (10] A. It. SAMEII AND D. J. NucK, A paraliel QR algorithm, for
* * * 5 ~ F-~symmetric ftidagnat matrices. IFEEE Trans. Comput., C-26

E, (1I77), pp. 147-152.
and therefore X can be found as follows:
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A RECURSIVE DOUBLING ALGORITHM
FOR SOLUTION OF SOME SECOND ORDER-RECURRENCES

ON HYPERCUBE MULTIPROCESSORS

AY E-KIPER
Department of Computer Engineering,
Middle-East Technical-University,
06531, Ankara-Turkey

Abstract. The second-order linear recurrence formulae which results where
from *he Fourier series coefficients of the Jacobian elliptic functions 0
.5nm(u,k),cn1~(u,k), and dn-(uk) with in > 1, are evaluated by the method a(n, 3) 0
of rec-irsive doubling on-an lnteI~iPSC/d4 and performance results are dis- li(4) a(n,4) 0

cussed. A

1. INTRODUCTION.

-In the evaluation of functions by series approximations,-the- accuracy 0 6(1) a(n,t) 0
increases with the increase in thernumber of terms of expansions which -(2)nO)*w(i) + ()o
results in- an- increase in computer time. (3) ~ ,0c~+b0c

The Fourier series expansion for the twelve Jacobian elliptic b( 0  1

functions (JF.Fs) have- been studied and given by several authors
(Abramrowitz-and Stegun [I), Byrd~and Friedman (2], Du Val [3] Whit- '=
-taker and-Wtson [10). Two-term -recurrence formulae-have been oh-
tained for the coeilcients of these series corresponding-to powers of-the
JEFs (Kper f5)). The resulting recurrence formulae are of the second (0
order and-inear. Parallel evalua.tion of these~recurrences using-nested0
recurrent -product form algorithm and-using-method of-recursive dou- If the first in terms of the expansion-for a-power I is required, then
bling on a-)MIIMD system was-considered by Kiper- [61 -and Kiper and a-matrix system of size (I - !)-must -be solved-(mn + 1)-times with

-Eas~ respectvely. In this paper aa-;mplementat'on of-the recur n-~ 0-1,2, .. mi. The size uf &he system Ancreazes, wth the increasing
sive doubin"g algorthm on an, Intel;PSC,'d4 hypercub e am'tprocessor requred power-aad &he numiber of solutions of the system increases
was developed for the e-,aluation of-the mentioned recurrences and the with the increasing number of terms.
results were discussed-in terms of the speed-up-and the efficiency of Another parallel approach to the solution-of the recurrence relation
the-parallel aigorithm. (2.1) was considered by Kiper and Evans (7]. Equation (2J1) yields a

2. GNBRLISTIO -O RECRRECE ORM LAE form of second order linear recurrent equation which generates a vector
2.FGENERAOURATION OF RECURRENCE FORMULAE rFesult-in two dimensions. Since, if we let

OF HEFOUIE COE FI S.FR dOWER OF ~r
THE JE~~s. ')- [.P 1and Aor 1 [0~ir ( (3.2)

The-analysis of-the relations for- the Fourier- coefficients for-powers of WI IJ I
the-JE~s (Kiper [5]) shows that for a prescribed k (k is the modulus r = 2,3,... .1i n =0, 1, 2 .... in, then (2.1) for-the prescribed power t

of-the elliptic functions) these recurrences may be represented-by the cnb rte s(oi[) cedl[]
common expression - Vy) (2),~ A$'. !~.~',n12i. (3.3

wn.(0'The associative property of matrix-matrix multiplication leads us to
-n= 0,1 1....in use-the recursive doubling process [9] in O(log2 t) steps for each ns (ns

= an~~c~$'' +6(r)" 4 . 2 1 
,- r= 3, ... I t 0.1,2,....min. It must be noted that computations need 0(t) steps

(2.1) for each ns in the sequential- mode. The numerical experiments of
where I ;s the requred power and in s the -eqiAred nuambex J terms the DrOPosed Zgur.Lhi& 'Acre carried vUL on the Sequent Balance 8000
in-the expansion. Equation ".1 :& a second order ;near recarrence mutprocessor-Ath .5 prjcesurs and a comparative discussion of the
relation R(t, 2). results were given in [7].

3. PREVIOUS- EVALUATIONS. 4. RECURSIVE DOUBLING ALGORITHLM ON
I*YPERCUBE iMULTIPROCtSSORS.

A sequential eva'uation of the coefficients for the-Fourier expansion of
*the JEFs snrn(u, k),cnmn(u,k) and dnn(u,k-) v 1;1 in m 1wereobtained An-implementation of the recursive doubling algorithm whose formu-

and the numrn-ical values are given for various values of k (0.15 P lationi has been already given in (71 was considered on an Intel iPSC/d4
0.9) (Kiper (.5)). It is seen that the rate of convergence decreases as yecbmutposor
the value of k and the power of the JEFs increase.hpecbmutroso.

A parallel evaluxtion of the coe fficients ---as formulated by Kiper
(6J using the nested recurnr-it product form algorithra in which the
relation (2.1) has-been expressed as the solution of a matrix sse

-a = g + 1(3.1)
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The algorithm consists of the folowing there steps:

Table 1
Step -1: Compute VfrJlocally 12 -4

V~)=~r*Vr-Jr=,3..,tZ TI Tp Sp Ep Tp Sp Ep
p: the number of nodes -16- 1.0 1-.6 0.60 0.30 3.5 0.28 0.07
n : the-problem size 32- 1.2 2.1 0.60 0.30 3.9 0.32 0.08

n/P 64- 2.5 2.9 0.85 0.42 4.3 0.57 0.14
128 4.9 4.8 1.03 0.51 5.2 0.94 0.24

Step 2: Use the recursive doubling to send and receive 'V [t] 256- 9.9 8.4 1.17 0.59 7.1 1.40 0.35
for k =-I- to-log(p) do 512 19.8 15.9 1.24- 0.62 10.8 1.83 0.46
begin 1024- 39.6 31.0 1.28 0.64 18.8 2.10 0.53

2048 99.6 63.7 1.56 0.78 34.2 2.91 0-33
if (MyNode <= (p 1 2 '-')) then 4096 -223.1 153.8 1.45 0.73 68.1 3.27 0.82

send V~tJ to (MyNode + 2k-1); 819-1467.1 333.0 1.40 0.70 158.6 95.0 0.74
if (MyNode >= 2 k-1) then

-b g n r ceiv e tm p V ; 8 -16 E ]
V~tJ -= V[IJ * tmp.. VI ; Tp Sp Ep Tp Sp E

end; 9.3 0.10 0.01 21.0 0.05 0.00-
end; 9.9 0.13 0.02 21.2 0.06 0.00

Step : CoputeW~r)9.9 0.25 0.03 21.2 0.12 0.01
Ste 3: y d Comput 2) the 10.2 0.48 0.06 21.5 0.23 0.01

if n (My -o <=yod p- 2))he 11.3 0.88 0.11 22.1 0.45 0.03
send V~odto<(>y0ode +1); 13.0 1.52 0.19 23.3 0.85 0.05

if (Mceiv < > 0 the 16.1 2.38 0.30 24.5 1.62 0.10
freee k doVI;95.4 3.93 0.49 28.6 3.49 0.22

fr =1t.-do39.6 5.64 0.70 38.4 5.81 0.36

V[k][0](0J VfkJ1[O]*L~mp'4I(010+Vk1[0111J*tmp-V(1l][0; 178.1 5.98 0.75 56.2 8.30 0.52

Variations of the speed-up and the efficiency with the-problem size
are also given in graphical forms in Fig. 1 and Fig. 2 respectively.

The-algorithm can be analysed as As it will be-seen from the -numerical results, both the speed-up
and efficiency- improve with-the increasing problem size. Also it-can
be recogniised that thezmaximum values attained for speed-up and

Step 1; takes 4(1 - 1)-muttiplication and 2(1 - ' addition steps. efficiency- are proportional to the number of nodes used.

Step 2: takes 8*log(p) multiplication 4*log(p) addition and 2i*log(p- 1) 9 ___

communication steps.

Step 3: takes 2(1 - 1) multiplication, m - laddition and 2p - 3 commu-
nication steps.

'--

The total number of-arithmetic- and communication steps involved are
(91 -4 +_-12 * log(p)) and (2p - 3 - 2 * log(p - 1)) successively.

The-major advantage of the hypercube multiprocessor implemen- T _ - ~/
tation is that the iPSC/d4 is -. circuit-switched machine (contrasts
to the store-and-forw-ard counterpart) and the neignboring nodes ofA
each node have not been found out (in order to implement the-recur-- - '

sive doubling algorithm)-as Egeclogllu, Ko5 and-Laub [4) did in their
paper.-- -

S. EXPEILIMENTALL R2ESULTS AND CONCLUSIONS. Ixx xa

The effect-of multiple processes -was investigated by running the pro-
gramn-on 1, 2, 3, 8 and 16 nodes (p) successively and computing the %16 %22 %64 %1i28 %256 %.512 %.192k %.2S '.lei6 %4S192
total ainour~t of time T, (milliseconds)-needed. The performance of ______________________
the algorithm was measured in terms of the speed-up (Sp) and the ef. 2 i-"ae : 2-aodts + lknqe £*ots A 14-seegs

11ciency (Ep). The numerical results with respect to the problem size -

and the number of nodes used are given in Table 1.
Fig&. 1. Speed-up
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MATIX ALGEBRA AND HYPERCUXIE-PARALLEL TRANSMISSIONS
JAIME SEGUEL and JULIO BARETY
-University of Puerto Rico at Mayaguez

MayagueF, PR 00708.

Abstract. Using a-malrix representation of a certain family of permuta. representation of Z2, R. Z2 - M2 , as

tions we model hypercube parallel data transmissions. Our model provides RI)= 1i o) = .1 and R(l) = 0 1) J2
a theoretical framework for the estimation of the number of parallel trans- R (0 -1 i) 0~o
-missions involved in a given algorithm as well as the algorithms that achieve Let- 0 denote the tensor- (also Kronecker or direct) product of matrices.
the lowest-number of parallel transmissions. Since G~e is-the direct product of d-copies of 2, the map-K( ,d) :--
1-.- Introduction. A-d-disnensional hypercube- architecture consists of 2d 02v- K(x;d) e GL24 (C), where
node processors linked -by the edges of a cL-diniensional hypercube. The K(zd) = R(c8.. ,(:)) 0.. R(co(x))
processors are numbered in a way such that-the minimal-number of edgesI
between any pair of them is the- n umber of different digits in the binary 8
representation of their labels. Thus, two node-processorsi are joined if -and is a matrix representation of 0G.
only if their-binary labels differ-at exactly one bit. hn such an architecture, The d perfect-NNT permu~tations' on-2 art represented by the matrites
a nonnumerical issue that is crucial to the performance of algorithms is -K(2it d), i = -0, l,.d - -1. In general, being K( ,d) a representation,
the frequency and cost of communications among processors. These-figures K(x4y,d) =K(z,d)K(y,d) and the-set U2. {-K(z,d) . z; F_ 2.} is a
will depend -or. the underlying problem, on how the data-is mapped onto commutative subgroup of GL,2 .(C). Furthermore,-K(z,d) Lsits own inverse.
the processors, and on-the numerical algorithm. In this work we present a lId .2, the elements in-U2 i are
formal complexity analysis for the interprocessor communication problem0
associated to the product of a 2d x 2 complex matrix times a 24-dimensional ( 1 0 0 0 (010 0
vector. Our analysis -assumes that all interprocessor communications- are K(0,2) = 1 0) 0 1 ,2 = 10 0),
describable by the action of 'a certain group of permutations on the nod's of 10 0 100 0 0 -
the hypercube. A matrix representation of these permutations allows us to (0 0 0 1) K12 0 0 10

-use matrix algebra techniques to estimate the minimal number of parallel (00 10 0 0 1that achieve that estimated lower bound. In this paper we briefly present 1 0 0 0 0 1 0 0)
the theoretical foundations of our communication complexity model-and (0 1 0 0)1 0 00
use some techniques derived from it to analyse the complexity and design
optimal communication algorithms for computing some members of a well Proposition 4.- Let A = PAo, A, ..... ,-,*) and let
known family of permutations. .1o

2.- Theoretical Background. Given x e No0  (0, 1,2,.., we write x D[IM
ZZ, cn(=)2n, where c.(.) 6 (0, 1), for each n. We also set S, =-Int e
IY0  ct() 76 0). This-finite set is called the spectrurt of x. The largest Then, for all y eG2i, K(yVd)DAJK(yd) =D(ovA4F.
integer in S., is termed the degree of x. Given x and yE 6No, one can define
the so-called dyadic sum, A+y% of:z and y by n~y ic.(=) - c.(y)l 2'_ Definition.- For any matrix A G-f 2 a and x:e 0 2 4 we define the 24 x 2'

diagonal matrix
Proposition 1.- No, under dyadic addition, is an abelian group. In partic- (,A ~oo,~
ular, 0 is the additive identity and every element in No0 is !v'. own inverse. DX )=Da, l1. . a'1(41;

The initial segment of No, 02& = (0, 1, ...,211 - 1) is a subgroup of No under We have thn- following important result.
dyadic addition. Indeed, 02a is the direct product of dcopies of Z = (0, 11, Thoe 1-AnmarxA .cnbewitns
the abelian group of integers under addition modulo 2. 2Term -AnmaixA61.cnbewtens

The Hamming weght s4:), of: z -No, is defined by w(x) = c,.(x). The A = F, D(:, A)K(:, d).
addition here is the ordinary addition. One can see that: se'

Proposition 2.- (a) uW4:) 0, VX 6 No. This representation is unique in the sense that if A Ee B D1 K(z. d),
(b) u;I=4.y)_: w(.) +. try), Vz~y r=No. where each B. is a diagonal matrix, then, necessarily B, DIX, A), Y: r=
In particulars in an initial segmient 021, the Hamming weight ranges through 024.
the integers between 0 and d. Another measure of size used in this context Crlay1 o n arxA6A'~ h olwn eopsto od
is the Hamming distance. Given =-and y r= No, the amnming distance, Crlay1 o n arxAl h olwn eopsto od
I4:,y), between = and y, ir defined by h(z, y) = E.Ic.(z) - c,.(y)J. SinceA=F Kx DxT,
c.(4Y) = Icn(x) - c.(y)l, it is clear that li(ny) = to(:iy). Some basicA= K(d)xA,
properties of the Hamming distance are given in the following proposition O,

Proposition 3,- (a.) For any xy,: E6No, hfz.., y-i-) = hI4:,y) where AT is-the tranposed matrix of A.
(b) i s. fl(s. uso = 0, then h(nxp-i-) = 14z4.z,y) = h4,y) +h(r.0) Example:
(c) id > max ( degree wi, degree x) then, for any x, p e No,

AW=('n-z,'w) = J~ny) +h(-,w). 7 2 01 3 -7(

Note that if:z and y 6 02t are complientrar, i.e. c,(=) 76 c,..yn ten 'fi ( (I~
h4:,p) = d. This, in fact, is a necessary and sufficient condition for two
integers in (72e to be complementary. ( 8
A permutation 47 :02* - C2& will be called a nearest ne'ghbor tranimision .0 J2.
(NNT) permutation, if i(r, a(n)) =1, Y G602s. Thus, such permutations i 3 ) ,
modify a single bit in the binary representation of each :6C02t. The InT f
permutation will be called perfett if the bit modified is always the same. By aging &lhe Matrix 1ePiesentAt..U g.VCR in sheusena A and 46a un,4ieness,
For instance, Qi(z) - - I and o,,(z) ztKI are perfect NNT permutations we cans easily compute the gcrnesaliied diagonala of ordinary and tensoa
in 02s. In general, it is clear that for each d sit 1,2,..., there are df perfect product of Matrices. In fact,
NNT permutations on 0,.& and they are of the form co,(:) w :42', Yx C Theorem 2.- (a) Let A C AM2 s, and B C Ma , Then for any: r e,~.,
02V, j 0 1...,d - 1. Let C be the set of all complex numbers, )If-.(C)
the linear space of all 2V x 28 complex matrices and OL,,4(C) the linear D(z, A 0D B) = D(z, A) 0 D(y, B)
space of non-singular matrices with complex- entries. In order to get a
matrix representation for the %sT permutations we firs.,idefine the matrix where x and y ate &he unique elements in ;, and C2 ., sescVctmVely such

that:z zT14r.
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(b) Let A, B C Ms. Then, for any z E 034c Cor-illary i.- cI u~d . 034 0 3  a permo)ation such that a2 =-id-and

D(,B (r)~B)if we .rt-D~ = j = D~cP) where 1,. is a mc
D~zAB) = ~ DxA)D~yB,,)represeniaticon of o; then-K(y~d)z '_1(zd1srd"I

245 Dellnition. Ltt AG 4.W define DA =:(xri 034: D(zA) 96ta)
where B, = X(=d)BK(=,d)._

Corollary 2,- Ifcr: G. -- C2, then(a) 1  jie'j ES4
The following quantity -willibe-useful in the estimation of the number ofpar (1)Frayj-02,tee~ n aadol fex±Azihta -..
allel transmissions involved-in-computing with A. Given-any-A e M2 .(C),
A y& 101, vC define b(A) =mnaxjw(x)-: D(z; A) jit 101). We call this quantity Now, we apply our theoretical framework to the analysii and-design of

the ammig dametr 'i A.algorithms for computing well known permutations such a4 the bit-reversal
and the index digit permutat-ons. For iattance, let's consider .8 : C2&-

Propsiton - (a Gien ny AE M..,B C ~,,5(A0 B) 6(A + ~ . he 3dgit bit-reversal-perrmutation. Then 63 is determined- by-the
6(B). transpositions (1) -36). Now, for i = 0, 1, 2,3; 2i-fl42i) -0 and V +

-{b) Given any A, B- Alf,., -then- 5(48) 5 -min(d,5(A) -t -6(B)) _This l1f,8(2:+ 1) = 5. Thus, -D(O; Pe -= D1,,000,lj1 andD(5,Pp,)
inequality-can bt-strict even-ifflioth matrices are different- from -the .cero Dfj, 1.0.1.,1,0, 1,0j- Therefore, fis it reduced to K(5,3) acting onthe sp-ace
mhatrix. IrmD(5, Ps.). - ow, since- i(S) -2, 6(K(5, 3)) = 2and therefore the HP?

5..Hypercube -Parallel-Transmissiong. Our hyper'ube machine- con- complexity of computing.63~ is-2. -An algorithm achieving that ce'mplexity
sies o.'2 4 node processors. -Each processor is endowed with a certaun number is obtained by simply factoring K(5,3)=K(1,3)K(4,3)-
of vector registers of length V~. Given a vector register ul -in proce ssor -P1  Our second example starts with the permutation r determined by the-cy-
and a vector regiterc v2_in-proczssor P-,, it will be always possible to send cle (012-3). Such-a-:ycle induces a permutation a - 02. -- G.- This
the content-of the i-tb cc,&wp=5%t of vi to the j-th component of e.t. Fuar- germutation is defined as
thermort, simultaneous-it d;rape of the contents of the -th components
of any two vect'r regisws rc:- alowed. Thus, if we-assume that at-a cer- -(c3(X)2 3 + e3(x)27 + ci(x)2 + COW5) = C,ts)(Z)2 3 + c,12)22 + c,(1)2 4 ,9
taml itzge of a cOmpu1;5ionat process, the 21+i.dimensionz! data vector c and sometimes termed index-digit permutationi. A direct calculation show-s

is ~ ~ ~ ~ ~ ~ ~ S lodda w-iesu4ay c-~),sE04adiC0 hr that Ep, = 0,3,5.6,9, 10, 12.15). Since max (ws(=): Elr) l)=
=and j aiethe procecsor's and-vector register component's labels respec- 4 (, .Te-loih-promn ,i oriPsi bandb

tively, all possible interprocessor data movements are represen;Otle by a set 4restrictin4 The aorithm, d peromn D~,, in for zl~ is, oinb
of permutations on 034, -P, j G 02-). Each of these permutations acts rsrcigteatoso (,)t mD: sfrzC 1 '.-Frzi1 .2-- I~p,. z 5& 15, the-operator K(z-d) factors as-a product of two perfect NNT
on the segment-cy- = (c0,1).c(1,j, _,c2 ,) of c, and therefore the
whole action of the permutations P1 corresponds to the action of the direct emuaon.H evsiee4)=4,K14 wlfaorsapodc
sum P = %Z3 P~ on c, antilexicographically ordered. The permutation P ffu efc Ns

-will be called an /iypercuit parc-l ci cooimunicatioa 1HPC).-By representing
each P, in terms of our formulas in section-2,

P =9%CCr,,( E D(; PY)K(z.cd). References
ea'd 1l[Swarztrauber, P., 'Multiprocessor FFTs', Parallel Computing 5, pp.

An hyprcubc parc frans-nission- (Ifi~ is now JEncd as the special type 197-210, 1987.
of IIPC where Pi = DiK(Z( )id). -Her "-D, is a diagonal matrix with I's [21 Serre, J.P., 'Linear Representations of Finite Groups', Springer-
and O's on its diagonal and 0 :SrU) :5 d - 1. -If r~i = r-for all j, Verlag, 1977.

P =_(ejC_,.) (J':i 0 K(2rd))- 131 Fraser,-D., 'Array pernutation by izdtx-digit permutation', 3. ACIM

Any IIPC is perrformed -Var6itgh a sequence of-11PTs. A-lower bound-for 2,p.1911 91
the numnbcr -of 11.'s ipultea in "- -hyperctub- parallel tomuic-At;.ni 1i-Gannon, D). and Rosendale, J. *On the impact, of rommuntratirn com-
max {6(P,) -..Je Cz.). This lower bound, however, is nOt always schievzhle plexity o the desigr of parallel numerical a-lgrithms!, lEES Trns.

Theorem S3, Any permutation on a 21.dimensional data vector-ks com- Comput. 33, pp. 1180-1194,-1994.
putable with a minimum number-of IIPTs.

Proof: Let A be-a matrix representation of a permutation on e-' Th.n
A = E>,CE.D(zA)K(;d). Ltt mD~xA) and ImD(z,AT)-be the

image subepzces of D~z, A) and D(:=, AT) respectively. Since A is a permu-
tation, C2' =eiec 4 rnD(z,A) = G~cr, jmD~zA7), and the permu-
tation A can be writtien as the direct sumn A =- G,c ,T,, where 2',,is the
restriction of K(z, d) to Irn D(:, AT). Now, the minimum number of IIPTs
required by A is equal to the ma x(5T, x G 02t), which is, int fact, equal
to $(A).-

Theorem 4.- Let A E [2# be such that A czB 0C. with B e JJA~ and
C e M2,. Let's also assume-that computing with B requires 5(B) IIPTs.
Then computing with A also requires E(B) IIPTs.

Proof. Since A D BOC = (Be0 12') (1340 C), the process of computing
z = Au can be made in two steps, (1) y = (A~seC)u and (2):z (801-',,).
To implement Step (1) we divide u; into 24 segments is,, = C 0~s, each of
length 2'. Then-we load u, in processor =and compute y, =Cv,. This
computation requires no initerprocessor communications. As for step (2).
according to Proposition 6, (a), 6(8012,) = 5(B) -4-1(12,) = i(8).

Theorem 4 establishes that a significant reduction in the number of lIPTs
involved in compuiing with A is achievable whenever A supports a tensor
product factoriration. This result explains, for instance, the good commu-
nication properties shown by the Cooley-Tuccey FFT.
Besides estimating the IIP? complexity of any algorithm expresable-in
matrix language, our model helps in finding the best interprocessr data
flow alternatives. We will consider, by way of example, algorithms com-
puting certain permutations First, we need to set up some corollaries of
Proposition 5.
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Doping-induced anchoring- transitions at liquid crystal surfaces

Faculty of Mathematical Studims University or Southampton
Southampton S09 ShIl, United-Kingdom

-Abstract. We have gereralised -earlier worg cn anchoring of t=-.n is ow.in t~c, Lerature a: the Rapirti-Papgular
nematic liquid crystals by Sullivzn and by Sluclkin and fomo'tesraeitor, nrA wihhsbe
Prniew'ers i in order to study -ransitions: which may occur fr ftesraeaco.' nrywihhsbe
in brnary znixturos o f nemnatic liquid crystals as a extensively used in both tt orezlcat a.-d experimental
function of concentration. Possible phase diagrams of
anchoring angle versus dopant concentration have beenThster issritoi dy enris t a
calculated for a simple liquid crystal re. binary LC mixture at a surface. f sstill given by (1)

1. INTRODUCTION and the W are linear combinations of V,(L I I,. the

third moments sr the coefficients in the- spherical
If a nernatic liquid crystal fLQ) is spread en top of an halinunicu exoansion of the ;ntermolecular potential retween
anisotropic substrate. the energy of the LC molecules at species L_ and J z for (L I LI) (3O). (220). (202). (222)
the nematic-substrate interface will depend en and (224). and Vx, te itgze L-u-p
orientation, thus inducing preferential alignment of. the ilrcin npriua.w safntc fV24

nematic directoi"i'; 3 This phenomenon. known as anchoring. neato.I priclw4isafciaorV2)

plays a crucial role in the fabrication of LC display only- The ccafficients in the linear combitations: are
devices, which rely ca a delicate control of anchorin.- prodicts of the total density and of tne concentrations
surfaces (see e.g. ref. 3). However, the underlying and order parameters of the two comnjcents.
physical mechanisms are not yet fully understood. Minimisation of f with respect to 9yields the phs

Recently it was shown that discontinuous changes in diagrami shown in f-ig. 1.
anchoring direction - anchoring transitlons - can c.-cui as
a result or changing concentrations of one or more

adscrbates4 . We are concerned with modelling the

an-choring transition obseried by Pieransli et zis'. which -

is driven by changes in the amount of water vapour
adsorbed on a gypsum s-abstrate. This is a transition -

between two monostable planar anchorings. which R_
notoriously difficult to study theoretically. We therefore
started by 'considering a simpler case, that of a 7 "'

transition-between homeotropiz and planar anchoring.

2- THEORY

Following Sullivan and co-workers7 89 . we used a
mean-field approximationq to the Helmholtz free energyr
functional of a non-unifoinm nematic liquid to derive a
simpler. Landaui-de Gennes; free energy fune_'ional. The main
advantage of this method is that we obtain explicit
expressions for the phnn.nlgcl coefficients
appearing in Landau-de Getes; theory in ternr. of the
intermolecular (and surface) potentials. Besides;
mean-field, the basic approximation is the assumption of a -

step-function variation of the density and order parameter 5 ~ .

profiles Although this is clearly inrmect. as it
nelets the role of surface adsorption &C11. we expect FiueI eanbongphsdarmofaLi ( w.

the resulting theory to provide at least qualitative z.rl Teahoigpsedgam faLCi(w )
insight into te mechanisma determining the equilitrium Spame
alignment.

As W~, and w., change as functions of temperature and
We first generalised Sullivan and co-workers! approach ct -nrto.tetuctoyo ytmi w. pc

to consider a single zoonixrent uniform nematic pha-se at a Zocnrtotetajcoyo ytmi (I 4) pc
(plane) surface Negenting baixdty. Me strfa~_ tWan snaj .ryos one A aeorc of the b-mindAnies bet-Aee difent
in the expressic-n cf tht rurface tension isq_ ancho4ring domains, at Which Ponat an anstorIAg transition

obtains which is first--order if w 0 mr second-order if

W +W P 2(Cos 0) 4- w4P A(cos 0) Si 4  0. Sullivan aW. cin-wrkers" argued that the
l'(224:l twims in t.-- interaction patenntial ts coming from

whee 9 cos.'(n;kl is the tilt .Anf e. L~e. the angle ~.ah~'~roe interilntons and short-ran
&_-tween the normal to th srfce k. and tfo. inerratk. an&4OrV-Pz repuls Ire and attractive fmrces) are
director. n, ad F t is the nth-order Lvegendepym ey-mintially positive. kwelizz to neri-n-gative W a:d

We can estimate the orientaticM favoured by the su:rface by ___

rmini Sing only F instead of the full surface tasWrs(oxvr 4 myvnsi sw

titt5f's EqationS (I) trncated after tleXN1. 9 shall i
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-in order to calculate w and' 0 we need a specific

model for V(l Il;r). In a first approach, we used the 01 . PLAIA?.
124simple Telo da Gama model of LCs 14 , which includes : I

(000), (220), -(202) and (022) (=(202) terms, augmented
With a (224) term coming from quadrupolar 10interactions ,.
and an inverse-power law surface potential . Note that,
In this simple mean-field theory, only (I1 1) terms with 1. -

I = -0 contribute to the free energy of the bulk phases 14
0

and therefore, given our step-function approximation for [
the density, concentration and order parameter profiles, 1
the addition of (202) or (224) terms will not change -the " o. r
order parameter. C , the strength of the (202) term, is .1*

proportional to the average polarisa~lity times the !
polarisability anisotropy. We consider equal-sized 404oCAL /
molecules and initially assume all cross-interaction [
potential coefficients to be given In terms of those of
the pure components by the Lorentz-Berthelot rule (this is 'a".exact in the case of quadrupolar interactions, which o 4
allows -for-the vanishing of w if the quadrupole moments kom

of the -two components have the same magnitude but opposite I .. ..... . , .. . ....
signs). 0 o.- 0.4 0.4 o4 i

XL

3. RESULTS

Figure 3: Tilt angle vs. x along trajectories I and IS
Fig. 2 shows a cross-section (taken at constant i

5 in-fig. 2.
reduced quadrupole -moment Q/,1(Co- ) of the (x 2 ,Q*) phase

diagram of a- binary LC mixture whose components differ by
i) the sign (but not the strength) of their quadrupole 4 O
moments), and ii) the fact that the surface favours
homeotropic alignment of component I (V t < 0) and planar We used a- simple mean-field theory to derive a

h o Xt Landau-de Gennes-ex piession for the surface free energy of

alignment of component 2 (V t > 0. x is the a mixture of nematic LCs in contact with an anisotropic
ox t 2 substrate. In spite of the fact that it contains a number

concentration of component 2. B0  is a normalised of oversimplifications, the theory predicts fairly rich
V -n a

combination-of V and V(l , J). and interesting anchoring behaviour, including re-entrant
ext 12 conical anchoring, as a function of composition, when

applied to a simple LC model.
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SYMBOLIC COMPUTATIONS FOR LIQUID CRYSTALS: INTEGRITY BASES
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Abstract - Using _algebraic processors general symmetric polynomial in the components of
properties of SO(3) - invariant free energy irreducible spherical tensors Q(L) and their
expansion of biaxial liquid crystals are d C n important
studied. This is achieved decomposingderivatives. Consequently, an
stinraTs ites ofh e -problem to solve is that of determining all
invariants in terms of integrity bases as SO(3) invariants which are homogeneous
proposed by Judd et.al., Gaskell et.al., and
Bistricky et.al. With the help of this polynomials in components Q(L) and derivatives
approach a rigorous continuum free energy of a Q(L). One can prove that -for a finite set of
general biaxial nematics is analyzed as an 9 m
-expansion in components of a symmetric and Q fields it is possible to construct a
traceless tensor order parameter field Q and finite basis of invariant polynomials

s d(integrity basis) such that all other
its derivatives 8 Q Next, a general theory invariants can be written as polynomials of
of flexopolarization and a classification of these basic invariants. This very elegant
local, polar structures in biaxial systems is group theoretical method has been applied to
offered. Finally, some consequences for problems with SO(3) symw1etry by Judd
biaxial smectic systems are summarized. et.al.[2], Gaskell et.al[3] and Bistricky

et.al.[4].
I. INTRODUCTION For large L, calculations of the integrity

basis elements and studies of their properties
Algebraic-processors, like Macsyma or Mathe- are nontrivial algebraic problems, which

matica, have been designed to perform symbo- appear to be perfectly suited for algebraic
lic, numerical and graphical calculations processors [5-7) . Here we summarize some of
easily and -to arbitrary precision. One can the results, obtained for the L = 2 tensor
also use these processors to -prepare input field and for the L - I vector field-. Some
for, or analyse output from- other external other examples are found in refs.[2-7].
-programs. Below we would like to summarize the
results for continuum theory of biaxial liquid I. ELASTIC AND FLEXOPOLARIZATION MODES
crystals obtained- by combining symbolic and OF BIAXIAL LIQUID CRYSTALS
numerical possibilities of Macsyma. Elastic free energy of biaxial liquid

A. Order Parameters crystals is defined- as an expansion in Q and

a Q , where only rirst and second order terms

Orientational properties of liquid in derivatives 8 Q0 are retained. Thus, the
-crystals are described in terms of irreducible

(L)- expansion contains SO(3)- symmetric invariants
spherical tensor fields Q((r) of angular built up from the tensors Q Qj8...QP0(Q )
momentum L and of components Q() (r) [i]. Out and QaBQ78...QP (QM,7)(_T, ) obtained by

of them the most important is L=2 quadrupole means of contractions with the Kronnecker
tensor which describes anisotropic part of deltas and the Levi-Civita tensors.
electric- or magnetic susceptibilities. In Similarly, the deformation induced polariza-
cartesian representation Q (2) is identified tion of biaxial systems depends on Q and

with a- second - order, symmetric and traceless Q at each point. Since the effect is
tensor field Q(r) of components Q (r). For

linear in deformations the corresponding

-polar liquid crystals additionally Q(1)(r )  flexopolarization part of the free energy must
m include the class of all linearly independent

field must be retained. SO(3)- symmetric invariants P Q Q QPx

B. Integrity bases (Q,, where P is the polarization field

Theoretical studies of physical properties P (1) =Q(l))

of the systems described in terms of Q(L) are 
Now, decomposing the invariants of Q

based on the nonequilibrium free energy Qa,- and Pa in the corresponding integrity

density expansion around an isotropic phase basis, one finds that the most general free

i.e. Q(L) = 0. This expansion is an SO(3) energy expansion to all powers of Q,, and up
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to second order in- Q contains 39 basic + 108 103 121 122 120
OC1, -y0 2- 22 2

elastic modes L6], where three of them are
chiral. These generalize the concept of the 2 3 3
splay-, -bend-, and twist deformations of the - 12 (103) (20) - 108 (22
director field, introduced by Oseen, Zocher
and Frank. The associated, temperature consequently , the Landau free energy
dependent elastic constants are analytical cxpansion for polar nematics is a stable
functions of TrQ and TrQ polynomial in I and, at most, a linear

Similarly, the general flexopolarization function in I One finds that in addition to
free-energy density of chiral biaxial liquid tdr
crystals is composed of 12 basic deformationferroelectric nematiccrystls [i]s. cosed of 1u2ip basic de air phases which are generated by the first fivenodes (J.These are multiplied by arbitrary

2 3 invariants, there exists a biaxial chiral
polynomials in TrQ and TrQ which define ferroelectric nematic phase, generated by the
temperature- and position dependent 133 term.
flexocoefficients. From the form of I it is clear that the

In both cases simpler forms of the free 33
energy densities are obtained from the general following must be fulfilled for the possible
expansion by imposing additional symmetry existence of the chiral biaxial phase: i)
restrictions on the field Q. Details are given chiral molecules with a large dipole moment
in refs.[6,7]. component, perpendicular to the long molecular

axis ii) large molecular biaxiality, probably
of the same order as the one observed in

III. POLAR STATES OF BIAXIAL LIQUID CRYSTALS thermotropic biaxial nematics.
* Similar statements hold for the smectic -

With the help of integrity basis one finds C*phase. One finds that if the Sc* phase is
very convenient approach to study selection
-rules for broken symmetry states in an stabilized due to the piezoelectric coupling
arbitrary Landau free energy expansion [7]. As between P and a density wave then it must be
an example we investigate the correlation described as a biaxial, uniform spiral with,
between polar nematic states and the at least two nonvanishing commensrate
properties of the integrity basis for harmonics. Since the polarization in the S

invariants composed of the components of P(0 ) phase is perpendicular to the local director,
(2) additionally the biaxial piezoelectric

and Q() coupling invariant I 3 must vanish.
The integrity basis for invariants of two on va ue o33 t Ih.

order parameters p(l) and Q(2) is composed of For nonzero value of the 133- invariant
-(1I) another phase with the S C*symty ayb

six invariants I , whose degrees of p and a symmetry may be
(more stable. In this phase, the polarization

Q(2 ) are a and g, respectively. The invariants is not perpendicular to the local director.
in Cartesian representation can unambiguously Intrinsic biaxiality of chiral liquid

be identified as (7]: crystalline molecules is the driving force,
stabilizing this phase.

I = Tr!2 The above predictions are in accordance
0 with recent expectations that the non

centrosymmetric biaxial molecules with
103 -  TrQ, negative dielectric anisotropy may be good0-candidates to form phases with local

ferroelectric, biaxial nematic order.
I =pp, A thorough discussion of the phase
20 acc, diagrams for the cases discussed above will be

presented elsewhere.
I =PQ P,1121 =X PagP

I = P Q 2  Tr (Q2 P P REFERENCES
22 ccag 9 - aa
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MITCHELL TIUSKIN AND TSORNG-WIIAY PAN

School of Mathematics Department of Mathematics
University of Minnesota University of Houston

Minneapolis, MN 55455 USA Houston, TX 77204

2. STABILITY EQUATIONS
Abstract. We usC the Erickscn-Leslie equations to investigatc the We have solved tile linearized stability equations for (1.2),
stability of simple shlear flow between-moving parallel plates for (1.3) given by the following eigcnvalue pioblem for-the pertur-
non-flow-orienting nematic liquid crystals. We shlow numferica~lly bations e' V(z) of v(z)-and c A'O(z) of 0(z)
tlhat ais tile velocity of tile plate-is increased tile first instability
canbe either ill ile shlear plane (tumbling) or outof the shlear a~ 0 +9 g8v 8V +~ ' (2 1)0
plane, depending oiltile mnateri al- constants. WeV also presen-itfu- APV = - 0 ±g(O)(21
merical results for -tile- continuation of the out-of-plane solution ae f00 C2f /80 2

from its bifurcation- point. 92A71l0 =-21 (f (O)T) + 2T9 0+ 80 T-

1. ERICKSEN-LESLIE EQUATIONS OZ m V
-28m m()L, (22

We consider simple-slicar -flow between parallel plates -at a 00 -O 2m0), (22

distance 2h apart whlich1 are parallel to tile x-y plane. We assume V(-h) = V(h) =0 0(-h) 0(h) =0. (2.3)
that thle uipper plate-at z = h is at rest while tle-lower one-at
z-= -ht moves withl velocity V in the y direction. The state of-thle Previous authors 12,7,81 have dropped the inertial term ApV in

neinatic liquid crystal-Is described by its velocity-v v~.r, Vl, Z) t) the-linear inoirtintumn equation (2.1) and have set the integrating

and its anisotropic axis ii =n(x,aV, z, t) where I i= 1. constant in (2.1) equal-toO0 to-obtain the equation

We 6first investigate simple shlear flows of tile form Og OV 0 + g 9~8V + A (9)0 = 0. (2.4)

v = (0, v(z, t), 0) n = (0, cos 9(z, t), sin 0(z, t)). (1.1) 80Or TZ O

For-flows ofrthe form (1.1) tie-Erickseni-Leslie equations are They thlen use (2.4) to eliminate 8OV/8z in- (2 2) -and to obtain

the Sturm-Liouville cigenvalue problem

PI" I (%-L + m()) - h <r z<h (1.2) Of 0~ 2 ' 8' 20

80 O 29 O f(0 at ' 2A - r ]- = 1 f() yaJ + 0 r
2f(0)-~~ + -2m(9)-~ (13 +2 (OOV 0  T2m~~ 8 (.)

wher -72 O f 89) 28 Or ~) O

whee 02 8 0 Or g(o) 89 Or
0(-h) = 0(h) = 0. (2.6)

~ - 2 9 Co2 + C(5 sa2n2+ as+a3 2
2 2 2O If thle "no-slip" boundary conditions are replaced by tile bound-

m(0) = (-yl + -y2 cos 29) /2; f(9) =tcI cos2 0 + K3 sin 2 9; ary conditions

p is the density;- a a6. & are tile Leslie viscosities; tc1 , XvK3 g(0(-h))T--(h = c, (h) = 0, (2.7)
are tlte Frank elastic-constants; and yi = 03- &2, 72 = aG -aS. Ori -h
Therinodynianic inequalities imply that g(0) 0 and f (0) > 0 where c 1 5i tlte given shecar stress on, the bottom iplate, f lienth

for all 0 and that 11 > 0 141. We bli,dll oily -.oider flows in the integrating constant uti (2.4) is 0 and the linear-ized- stability is
non-flow-orienting-regimec -yi > 17y21, so m(0) > 0 for all 0. given by (2.5), (2.6).

W~e utilize the "stroniganciloring" coinditioin fui ii, i.e., For A =0 tile equations (2.1)-(2.3) aie the equations defining

0(-h, t) = 9(ht,t) = Op. (.) a turining point for stationary solutions of (1.2)-(L5) parame-
trized by tile plate velocity V whereas for A =0 thle equations

wee 0,, = 0 r7/2 and tile "no-ship" boundary condition-for v (2.3), (2.6) are -the equations defining a turning point for -thle

stationary solutions of (1.2)-(1.4) parametrized by tile boundary
v(-h, t) = V, v(h, t) 0. (1.5) shlear stress c, in (2.7).

For steady flow, We have computed liquid crystal flows of tile more general
8v form

g(O)-=C ( 1= 1(,1,VZt) ( 0(27
where c is an integratinig constant for (1.2), and (1.6) cail be z,1=(u,1,vr,,wr )

usc t lmiit Ou8 fo 1.)t oti n(z, t) = (cos 0(.-, t), sin O(z, t) cos 9(z, t), sin O(z, t) sin 0(z, t)).

820 8f0) 892 2l( using the Ericksen-Leslie equations. Since tile flow is inlcom-
2f() 2- + Of~- t )C 7y 0  pressible, w =0. The linearized stability equations for tile

OZ Ericksen-Leslie equations for steady flows of tile form (1.1) with

0(-h) = 0(h) = p. respect to flows of the form (2.7) are given by tile cigenvalue

'TIs wrkwSStiJp~tedinI~~t b tic atina Sneicc ounaton-nd problem (2.1)-(2.3) for in-plane perturbations ci~Vr fvr

the Air rorce office of Scientific Rtesearch through grant-; DIMS 8.10 andion &\T(z) of 0(r) and byasmlregit e prblm fo
and DM5I C71-8881, tlie Army Research Office, throngh grants DAAI,03- tile out-of-plane perturbtoscAUz fuz n it~)o
88-K-01 10 and DAAL03.80-G.0081. iid by the Mitiniteota t.'iuperconupuitcr ()51
Instituile.
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Fig. 2. -Out-of-plane solution branch -
3-. COMPUTATIONAL RESULTS

Computational results for- solution-branchies were obtained us-2
ing-the-software package -AUTO -[3]. Our computational results I
show that the-first instability can-be in-plane or out-of-plane, de-

pending on the material constants [5]. We model the behavior
of 8CB just above the smectic, A-nematic transition temperature
with Op0,,=i/2 by the-following material constants for e > 0: I \ I

ca.1 = .58, a5 = .7, N~=610(21, -.

K= 1.41 X 106, 92 = 1-O23cizi, K3 =2.6O5ecc, p =1, Z2 a .022.4.6 5 1 2 , 1

where viscosities are in poise, elastic constants are in dyne, den- Fig. 3. Solution-p1rofile, fur tile uut-uf-planle branch.
sity is in g/cm3 -and hL = 1 cm. In Figure 1 above, the first
in-plane instability occurs at the first turning point and the po- REERENCES
sition of the first out-of-plane instability is markedi-by "+." .. CldIanS.TraPly.1e LV.3(97)12.

Next, we present computational results for the out-of-plane 2. P. Currie and G. NMacSidliigl, Q- J- Mchl. Appi. Natil. 32 (1070), -109.

solution branch of-the form (2.7) which has been-continuedl from 3. E. Doedel, A UTO, 1080.
the bifurcation point-for 8GB at 350 C [51. These computations 4. F. Leslie, Adv. Liq. Crystals 4 (1070), 1.

used the boundary data 0(-hz) = 0(h) = 0, 0(-hi) = 0(h) = 4, 2. 5. T.-W. Pan, Ph.D. Thiesis, Univ. NMinn. (1080)
The osiionof he ifuratin pintin Figure 2 is marked by 6. P. Picranski and L. Guyoni, Coinin on Pliysirs 1 (1076),.45

+.'Profiles of the-solution u(z), (z), and 0(z) are given in S. 1. Ziiia and F. NM. Leslie, Europhrys. tI. (1980), .

Figure 3 at the points on the solution branch marked by A-.'. 8 .z~ n .M el*,Lq rs.5(00,7
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HYDRODYNAMIC INSTABILITIES IN-A NEMATIC LIQUID CRYSTAL DEVICE
UNDER OSCILLATORY SHEAR

T. MUILIN
Clarendon Laboratory

Oxford

Abstract --We present the results of an experimental
study-of some hydrodynamic instabilities found in The apparatus consisted of two optically flat
a large aspect ratio-nematic liquid crystal, device (X/5) c'lass blocks of dimensions lOX8xl cm mounted on
which is subjected to a linear oscillatory shear, an IJV/AR frame and spaced using three micrometers
The instabilities depend on shear rate, frequency and which are accurate to ± 0.5 1m. The lower block ij
gap width of the cell. They also fall into two dif- mounded on linear bearings and is connected to a
ferent basic classes for thick and thin cells, large electromagnetic vibrator. The amplitude of the

applied vibration is measured both by a linear dis-
1. INTRODUCTION placement device and using the Michelson interfero-

meter technique suggested by Ben-Yosef, Ginio andHydrodynamic instabilities in thin homogenously Weitz (1974).
aligned-nematic liquid crystals which are subjected-to i n e r o s i l ~ t o r y s h e r w r e f r s t i n v e t i g t e dT h e n e m a t i c l iq u id c r y s t a l u s e d w a s 1 0 8 S T N Cto ine ar oscillatory shear were first investigated whch hs a postve coeffcent, " This material
by Clark, Saunders, Shanks and Leslie (1981). They we
found an instability in the form of I cm wide bands was aligned using rubbed PVA on the glass sarfaces.
aligned in the direction of the shear which have The Williams domains can be observed directly from
alternating in-phase and out-phase twist separated the scattered light and in detail through a micro-
by their dark regions. The layers were approximately scope. On the other hand the ba.,ded instability were
10m thick and the frequency range was 10-100H.. observed using cross polars as alternate bands
Thus the bands are large scale effects as the correspoad to 21 and -2 twists separated by thin
width of each is approximately 1000 layer thicknesses. dark lines-of zero twist.
In addition, Clark et al carried out a stability RESUtIS
analysis of the -equations of motion and obtained - -

good agreement between theory and experiment. One
crucial assumption in their analysis is that the
critical shear rate for the appearance of the in-
stability is independent of frequency. This appearedto be borne out by their observations for thin layers.

Clark et al also-observed the formation of
mechanical Williams domains for shear rates above the "W °
first instability described above. These are the O0
mechanical equivalent of the-Williams domains found
in electrohydrodynamic convection (see for example
Blinov (1983)). They have length scales of the order
of twice the layer thickness and are th.us micro-
structures when compared with the bands described
above. The mechanical Williams domains have
recently-been investigated by Kozhevnikov (1986) for _ _ _.__ _•_.

normally orientated-nematics with applied oscillatory to so -o C¢o

shear frequencies in the range 102 - 105 H Finally,

Guazzelli (1990) has also observed mechanical Fig. 1. Stability curves for a 30 Am cell. The
Williams domains when an elliptical oscillatory shear upper curve shows the lower limit o; stability of
is applied to thin layers of nematics, the band made as a function of frequency. Thelower curve is for patches.

in the present study we have extended the work
of Clark et al to investigate the effects of layer The results shown in figure 1 .re the crical
thickness on the-observed instabilities. We have shear amplitudes plotted as a funct4,n o, frequency
found that the critical shear rates for the first for a 30 Pm layer. The lower curve corresponds to
appearance of the large scale instabilities are the appearance uf patches of Williams domains and
strongly dependent on frequency although there is some the upper is for the banded structure. The estimate
evidence for inde.endence at high frequenciej. Patches of the critical amplitudes are obtained by fixing
of Williams domains are the first instabilities to the frequency and increasing the amplitude of the
appear with increase of shear rate for layers thicker vibration in small steps until the instability is
than ~ 25 Am whereas the banded structures arise observed. Each instability has a rapid growth rate
first for thin layers in agreement with the results and so determination of a critical point is relatively
of Clark et al. Finally, a nonlinear interaction straightforward. In addition, there is no evidence
between the mean flow field and the Williams domains of any hysteresis in the transition and so the
can re-orientdte the rolls so that there is both a critical value can be determined by the appearance or
change in direction and length scale of the micro- disappearance of the instability.
structure. This in turn is accompanied w th a novellongterm'meory ffet' i th devce.The strong dependence of the critical ampli-

tude on frequency for both instabilities is obviouL,

and their representative set is typical for all
observations in the range 10-50 am. For layers
thinner than 20 Am the bands appear betore the
patches with increase in amplitude and vice versa for
layers thicker than 25 Am. The exchange of priority
between the two types of instability is an area of
current investigation.

795



As observed by Clark et al the bands fill the
whole cell and have the form of cm-wide stripes
separated by thin dark lines and are orientated along
the direction of the shear. The patches are generally • (
directed in the same way but they n.-ver fill the whole
domain, i.e. the patches are separated by regions
which have no apparent structure. -

The number of bands or patches is depend-nt on -,

the applied frequency and thicknes of the cell. Each -
of the states are repeatedly termed over a range of -,
frequencies w.Lth quasistatic increase of amplitude. -

The exchange of priority between neighbouring states
involves hysteresis and-multiplicity of states, i.e.
two different patch or band _.ucture3 at the same -__

supercritical parameter values. An example of this t '
exchange process is sketched in figure 2 for the
chande over between two and three patches. 1-'_

Fig. 3. Williams domains. (a) Normal to shear
direction. (b) Aligned-with shear: note edge of
patch.

Finally, we show in figure 3 photocopies.of
photograhs of the two types of mechanical Wil'iams
domains formed in the patches. The ones showr in
figure 3(a) are aligned at right angles to the shear
and have a wavelength of approximately two layer
thickness depending weakly on frequency. The second
type shown in figure 3(b) are aligned in the direction
of the shear and have a length scale approximately
three times torter than those shown in 3(a). They

are formed I. the layer is left in a supercritical
state for pe±:iods-of minutes and seem to arise from

ainteracti n with the u.:ak mean flow field. Once
areas of the call have been reorientated like this

then the ori. ntatlon of the Williams domains becomes
( the preferreu structure for periods of several hours.
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DEFECT MEDIATED TRANSITIONS LliTAIREN CONVECTIVE- STATES
IN A-NEMATIC LIQUID CRYSTAL: -EXPERIMENT AND SIMULATION

JOETSALAIN- vrs as a local -wavelength -selection mechanism (local tilt of
Laboratore de-Physique des Solides the-rolls) and-constitutes an -efficient- mechanism -leading to a
Ujiiversit de-Paris-Sud fast-transition to-the OR structure.
91405 -Orsay-Cedex, -France

III _" 2, ,-TION OF THE TRANSITION FROM
Abstract lHydrodynamical systems-under constraint constitute T": 6,L ROLLS TO THE OBLIQUE ROLLS
rich7examples of pattemn-formihg systems-governed by nonlin-
ear -differentia1 equations. The basic solutions may be either ai-a this cloti pie.. transition -is actually un-
orde~ed-states, orinhornogeneous -states including- (structural) tractabk , basis-of 0:ie "mnicroscopic-ex, "tions". How -
defects. for instance, the tonvection in a nemnaticliquid-cry 5- ever,4-hr,_ ists an altemnatve-approa~h Li.d on the so-calktd-
tal- may- cxhibit- a- series of structures leading tocchaos. We ampliue -uat~jns [3,4,51. This nonlinear model describes
study Ueoea direct transition between -two structures -of dif- the-eN k,.. -tne 2-D eni elope- of thc -rolls, supposed to
feen . mxnetry-and we show that-the defects play an-impor- vary slo'. - irdsa~ ~ (ihrsett h ae
tant-rile ir the aransfor-nation. The-complex evolution -of the lengtho i, r. uciure). k Xslocationi corresponds then to an-
ph; sical sysiem-is- satisfactorily reproduced- ;*n nu Menrcal sim- is~ lated ze: _-o. thie (coinflex)-amplitude. -For some values of
ulations using, an.appropriate-nonlinear model- of a so-called- tht;pIaramek.rs in-the model and of the initial state,-%&e are able
"amplitude- equation" to ;irmulateithe observed-NR --+ OR-transition. In Particular,

wL -reproduce zhi initial modulational instability, as well -ks-
the nucleation- of Ahe- defects, which by their- glide- motion- a'--

I. INTRODUCTI01r; responsible of. t;fe formation of the OR domains.

A et ltciqqid-crystal subjected-to-an AC electric-flid-
constitutes_ an-carnple -of- a -pattern- forming system that-can IV. CONCLUSO
exhibit-ordered' states-as--well as "comnplex states". As-tivu am-
pl, -de of the-applied field is cohtiaiuouslv variedi- the sstem The-convectionr in a-nematic li'4uid, .'ybtal provides a '.cry

uid rgoes-a series of bifui.ati nfs (transitions) to ordered .on- pertinent mod'd-or the-study if extenuAe ,jnlinear systems.
vetveEructures-of de;reas.ing symmetry. -the -Normal :Rolls The defctS aiie liot merely a 1;.,al- lobs of order inside a wecll

(NR),- (hie- Oblique Rolls-(OR), Varicose, Bimodal, and finally defined st~ucture. They may piay- i-very important iole In the
theful chuta stte I 6.1a1 stru.ei chrcezdy a n sttural -transition between-two states of-different symmrnzry.

glbl ymer. siste ae o ee)ordered 1~trL~ . We show- also that the "ampJi tude equations" aie- an efficient
typical -defects- of the- ordening-exist-and they .ppear as *jal nonlinear simple model to simiulate, at least qualitati el), su.a
states whereby the symmetry is broken. The-topology of the a coiopl~x behavior.
defects- is -related- to the -broken- symmetry. -For-instance, it-is
observed that-the' Normals Rolls-have one-type-of defect: the
(edge-) dislocation. It consists-of an-extra pair of rolls added 1This work was_.,pl.9red by the Dirction des Re.. herche.s et
to the structure at-some point-(the core). Etudes Techniques under contract D)RET/ERS/901616. The

numerical simulations on a CRAY-2 computer were -made
possible by the Scientif'z Comnmittee-of the CCVR-at Palaiseau

ii. TRANSITION FROM -THE, NORMAL ROLLS-TO (France).
THE OBLIQUE ROLLS INDUCED BY-THE-DEFECTS

We ha,,-. recently found.-a direct -transition from-the first
structure, -thie -Normal Rolls, to the-second- one, -the Oblique [II A. Joets and R. Ribotta. J. Phy sique (Paris), 17, 595 (1986).
Rolls, wlie.,-two ..ontrol-parameters are, simultaneously~ -,,ried [21-A. Joets ard R. Ribotta. in ".Nemati;s. Mathiematical and
[2]. The evolution of the atructurc is first charactenzed-by a -Physical Aspects", J. M. Coron, J. M. Ohidaglia and-F. 1I61ein
growing undulation of-the-rolls along their axis- (modulational editors, NATO ASI, Series C, 232, 189 (199 1).
instability). Then, dislocat'on -pairs nutieate in -the bending [3]-A. C. Newell and-J.A. Whitchead, J. Fluid Mech. 38, 279

-zones of the rolls, leading-to the formation of small Oblique (1969).
Rolls domains. As a consequence of the glide motion of [4] W. Pesch and L. Kramer, Zeit. Phys. B3 6'. 121, (1 9?fq.
the defetas (motion -perpendicular to the roll axis) the sizc, [51 T. Bodenschatz, WV. Zimmermann and L Kramer, J.
of the- OR domains grows and very large -OR domains are Physique -(Paris) -49, 1875 (1988).
finally obtained (OR structure). In this process, thte role of
the defects-is clearly related to their complex dynamics, which
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Oil, DEFECI'S IN NEMATIC:LIQUID CRYSTALS

-Epifanio G. VIRGA
Faco!tit di Ingegneria-

via-Dioialvi 2

Abstract.-The classical- '.eory -of-IFRANK explains fasrly derived from the statistical distribution of molecular
well: poinlt defects thai .xur in tht. equilbrium orientatations. Qualitatively, s measures iat amacroscopic

Ii co.Jguratiwns of nemat. \qziad cryst, s, but ,t faid t, scale the degree of microscoph .order, ".ke-p, it may vary in

dl~scribe -both disclinzations and suriace defects. ERIC~xSEN space The end-points of the. . :rval [-1 /2,1] represei: t two
cas- recent'j proposed a model that aims to accomodateall idealsituations, when s =-1, 41-lthe molecules, whi .h
defects in a unified-theory. ft is shown ,sere by- examnpir resemble rods, are orthogona. "o n, b,. do not lie in any
hIo-w di cliiations -and surface- defects fit int -ERICKSL,\ s preferred direction, when s I all the ii ,lecules are
m, odci.°In both- cases a~defet -arises when a nmaterial- parallel-to-each-other. When-s vanish~ the- orientation of
-modhlus attaiis a-critical value, the molecules is-completely disordered. at a macroscopic

- scale,-thiszmeans that-the liquid crystal has became an
isotropic fluid and n makes no sense at all.

Liqvid cistals arc: fluids that exhibit a preferred: ."heni, besides n, also-the degree of orientation s

direction whiich varies in siace --such adirection-iszthe co~nes on-the scene,-the free energy per unit-volume a-is
-cpticai aisof the material. Tne oriefntion Of-the-ottical allowed to depend-on boths and its gradient, besides n and
axis is custormarilydescribed bya unit ;ector-fie!dn Here-I its gradient. ERICKSEN has discussed in-[1]-a gneral
shall confforir tosuch a tradition, buti warn the reader that formula for- a; here we-employ a special case of that
employing itto~describe theorientation-of the optical'axis formula:
might be inappropriate, especially -when one wishes to
m~odel general defects, that is, regions-in space, of any ()a ~j71 2~ ~ 4~~
dimnsion, where nt suffers discontinuities. The ()(=zkU] 2V[ :()

orientation-of the optical axis, that one is to represent L, n,
is unaffectea by a reflection-that L.hanget-inw -i both Kc and kare positive coinstants,ii'-. ,a-.unction which
everywhiere. This, ;fn is reflected, say, across-a-surface, a- describes a double-well potential-having w0 .
fictitious defect arises since the optical axis is just the same uiinimum at s = 0 and-the ab.iaute-miuimam . o-= s

on the two sidesof- the surface, while n suffers a jump. o3. The main qualitative features of i are de.rcribed, for
A way to fix this up might be to describe the optical examlpe, in Section 2 of [2].

- Though there is enough evidence that ' often prevails

N :=n0 non the other terms of (2) (cf. (3], for example), I shall omit
-(1)-N: On itiri (2)-and let itsr61e to be played in~tead by a condition

In- gen~eral the fields -iand N are tiot equivalent in the that-sets -= so-wherever in B nt is prescribed.

whole, region~where ta y are defined. We denote by E the When-s is constant (2) becomes the one-onstaut
three-jimensional Euclidean sp .ce and by V its translation- approrimnarion to FRANK'. casskal energy that-has been

-- wielystu i-d FANK's thoyhas been-successful in
space. LetS be the region of E occupied-by thezliqun.& I. w idl tdidter

- solving a-number of problems, but defects other than point
anid let i be a field of B into S2, the unit sphere of V. By (1)~ defects escape its scope (see [4] and[5]).
one readily associates-to n afield N of-B into the manifold O h te ad iedfcs locle
N ofal-l syraretic, rank-one tensorwhose trace is 1. On the Oilnathose otend linesefects als crialylqd
contrary, if a field-N of B into N is gi.ven, in general one dc!sts, alsrae efe obsdiornay liui-

cannot retrace any field it of B into ,$2 which is related-to N polymeric liquid crystals. The want for a unified treatment

through (1), without introducing fictitious defects. of defcts prompted ERICKSEN to amend FRANK's theory.
Forxhe problems-I review here the fields n-and-N-are In the new theory the spatial changes in the degree o.

globally equivalent. Thus, I will stay with n,-though I hold orientation prevent the free energy from being highly
* uui a Jt's~.iptionof he kinematics of liquid crystals in the concentrated about defects; these are indeed to be identified

ijmaiffold I" wants. with the regions where s vanishes: there the liquid crystal

The degree oj orientation of a nematic liquid crystal is becomes isotropic and the optical axis has-no meaning

in Section 2- oft[1] how the-formal definition of s can be localized transitions of the liquid crystal to its isotropic
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phase, although no change in the- -temperature is involved, seem to be-unaffected by v, but the critical-value of k
The-degree of-orientation s and the optical axis n are decreases.
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If k_5 (c. ,,T)2 tl.er, F attains its minimum when n is

discontinuous at the mid plane between-D+ and D-, and

constant elsewhere. If k-. (0 li-)2 then the field n that

minimizes F ',- iegular-avd represents a non-uniform twist.
Thus, for k sufficiently small a surface defect arises
between two adjacent domains.

The effect of a potential like y on the occ,.,-rrence of
such a defect has been studied in [15] within a '.cial class
of minimizers: the qualitative features of the phenomenon
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4X4 MATRIX OPTICS THE "SLOW"-WAY

DWIGHT W. BERREMAN
Fraunhofer I.A.F., 7800 Freiburg i.Br., Germany

Abstract - The 4X4 matrix method of computing matrix squarings required to get through M would-
reflection and transmission by layered- structures be about 1092(62,800 ) = 16, rather than 62,800.can be very fast if a few simple mathematical and
programming procedures are followed to enhance By using an exponential series -expansionl,4,5
efficiency. Failure -to-utilize these procedures adroitly, the thickness of "one step" may be
has led to a common misapprehension that the 4X4 increased to ,ma/23 . For an accuracy of about one
matrix method is extremely time consuming.
Structures with n-1 regular periodic variations part in 108, six matrix multiplications are
parallel to the surface can be treated required in that expansion. The number of matrix
approximately using a 4nX4n extension of the multiplications required to get through \m is thusmethod, to which most of these procedures for
enhancing efficiency also apply. reduced to 6 + 1og 2 (2N) = 9, not 16, much less

INTRODUCTION 62,800.

The 4X4 matrix methodl-3 is a generalization, METHODS FOR MAKING EFFICIENT "SLOW" PROGRAMS
for anisotropic media, of the Abelbs4 double-2X2 A: Fast Matrix Multiplication
matrix method for computing reflectance and trans- Multiplication of two 4X4 matrices of complex
mittance of plane, isotropic layered structures. numbers requires that the computer find the loca-
Since the 4X4 method was first used to compute tions in storage of 16-2-2 = 64 real -numbers, then-
reflection and transmission in twisted liquid do 446 = 256 multiplications of real number
crystal structures3  there have been continued
attempts to -find fanter ways to solve the problem. pairs, then 32-3 = 96 additions, and finally store
However, -the fact that many groups use the 4X4 the 32 sums. For the case of 8X8 matrix optics7,
method regularly to design twist- and super-twist the number of multiplications, which take most of
cells with phase-retarding plates, color filters the time, is 2048. Actual measurement confirms
and polarizers all in the structure, attests to that matrix multiplication is the most time-
its practicality if it is efficiently programmed. consuming -part of the fastest 4nX4n programs that
Closed-form solutions for isotropic materials4  we have made using the "slow" method, but when

and for uniaxial and biaxial materials in certain n=l, (4X4 matrix optics), it is usually only
special orientations have been known for many somewhat longer than the rest of the computation.
years. 1,5  It was also mentioned in several early Many 4X4 multiplications are to be-done even if

individual transfer matrices are to-be found bypublicationsl,2,5 that the transfer matrix for a the "fast" method. Hence it is important, in any
uniform slab of any thickness could be obtained case, to write an efficient matrix multiplication
through solving for the eigenvalues of the 4X4 program. -With most compilers a great saving in
differential transfer matrix, 6, to-obtain the time is achieved by writing out the 4X4 matrix
propagation vectors of the four optic modes in the product elements explicitly; avoiding loops and
medium. The secular equation for these modes was computed indexes.
given in compact form by Teitler and Henvis, 2  B: Repeated Squaring Technique
Eq.16. W6hler et al,6 recently published the Let Tm designate the thickest layer for which
solution to the secular equation in closed form,
and the resulting elements for the 4X4 transfer the transfer matrix can be computed in "one step"
matrix, for a uniform layer of uniaxial material without making significant approximation errors.
of any thickness and any orientation. Use of This thickness depends on the method used, as men-
these solutions has recently been termed the tioned before. The next problem is to obtain the
"fast" method. transfer matrix P(T) over a slab of thickness
Most nematic twist cells can be reasonably well I > Tm using the relation P(T) = P(H)j - P(jH)

approximated by using rather few, thick sub-layers adroitly, where H < Tm. The fastest method is to
of uniaxial liquid crystal. Most polarizers are
also uniaxial, as are most retarding films. The set P(T) = P(2nH) = [P(H) squared n times), so
"fast" method is advantageous in these regions. that j=2n. Thus I = T/2 n is the smallest
If the liquid crystal in the cell is subdivided teger l thn

into very many short segments for high precision integer larger than log2(T/Tm). Of course, if
the "slow" method is faster than the "fast" T < Tm then n = 0, H = T, and no squaring is
because eigenvectors are not computed. If necessary.
ferroelectric smectic displays and nematic C: Matrix Differential Euation and Exponential
displays with high field gradients are of Series Expansion for a Thin Layer
interest, then biaxiality may be significant. The
"fast" method iz then tedious and slower. The 4x4 matrix method starts with a matrix

Two misconceptions discourage people from trying differential equation, equivalent to Maxwell's
the "slow" method, despite its simplicity and equations,I-7 dyi/dz = (2,/ )/nqjyj, where I is
possible speed. The first is the supposition that
it is necessary to divide the structure into the vacuum wavelength. Contraction over repeated
segments of thickness Tm that are so thin that the indexes is implied. A is a 4X4 differential
square of the phase .hange of the wave across each matrix whose elements depend only on the direction
segment is negligible; less than the wavelength in of propagation of the incident beam and the

e mpossibly complex optical dielectric tensor, e, atthe medium, m' divided by 2T-l04. The second is that level in the multilayer. (The principal
that one must therefore multiply 4X4 matrices values of e are the squares of the principal
62,800 times just to get through a thickness of refractive indexes, np.ikp). The four-element
one wavelength within the medium. "vector" V contains the four electric and magnetic
I had -the first misconception at the outset of field components parallel to the surface of the

my work with T.J.Scheffer. However, I used the
"method of repeated squaring" to greatly reduce layered structure, or normal to the "z" axis.
the number of matrix multiplications. This method Let S be the sine of the angle of incidence of
is still the answer to the second objection. light from vacuum, and assume tnat e is symmetric.
Without any other improvements the number of
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Then the differential matrix is = /e = and P(T), have zeros in the off-diagonal 2X2A quadrants. The 4X4 matrix is then composed of
-sexz ezz-s 2  -Seyz 0 Abeles'5 two 2X2 matrices along the diagonal:

i exxezz-xz2 D11 exyezz-exzeyz 0 l-(S2 /) 0 0
eZz 0 0 0 1 A e o 0 0

D23 D13 (eyy-S2)ezz-exzeyz 0 0 0 0 1
Ex 0 0 e-s 2  0and Hy

and i' Ey The square, h2 Aiqj/kj is just a constant,
Hx (complex if the medium absorbs light), multiplied

We compute the P-matrix from the last surface to by the unit 4X4 matrix. That constant is
the first. This avoids the necessity of doing a h2  121) = h

2 (!S34 IL43 ) = h2 (, _ S2 )

matrix inversion at the end, which saves (412  A)
significant computer time and programming effort. The two series reduce to power series in this
If z increases in going from the entrance to the (possibly complex) number. The first series
exit side of the layered structure then the solu- generates the cosine and the second (except for a
tion to the matrix differential equation in a factor) the sine of the number. These are the
region of invariant optical dielectric tensor of Abel6s closed-form solutions. No matrix
thickness H < Tm isl,4, 5  multiplication is required to obtain the 4X4

2 transfer matrix in this case, but the magnitude ofT(Z-H) = P(-H):Y(Z) = [I - h/1 + (hLN) /2! the constant should be less than unity, as in the
3 Lmore general case of the 4X4 matrix.(h/)3/3! + (h)4/4! - O-:(Z), one may prefer to use pre-programmed-functions

for the complex sines and cosines, which may or
where h = 2nH/. P(-H) is the transfer matrix may not take account of the slow convergence
relating the field Y at the side of the layer problem for large arguments.
where the beam enters to that at the exit side, There is nothing comparable to Abelas' method
and hn .- / n defines the ij element of for 8X8 or higher-order matrix optics. The

I kl . n] possibility of a skew angle between the incident
(h6)n. Accuracy of one part in 108 may be beam and the direction of the lateral periodic
achieved if no element of hAn has magnitude larger structure leaves open the possibility of non-zero
than about unity, and if the series runs to elements in any region of the matrix.

(h ) 11Ul l!. CONCLDING REMARKS

To find an appropriate value of h for a uniform We find that each computation of reflectanc4 and
layer of thickness T, first find the square of tie transmittance by a supertwisted nematic liquid
matrix, A AIY. (This squared matrix is used crystal cell takes 1.53 seconds using only the

"slow" meth _ on a 386-series 16-bit 16-MHz PCagain in the wo series to follow, so it is not with math co-processor, when the following
wasted.) Find the absolute square of Alk/kl and parameters are used: The cell has two 1-mm glass
of A 3k/!k3 and select the larger. This number is cover plates, two absorbing uniaxial polarizers,
the magnitude of the largest element likely to two absorbing InSb oxide conductive layers, a
appear in Call its fourth root 6. The uniaxial compensating fractional-wave plate, andsapiy if hthe non-absorbing liquid crystal is subdivided
series will converge rapidly if hm < i. Count into 36 layers. The "fast" method would enhance
the number of times, n, that the layer thickness T the speed somewhat in going through the polarizersmu T/2n < Then n and retarding plate, but less in going through themust be halved before H T2 (2/m) Thmuch-subdivided liquid crystal.
is the number of times P(H) must be squared to get If one had a computer with an array-processor,
P(T), and h = 2TIH. computing the transfer matrix for a uniform slab
To achieve the eleventh order expansion with six might be about as fast as computing a sine, cosine

matrix multiplications, write or exponential on a single-processor computer. InP(-H) = 1 +(h/ )2/2! + (h6)6/6! that case the "slow" method might be somewhatfaster than the "fast" method of 4X4 matrix
(h)8/8! + (h/)I 0 /0! optics, especially for biaxial materials, since

the eigenvector problem would-be avoided at each
-hA-fl + (h/\)2/3! + (h6)4/5! + (h/ )6/7! different layer. However, an array processor

+ hZ 8 10 / hcould probably be used to better advantage in(hLh)/9! + (hZL) 1O/ll!]. liquid crystal cell simulation to run several
different wavelengths or directions of incidenceIf T < V(2ni m) = Tm, then the preceding two simultaneously. For 8X8 and higher order matrix

series may be truncated. Accuracy of one part in diffraction problems the potential for faster
108 is maintained when the tenth power terms are matrix multiplication with an array processor
neglected if log2(T/T) -0.9; the eighth power might enhance the speed considerably.

if < -2.0: and the sixth if < -7.5. REFERENCES
If the medium does not absorb light, then e is a

real tensor or scalar and A is then purely 1) D.O.Smith, Optica Acta 12,13(1965)
imaginary. Hence A 2 is a matrix of real numbers. 2) S.Teitler & B.Henvis, J.Opt.Soc.Am.60,830(1970)
Additional speed may then be obtained in such 3) D.W.Berreman & T.J.Scheffer,
.ndia by writing a separate program to multiply Phys.Rev.Lett.25,577(1970)
real 4X4 matrices. Such a program is nearly four
tires faster than one for complex numbers. 4) Florin Abelds, Ann. de Physique 5,596(1950)
However, the special program is useful only for 5) D.W.Berreman, J.Opt.Soc.Am.63,502(1972)
expanding the power series, not for subsequentrepeated squaring. 6) H.Wohler, G.Haas, M.Freisch & D.A.Mlynski,r:epeat ed hod san RegiJ.Opt.Soc.Am.A5,1554(1988)
0: Abeles' Method for Isotropic Regions 7) D.W.Derreman & A.T.Macrander,

For isotropic media, exx~eyy=ezz=e=(n~ik)2 and Phys.Rev.B37,6030(1988)
exyfeyz=ezx=o. Hence the local 4X4 matrices, Z
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DIRECTOR -CONFIGURATIONS -AND OPTICAL PROPERTIES OF TWISTED NEMATIC
LAYERS WITH -WEAK ANCHORING -IN- THlE TILT AND TWIST ANGLE3

ll1iriiing It., Funk XV., Trcbin1.h
Institut-fdir Tlicorclisclic und Angcwandtc Physilk-der Universiti. Stuttgart,

Pfaffcnwaldring 57, IV-7000 Stttgart SO, F.ILC.

Abstract rc'pref-ents the electric contribution- FIR,-when we asstiiiie a di'c.
ttic-miterial law for intinxial citiatics in thlc formt:

Numerical cadculations--of director configurations and electroopical
characteristics in syinietrical and-nonsyninietrical itnatic layers Dr(A 1 +~ l~j,(31)
arc prcsented, when weak nchoring in tbe tilt mid twist angle of
Elie director isass-iiiie. lit cidk with bistlbilities-we inivestigate1 1h1.1 i D~'
influience of OIL a nchoring parainerr. .iiIde (Imr parameiters onl Ole' *~h a .1lSlC urig ill Il1P tilt Mll tu.1St .1angle .1t the i.,11 .iii,1

width of the listeresis. Us.ig the 4 x-l-inatrix-foriialmn of IstfitlF.- hIutn ftl ielitl~iidhi.sirfefrvvgso lwHrri-
IJAH, we defionlstrate tile influence or the wveak anchoring oil tlie 1'apotilar typec[7j:
transinission-vs. voltaige cha-racteristic and (IClIEcolor- coordinates-.1! = 1ch(*0il(O) _ O0) + 4~i 2 ~u)(1

Our manin emiphiasis was to inicenent an effiircu-code which works - 70
properly nith fast over a biroad ranige of manterinl and device Immill- S -2 in 7 Gd flP + VGsiN(I

etcrs. Thefactors G.O." resp. inicatsure the antchorinigstrcng,-th ill the tilt-
anditis -angle respectively, 0,9 (ptrctilt)-describe the iprefredi -tilt-

I Introduction atiglc of-the-director ait file surfaces,-sp,(pretwist) is the diffircence
bietwveenitie prefer.-cd orientations in tlie twist angle at- lte toll anid

Tite director configuration in twisted nematic layers like TNIlJ., botioni surface. The irifluience of the surface is reStricted to the pdACe

ON1l12J. or SOJ 13.1-Cells- is determined by the following three major of the aligning substrate.
features: first, thii-elastic forces-in file liquid-crystal, described by The total-free energy per unit.area of-the cell is now given by:
the well known.Frank-OseenZocher free energy density. Second, the
inifluprice of an external-napplieui voltage inodlhd-thlrough an electric r1,1 1 0 fd: J- + (5)
energ ternm of-the form 4ii7 where F) is-Lte displacenmcit vector

andI tle internal electric field vector, and third, the. anchor;n of 3 -Numterical Proceduire
the director-at the substrate boundatiries of the layer. Recently, soln
expierimuental studies of -the anchoring have been publislied[4, 5, 01, The-first step in the calculation of optical-properties consists in tlie
showing that typical -values of the anchoring energy are in the range determination of (lie director configuration. To this end, we trans-
10-6N/m to-10-5 N/ni for -honneotropically anchored nematics and form the-Euler-Lagrange equations resulting from the extremalisa-
lO-6Nfm-to -10-

3 N/m for planarly- oriented -nemnatics. fit the last tion of (lie bulk free energy into a system of Hamilton equations by
case, the twist anchoring energy is one order of magnitude smaller performing a Lgnrtanoraiowthrespect to the variables
than (lhe tilt-energy. 0, tgrand 0':

In the- following, -thle two kinds of anchoring are combined and
studies are presented of the influence on the hysteresis width and on 40' =4' 4
(lie electrooptical properties in symmetrical as well as-in nonsyna. = o O
metrical cells. OIL.~6

2 Theory OI a, d 2s 525.

P = "M
We conisider-a neinatic cell of thickness d located- between (lie planes OIL.
z = 0 anid z = d of a Cartesian coordiinate system. The director fif is U O C,
described by (lie-tilt-angle 0 (mecasuired froim (lie layer normual) anldM
(lie twist angle ip. The dielectric constants are denioted by cl nidi ci. where fii-is (lie legeiidre tranisforni of fn;
T lie elastic constanits-ror splay, twist and henml are denloted -fy kL 1. ff(0 11l) = 0T+ 'P-f + V11 - fn. (7)
172 and L-3, respiectivel. The-pitch of (ile material induced through
a chiral Jopant. is named 1k). and b.~ '. ,lanlTI.Iar h ojgtdionna

(Isiiig-the abbreviatioiis

171 = IkL7c0 2 + klii' I l, , = TI -a 3
a2 = (3COs- 2 0 + k2ZSiri2 optiii 7 0()

=~~1 =k2  P;t

'14 = o(ej + r CO- 2 0), As ipande +' are cyclic variables, thie crrfesponling inlnta I'aind

the free energy density iii (le bulk caii be wiritten a%. 11 repiresenrt inteigration coln~~~ts filr the- prlbeiii. Io hlese rujisa-
lion% wre haveto addi (le boundary conditions os uressedl in thle new

h=VV j 2 -a, -jaila (2) varial~lesatz = 0:

where (lie prime indicates differentiation with respect to a and whlere .14 (0)
4is the electric potential inside (lie layer. Note that (lie last termi ' +~. csinpcosv2,
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and thle corresponding equations at z =-d.
The-equations- (6)_ and- (9) represent a-nonlinear boundatry value

problem, which we solve numerically by a multidimensional shooting 2V2

mrethod-using standard library routines.
The second step-is-to solve the Maxwell equations inside the layer. AVV

For this-problem we-use the 4-x 4 formalism or -BEaREMAN[8, 91. v

On a IMN PCIAT with 10 Mhlz, for instance, tile calculation of an
electrooptical chiaracteristic-needs about-ten minutes indeppndent or 0Y32
tile existence of bistabulities. e' , 5*

4 Results Figure 2: Hysteresis width: Mat-,rial paramecters are k'. 2 21 kjX_

4.1 Director Coisfigurations 0.4, ril = 20, z = 10; the cell thickness is S.Gian. t -t

in ig. 1, ni shtow director configurations for a Symmtrical and tnon-
symerca 0'TNcllwt! =8' n G 10"N/1n ill both

cell$; C, is 10"Nfmn whtereas vo is 105'N/m:: for thle nonsyninuetrical 0V
cll. The-paramneter for the curves is the applied -rultagc. L

'oil

* 4 0 Fgure 3: Left. Transmission vs. voltage characteristic the optical

bireffingence indices are n. = -1.5 and n, = 1.65, polarizer and an-
alyzer are parallel; the solid line represents-the curve for'q = 8!9'
the dashed-dotted- line for e,7 = 79', the dashed line for fi~ = 69'.
Right: Corresponding color-coordinates

A)) References

0 ~ (11 Schadt Mf., Hlelfrich W., AppI. Phys. Lett. 18, 127 (1971)

Figure 1: Director- configu rations for a symmetrical (top) and for a [2 catNcehusFAp.Py U 0,26(97

nonsymmetrical (bottom) TN-cell with 00= 69', material parame- [3) Scheffer T17 J., Nehring 3., J.Appl.Phys. 58, 3022 (198)
ters are -kix = 0.88, =0.438, co = 8, c. = 3-5; the cell-thickness [4SuyaaTluisuSSo.,Jp3.Ap.1b.2921
is 5.611m. (199)

Witu increasing voltage, the (lirettor tries to align 1,atallel to the (51 Ogawa K., Muno, N., Nakajiina, K., Jap. J. App!. 1'bys. 29,-1,
applied electric-field, eg. the tilt angle decreases, -whereas the twist 16-89 (1990)
becomes mare and more nonlinear.

[61 Illinov At., Kabayenkov A., Sonin A., Liq.CrysL 5, 645 (10S9)
4.2 Widtih of thte Hysteresis 171 Itapini A., Papoular M., J. Phys. (Paris) 30, C4.54 (1969)

In highly twisted cells with nonzero pretilt, there is-the possibility (681 Ierreman D.. I.Opt-SocArn 62, 502 (1972)
of -bistable director configurati.,nsil0j, which beconmes evident by a
hysteresis in the 0,, vs. voltage curve. in-fig. 2, we hate plotted the (91 V-Vilet IL., Haas G., Fiststh MA., Mlyiski ID., J. OpL Sec. An.
width of the hysteresis Alt fora symmetrical coql as a function of C AS, 1554 (19M8)
and sp for-fixed Cs = 10"N/mt andi 0, = IS4; po is chosen ill such a

waytha itn~athes~,.We gt aniootonc jrrese o At ~ ,. 101 Schmit MA. Schn~ie.el If.. Mal. Cryst. Ijq. Cryst., 172. 2213
Further. it can be seen that for fixed v,. the width of the fivsterrsis I )
falls-with decreasing-C,. [Ill Keller 1%. N'or. Sil) 24.,317 (l9. )

4.3 Transmlissiont vs. Voltange Cuirves, Color Coordi-
nat11es

One of the IuunsL imnportant features for a tw-lItd neunatic ha~vr is
its transmission vs. voltage characteristic. In ig. 31 (flft). we sht.,.
theise curves-for a_ 90*wTN-relh for which the surface paraters are
tile same as in section 1.1. ex-ceplt that V-0 vary 1.

It is seen, that ain increase in the asymmetry of tile cell drcjenses
the optical threshold voltage.-

Thle co'or coordinates of the ceUl with the applied voltane Xas pa.
ranleter are shown in the right of ig. 3. Thle cell with the gret'.st
asymmetry gives smiallest color changes.
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DYNAMICS OF THE FREEDERICKSZ TRANSITION IN
NEMATIC LIQUID CRYSTALS

F. SAGUES
Departament Qufmica Ffsica

Universitat de Barcelona
Diagonal 647, BARCELONA 08028

Spain

Abstict- Within the general field of pattern formation studies, one of role is played by an effe.tive vis .osity whiLh accounts for a tradeoff
the most interesting situations corresponds to the-analysis-of a of rotational for shear viscosities leading to a ,.ompromise-at some
transient dynamical evolution to a stable steady pattern. Here we will intermediate nonzero wavenumber for which the increase-in elastic
deal with a particular realization of such a process-whi,.h-connects energy contribution is favorably balanced by a higher energy
two homogeneous stead) -states through a transient inhomogeneous dissination rate In what follows we will describe this behavior for-

3tructure. The problem %ill be here addressed in relation with-the the simplest realization of-t he magnetically induced Freedencksz
Freedericksz transitionin-nematic liquid crystals. The general transition.
nematodynamic equations, incorporating hydrodynamic contributions
and internal- degrees -of -noise, will adopt the form of a Time II. PATTERN FORMATION EQUATIONS
Dependent Ginzburg Landau model. The pattern dynamics -is
monitored in terms of the-temporal evolution of the structure -factor The simplest geometry-we-can envisage corresponds to a-twist
for the orientational fluctuations. geometry. In this situation-the sample is contained between two

plated perpendicular to the-z axis. The director is initially aligned-
I. INTRODUCTION along the x axis, and the magnetic field is applied along the y axis.

The transient behavior we will describe corresponds to the switch at
The magnetically induced Freederickz transition occurs in -a t--O from an initial value H, < Hc to a final one H>H, . Under these

nematic slab when the director, describing the state of orientation -of conditions it has been experimentally shown that in addition to the
the nematic molecules -inside the sample, reorientates follo, ing-an usual twist deformations along the z axis, the system may transitorily
applied magnetic- field larger than-a critical one II,. The standard develop a more complicated structure involving bend modes along the
description corresponds -to the-appearance of distortions in -the x direction (Fig.l).

orientation with respect to the original one, the degree of distortion r .
being homogeneous in each plane of the sample, and of maximum
intensity in the mid planefar from the plates limiting the nematic
material [1]. .- --

This simple picture of the Freedericksz instability is however too- . .

simplified to account for some experimental observcd facts. Under . - -

appropriate conditions, transient spatial structures are found -
corresponding to modes ofinhomogeneous distortions in the planes
of the sample.-A wide experimental evidence of this phenomenon,
[2,3], supplemented with detailed-theoretical analysis, [4,5], have
been accumulating during these past years. The suggested
explanation involves a dynamical coupling between the director field FIG.1 Photomicrograph of uniform periodic structure. Field strengh 7.4kG;
and the hydrodynamic motion associated -with the reorientation .Such temperature 250C; sample thickness 50 i; spacing between stripes - 48 prm.
a coupling gives rise, during the transient process, to spatial domains (Rcpnntcd from Y. W. Hui eta!. 3. Chem. Phys. 83,288 (1985))

with a will-defined periodicity.
The characteristic wavenumber of these transient patterns has been

commonly described in terms of a most unstable mode. A linear The appropriate sc.heme of nematodynarmic equations is here used
analysis of the nematodynamic equations around the nfitial assuming for simplicity that matrosopic flow exists only along the y
undistorted configuration identifies the mode of fastest growth.It is direction,-and that homogeneity extends on the direction of the
assumed that this mode dorinnates the transient dynami., Io ,eer, applied magnetic field. For typical on-plane reorientations we
this approach although-useful in understanding the main physical introduce the dinamical variable as

ingredients involved-inthe phenomenon, is far less valid if one is n,tx,z)= costx,z),

interested in the dynamics of the pattern formation process itself. nrx,z)= sin$(x,z) , -(1)
With this specific aim we have recently proposed a model, [4], which n,=0.

permits us to identify the basi,, nme ,.acls governing int; reonentatiun A ninimal .uupling approximauon is then invoked to obtain a pair of

of the nematic sample, closed equations for € and vy;

The analysis is based on the evolution equation for the time-

dependent structure factor which describes the orientational __

distortions of the director, once thermal fluctuations and d,, = (2)

hydrodynamic effects have been taken into consideration. A central 2pY P
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The Gaussian random foices appearing in the above Langevin-type unstable twist deformation mode (m=0). This is depicted in Fig 2
equations satisfy~fluctuation-dissipation relations in terms of pure orn,
rotational and-shear viscosities, respectively y1 and vZ3 . L and p
stand respectively for a linear transversal dimension-and the mass 0

-density of the sample. A series of technical manipulations are-then
strictly convenient. First, one introduces the hypothesis of negligible *20

-inertia which -enables us to obtain a closed equatiop jr the
deformation angle. This equation is more easily handle- Vin .- of a
Fourier representation appropriate to the strong boundary c .Aitions
prescribed for the nematic at the limiting plates, z=d/2: - ,0

d FIG.2 Maximum of the structure factor vs. time (taken adimensionalized in units

(xz;os(2+ ) (3) oft 0 =Y lXaH2).Paamctervalues conespond tothoseofMBBA(Ref.4).

d t -e ' Different and well-resolved-time scales can be distinguished in this
The resulting equation for the amplitude of the reonentational mode is figure. A-first time scale is associated to the sharp increase of Qm1 ,
given by 2 Iwhen the system takes off from the-initial conditions. This time

OIO,,.qt
t 

i jX.t-K 2(2ni + W2 -K 3 q; should be interpreted as the characteristic time of appearance of the
periodic pattern. A second time scale for the slow growth of Qmax is

×o,~,qtt)+2t,,.q Iii,(4) -reasonably associated with-the development of the inhomogeneous
_ q-_ 2

tn=l, structure. Late stage dynamical scales accounting for the
(2m d + 11 +,)bQ- dissapearance of such transient patterns can not be described within

The im ortant point to be noticed is that the temporal evolution of the limits of this approach and instead- a- proper analysis of- the
-the reorientational process is no longer dictated by the pure rotational mobility and recombinaticn of defect-wAlls is more adequate [6]
viscosity it but i2-govemed by an effective wavenumber dependent Sometimes, the transient nature ot-:he predicted periodicity is
viscosity 11 .Thus,zthe coupling ofithe director and-velocity fields already apparent within the-linear approximation here used, This-is
results in a reduction of the viscosity for all modes with qx t 0. This for example the case for slightly supercritical conditions in the splay
permits modes-of bend deformation along the x direction to grow :geometry [7], as shown in Fig 3. This situation is relevant to recent
faster than the homogeneous one, giving rise to patterstructuration. experiments for the electrically induced Freedericksz instability [8]
Actually,,for H-> H_ =-(K 2 27t

2 /Xjd2 ), K2 2 being the twist elastic , ' .,

constant and the-anisotropic diamagnetic parameter, twist modes of
wavenurber m become unstable. However due to the dependence of
Yi on qx, bend modes with. q, =_0 may lead the response of -the
system provided that

K3)0

h 2(?n)> I+ 22 a-- h2 (,0,I.-H21[ I+)1i, ( .z.,

(5),
- 2 Yj'

0  ,o/"2 FIG.3 Asin Fig. 2, but corresponding to the transversal component of the

+q I +X)-. structure factor for the splay geometry (Ref.7).
whereK 33 is the bend elastic constant and the remaining parameters
in (5) are convenient and standard redefinitions of nematic
v",osities. Thus, one predicts the appearance of a periodic pattern REFERENCES
for magnetic fiels satisfying the-above condition. This occurs for 1. P.G. de Gcnneb, The Ph y fLquid Crysjjit, Clarendun, Oxford 1974
fields not much larger than die critical one h2 = 1, although there still 2. E.Guyon, R.Mcy6r and J.Saldn, Mul.Cryst.Liq.Cryst. 54, 261 (1979)
exists-a range of magnetic intensities for which the homogeneous 3. F.Lunbcrg - 'raden, AJ.Hurd and R.B.Mye.t, Phys.Rev.Let.52,1903 (1984)
response dominates. 4. M.San Miguel and F.Saguds, Phys.Rev.A3b,1883 (1987)

The early dynamicil stages of the transition can be easily followed id in Paucrn, Defeo.i and Material Iuiabdelas, Edb. D.Walgref and
by converting Eq.(4) into an equation for the structure factor. Using N.M.Ghoniem, Kluwer, Dordrecht 1990.
standard methods one obtains S. G.Srajer,S.Fraden and R.B.Meyer, Phys.Rev.A39,4828 (1989)

S1 +2 ) 1), 6. F.Saguds and M.San Miguel, Phys.Rev.A39,6567-(1989)

d K ~jq;7. F.Arias and F.Saguds, preprint 1991
, 2 2kT (6) 8. A.Buka, M.dc la Torre Juarez, L.Kramer and .Rhberg, Phys.RcvA4 .7427

X ?) F,-'-. (1989)

A convenient way of monitoring the dynamical emergence of the
pattern consists -in analyzing the time evolution of the mode Q'ax
corresponding to the maximum of the structure factor for the most
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DIRECTOR PATTERN AND OPTICAL PERFORMANCE
OF 2D INHOMOGENEOUS NEMATIC LC LAYERS

M. Schmidt, M. Grigutsch and H. Schmiedel
Universitat Leipzig, Sektion Physik, Linn~straBe 5, 0-7010- Leipzig

Abstract-We -present a numerical computation (c1+Acc2e) +2Acsc9 (V zVe+Vz) +
of director configurations, switching XX XZxXZ)
behaviour and optical performance of a +(cL+Acs 2 )V+Ac(c 2 es 2e)7(Ve+V)= 0nematic liquid crystal (LC) layer in two
dimensional inhomogeneous (2D)- electrical for 0=0 (3a)fields. Coupling between director deformation C (V +{c+Acs2e)+2Acsecev-e=0 for 0=90 (3b)-
and electrical field is fully included. The _L xi zz
computations- are applied to LC spatial light V i=a 2v/aiaj, .=09/ai, se=sine, ce~cose
modulators (SLM). For the first time the
anisotropy of the modulation transfer func- Ac=(cll-cL), ell and c_ are the dielectric
tion of SLM-is specified. Its dependence upon constants parallel and normal to n, resp. Now
device and LC material parameters is studied. we integrate the nematodynamic equations 4a,b

for e(x,z,t) /3/ keeping V(x,z,t) constantI. INTRODUCTION during each integration step. Inertia and-
-Usually, a nematic LC display is treated as backflow are neglected.
a stratified medium. The corresponding one
dimensional theory is well understood /1/. 1let=exx(Kls 29+K 3c 2e)+ezz(Klc2 e+K3 s2e)+
The optical-performance of an LCD- is computede-2
in tw, stepsf First, the distribution of the +(K 3 K1)sece(2exz-2 +2 )+(K 3-K1 ) (c -se)xez
optical axis n in the LC layer ( director
pattern )- is determined- from continuum theory +C A&(sece(V -V)+(c-s e)V.V_)
/3/. Second, the optical properties of the for 0=0, (4a)
display -are computed, commonly with
Berreman's 4x4 matrix formalism /2/ for let=K 2exx +e zz(Klc

2 +K3s)+stratified media /1,5/.
In practice -the optical response of the LC +(K3-Kl)seceez+c AeseV

2  for 0=90'.(4b)
often depends on a spatially non-uniform -o -
electric field, resulting e. g. from pixel The Ki arp LC elastic constants, -1 is the
structures on matrix displays or intensity rotational viscosity. We repeat thisdistributions on a photo- conductor in LC SLMs procedure to compute the complete director
/6/. With the ever decreasing display response using a finite difference methodstructures, director patterns in spatially /4/. The resulting set of ordinary equations
inhomogeneous fields, limits of spatial and is solved by a relaxation method. An implicit
temporal resolution of LC layers and their time integration scheme is applied.
optical performance become important. This :procedure is applicable as well to the

computation of the equilibrium director
pattern. However, -we- prefer a faster

II. CALCULATION OF DIRECTOR PATTERNS approach. Eqs. (3,4) without the dissipativeterm 1l t are coupled self-consistently. TheyWe consider a nematic layer of thickness d tr t
between the planes z=0 and- z=d of a Cartesian are solved by a multigrid relaxation method
coordinate system under the influence of an /4/ which speeds up computation remarkably.
electrostatic potential, with boundary
conditions for the director tilt angle e and
the potential V:

e(x,z=o)=eo e(x,z=d)=eo (1)
V(x,z=0)=Vo V(x,z=d)=Vi(x) (2) III. OPTICAL PERFORMANCE OF A 2D-DEFORMED

We restrict ourselves to constant twist angle LIQUID CRYSTAL LAYER
0 and two -principal cases of director Now we calculate the optical performance of
alignment: in the xz-plane of the field the untwisted nematic layer with a given
inhomogeneity -(O=0), and- perpendicular to it director tilt profile b(x,z). For normal
(0=90"). We assume invariance in y-direction. light incidence and a- director tilt profile
Our aims are: 1) the determination of the varying in x-direction slowly compared to theequilibrium director pattern e(x,z) and wavelength A of the light we can use the
correspondir3 electric potential V(x,z); and geometrical optics approximation (GOA) /7/
2) the comr-itation of the director response and describe the light propagation inside theto sudden changes in Vi(x). The second LC layer as locally one-dimensional. The
problem can be treated as follows: Since the transmitted intensity is
time constant of the electric field is much E -
smaller than that of LC dynamics, we assume
the electric field to be quasi-static and fora given director pattern e(x,z,t) the with n0 , ne and ne,eff(x) being the ordinary,
corresponding potential V(x,z,t) is found extraordinary and effective extraordinary
from the equations of electrostatics of refractive indices of the nematic.
inhomogeneous media:
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IV. OPTICAL PERFORMANCE AND -RESOLUTION OF SLM 100%

We consider a -transmissive SLM consisting
essentially of LC layer and photoreceptor.
Resolution- and field fringing of the -1a6
photoreceptor have been investigated recently
/6,8-, the influence of the LC layer was
however neglected. In this paper we study the
resolution capability- of the LC layer and
calculate the -optical response to harmonic 6.0 4
boundary voltage distributions

V1 (X)=Vo + 1 V1 (t)(l-cos[r2r] ) (6) 1

which are caused by periodic intensity
modulated stripe patterns imaged at the
photoreceptor. In the following we set the
potential at the second electrode Vo=0. For
given material and device parameters one has Fig. 2. Time development of transmittance for
to compute now the electro-optic 4=90 . when Vi is swi, ched from 0 to 0.76V
characteristics between crossed polarizers in the high voltalje ! witching region
from-the one-dimensional theory4 Optimum bias (cf. curve 4 of fig. 1). The parameter
Vo and amplitude Vi are determined by the gives the time in-ms after witching V.

requirement of maximum contrast and minimum
response time. In the computation we used the 4 .c...-t....G.n .
parameters Ki=ll.3pN, K2=8pN, K3=I2.5pN,
c1=24.8, -eL=6 .4 , e0=0, ne=l. 6 10, no=1.489,

7 1 =78.3mPas, X=550nm, d=0.010mm. We compare 4
two possible switching regions: switching
between the first two extrema of the
-transmission vs. voltage curve (Vo=0.94V,
V2=O.27V), and -between the last two extrema
(V0=l.51V, Vi=0.76V).- Figure 1 shows the
transmitted intensity as a function of x for
0=0 and 0=90" and both switching regions 0-

calculated according to eq. (-5) with an
assumed grating constant g=0.020mm. 3 13 25 ii 45 1

Fig.3: MTF as a function of the grating g for
0xZ - -the 0.01mm cell ( notation of the

graphs corresponds to that of fig.l ).

the minimum and maximum transmittances of the
read beam. Fig. 3 shows the MFT vs. grating
constant g. The contrast decreases rapidly
with decreasing g and- reaches a saturation at
large g. The calculations show that the
resolution of an SLM improves with decreasing

2 layer thickness d and large Ac/cL. It is

4 optimum at K3/KieI . For 0=90" the resolution
is higher with decreasing K2. Resolution can
be further improved by raising the surface

0_0 -pretilt 
angle up to eo=10.
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THE OPTIMISATION AND ANALYSIS OF LCD PERFORMANCE
USING NUMERICAL MODELLING-

M C K WILTSHIRE P(z) - 0ex1  D(z)dz (4)

GEC-Marconi Limited
Hirst Research Centre
Wembley, Middlesex, HA9-7PP permits the calculation of P -from the dielectric tensor elements
United Kingdom and orientation as a function of z Having calculated-, -it-is then

Abstract - Numerical -modelling has been used to optimise-the straightforwad to obtain the transmission and reflection:
performance of liquid- crystal displays. The modelling and coefficients.
optimisation are described, and the predicted performance -is
compared with that of actual displ as. The accuracy of the This calculation must be repeated for each wavelength of interest
-modelling permits its use in LCD fault diagnosis and as a research across the visible spectrum, 380-800 rm, and as a function of the
tool in exploring novel liquid crystal systems. angles of the polansersm and any other layers in the device. -It must

therefore be done efficiently. From (2), Pro, for the entireJ. INTRODUCTION
structure is the product of the P' s for each component, with the

Liquid crystal displays (LCDs) are being used in an ever-increasing appropriate orientational factors. For an LCD with pularisers set-
variety of applications. Although the bulk of the LCD market is at (0 1 .02)
still in simple watch and calculator displays, their use as complex
alphagraphic panels for lap-top computers, portable televisions, (5)
car and cockpit instrumentation, and in-flight entertainment P,'° o ° ,-
systems, is growing rapidly. These high added-value products heed
to be well-tailored-to the=customer's requirements, so-that the where P and P describe- the polariser and LC layers-
ability to optimise their -performance has become increasingly- POL LC

important. Whereas the-simple watch displays can be designed respectively and R (0)-is a rotation matrix. Thus the problem of
analytically or by rule-of-thumb, complex displays and those Jptimising a display is reduced to performing the matrix
requiring good off-axis-performance must be o timised using-a multiplication (5) on previously calculated P matrices.
numerical model. This jI*p&r describes the methods -adopted-at
GEC for this purpose and presents some examples of our results,
comparing the predicted performance with that achieved in III. DISPLAY OPTIMISATION
practice. The display optimisation process starts by calculating the director

II. NUMERICAL MODEL profiles in the OFF- and ON-states of the display. For this, we
require the elastic constants and permittivities of the LC fluid, the

The modelling problem falls into two parts. First, the LC director physical -parameters of the cell (i.e. thickness, twist and surface
profiles, i.e. n(.),-must be calculated for the different display tilt), and the drive voltages I',, and V. These voltages are
states and, second, the optical properties of these must be related by the level of multiplexing N through
calculated. We follow the-methods developed by Berreman [1],
and find the n(z) that-both satisfies the boundary conditions Vs/V,,s- m - ('N. 1 )/ 6F-I )]t2
imposed by the cell construction and the applied voltage, and is a
minimum of the total Helmholtz free energy F where and are equally disposed about the central switching voltage 1'

for which the mid-plane tilt = 45*.2F- K,.(dtvn)2 + K2 (n.curin- 2niP)2+ K3 2(nX turin)2  D.E (1)

From these profiles and the refractive indices of the LC, the
Here the-K,, are the elastic constants and F the cholesteric pitch F -matrices for the LC layer in the two states are calculated and
of the LC fluid. The device is assumed uniform in the plane of stored for 40 different wavelengths across tne visible spectrum. It-
the LC so that r and D are functions of z alone. Then is essential to include the dispersion of the LC. The P -matrix of

(Z)=e(Z) Ez)= constant, and c(z) is calculated from the polariser is also calculated as a function of wavelength. Then
n ((C ) and the (uniaxial) dielectric tensor with elements c and equation (5) is used to calculate P,,,, and hence the transmission
( Following Berreman [1], we adopted ashooting method which spectra for the range of polariser angles of interest. The
is interactive, but automatically alerts the user to conditions where transmission spectra, T (X), are combined with an illuminant
the profile is changing rapidly and avoids metastable spectrum S(X) to give the CIE tristimulus co-ordinates X, Y, Z
configurations. where

The optical properties of these configurations are calculated using 77

the 4x4 matrix method developed to treat stratified anisotropic -kf S(X)T(Mx(%)dX etc. (6)
planar structures [2]. The field amplitudes at the two surfaces of 370

the structure are related by a propagation matrix _ so that Here k (X) is the colour matching function and k is a normalising
factor

V(z)- PV(o) (2) 770

where ip=f(E , , E y,- HX) . P(z) is obtained- by ,0

writing a differential form of (2) i.e. Then the tristimulus Y value is the luminance transmission or
"brightness" of the display and YoFF/ YON is its contrast ratio.

!(Az)- v (z)2 - D(z)v (3) Contour plots of iso-contrast and brightness versus the polar
angles enable the optimum display configuration to be selected.

ineach stratum of the medium, within which the optical properties,contained in AWz, are constant. Then In many cases, a trade-off must be made between contrast and
brightness. For the case shown in Fig.l, the polariser angles were
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sel~cted to provide, a contrast ratio ;20 witireasonable ON-state where L% u', ,* are the display's co-ordinates-in the CIE 1973
f-ansmission whei a narrowbandgreen illumin-antwasused. The
predicted transmission spectrum is compared with that-measured uniform colour space and L is the brightness of a pair of parallel
-Or the actual display in Fig.1. polarisers. The optimum values for the parameters were-used to

construct a display. Fig.2 shows a comparison of the calculated
and measured spectra.

-40 ,

is ,,V DISCUSSION

30 - The numerical model has proved extremely accurate for LCD
26 design. Besides the examples quoted above, it has been possible

0to design displays- with minimal colour shift between their
M 2 / ,(reflective)-daylight -operation and the (transmissive) backlit

mode even though the backlight was a blue-green-
electroluminescent panel. We have also designed displays for

110 ,, \/'NVG compatibility without using extra-filters. It should also be
0 iremphasised that the modelling is not confined to normal

incidence: Fi&.3 shows a calculated iso-contrast plot for an SBE
display optimised for-two observers at ±40°.

0
400 450 500 550 600 650 700 750 800

Wavelength, nm
90

Fig.1 Comparison of calculated (solid line) and measured
(broken line) transmission spectra for an optimised SBE
display.

IV BLACK AND WHITE SUPERTWIST-OPTIMISATION

Supertwist LCDs are inherently coloured, which limits their
applicability. The-colouration- can be removed by including--a 180
birefringent film to-compensate the optical properties of the LCD.
This compensation cannot be ideal, so optimisation is necessary.
The method is an extension of equation (5). We write:

P-R'(Oz)P R(0 2),R'(0)P R(O2 ).P .R' (0 1 )P R(0 ), (7)
=10 - p01o 5 LC poI0

where 03 is the orientation of the birefringent layer and P is

its P -matrix. This can be calculated analytically from its 270

retardation which,-in turn, depends on the film thickness. -Hence
there are now four variables against which to optimise the display: Fig.3 5-alculated iso-contrast plot for an SBE display optimised
two polariser angles 0 ,0z, the film axis angle 0O and its for viewing at ±40° incidence. The display is mounted so
thickness. The optimisation criterion was taken as the blackest that the rear LC alignment direction (€ 0) is at 450
black state along with the whitest white state, so we numerically
minimised The modelling programs are sufficiently accurate that realistic

AE - (L 2
+ UIZ+ u1

2 
) G +( : L + )2 U.2+ ) beesim ulations, both static and dynam ic, of LCD appearance have

z x z . t . . 'z o ) ,, , + ( t ,-~l k, t ") , ( 8 ) b e e n -i m p l e m e n t e d [3 ] .

Besides designing displays, the modelling programs can be used
to investigate faults-in displays. For example, SBE displays are

40 very sensitive to the precise orientation of their polarisers. It is
35, impossible to measure these-angles after cell assembly, but by
;smeasuring the display performance (i.e. its contrast ratio and

transmission) the polariser orientation can be accurately deduced
30 from a comparison with the model predictions. Thus faults in the

25 display fabrication can be readily identified.
0 I

20- .Finally, it should be noted that these programs are an invaluable
research tool. In ferroelectric LCDs, the director profile is

S S. generally unknown. By measuring their optical properties and
F ' , comparing these with the predicted characteristics of plausible

10o models, a predictive capability for FLCDs can also be developed.
In conclusion, the numerical modelling programs for-LCDs have

S5proved to be very accurate. They have been used to design custom
550 700 750. . . displays, diagnose faults and as a tool in display research.400 450 500 ss0 600 650 700 750 800
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CONTINUUM THEORY OF SMECTIC C LIQUID CRYSTALS;
STATIC CONFIGURATIONS AND ELEMENTARY FREDERIKS TRANSITIONS

-I. W. STEWART and F.M. LESLIE and T. CARLSSON
Department-of Theoretical Mechanics, Mathematics Department, Livingstone Tower,
University- of Nottingham, Strathclyde University,
University Park, 26 Richmond Street,
Nottingham; NG7 2RD, U.K. Glasgow, GI XXH, U.K.

ABSTRACT - -Smectic C liquid crystals are shown to exhibit- six gives one particular parabolic cyclide surface). rransirming from
types of static configuration which satisfy the equilibrium equations -the Cartesian to the -(1A,0,t) -frame we can show that
of the continuum -theory introduced in [1]. A brief mathematical
description of- the resulting families of -parallel surfaces which a- (1,0,0) and c- (0,1,0) (8)
correspond -to these static solutions is -given. A -possible satsify tti constrains.(1) and-(2) and solve the -transformed- version
configuration is a wedge of concentric cylinders, a Frederiks of (4) u.pon a suitable choice of Lagrange multipliers. The
transition induced' by an appropriate electric field is discussed in- consequences of varying C and tt are discussed in- [7].
this case.

III. FREDERIKS TRANSITION IN A WEDGE
I. INTRODUCTION

To describe the layer structure of a smectic C liquid crystal we
introduce the -unit layer normal a which is subject to the
constraint [2]-

Vxa--0 . (1)
As in [3], a unit- vector c which is perpendicular to a is used to- a

describe the direction of tilt of the alignment with respect to the_
layer normal. The two directors- a and c -satisfy the constraints

a.a- 2.c- 1 , a.c- 0. (2)

The energy integrand used-in smectic C theory is
2W - K,(V.a) 2 + <2(V.c)2 + K 3(a.VXc) 2 + K4(c.Vxc)2

+ Ks(b.Vxc) 2 + 21Ks(V.a)(b.Vxc) + 2K7(a.Vxc)(c.7xc) -Fig. 1 The smectic layers are assumed to be paris of concentric
cylinders -with the common axis coinciding with the centre- of+ 2K,(V.c)(b.Vxc) + 2K((V.)(V.c) (3) the wedge. The layer normal a is in the ? direction and the

where the Ki are elastic constants (see [1],[4],[5]). The angle between the boundary plates is 0.
corresponding- equilibrium equations -examined --are (see [1],[6])

awi aW a
,j - U + Gi+Xal+pci+eipjkj - 0 Introducing the vector

fw 1  aw c (4) b - a x c (9),i j - + G i+ K c i+ p a i  - 0~ ~ ~
j ,j T.7 +we can rewrite the energy integrand as (see [4],[81)

where @, A, u and ic are Lagrange -multipliers arising from the 2W - A12(.V2x) + A 1(.'xb) 2 + 2A, (.Vx)(2.Vx)
constraints (1) and- (2) and e is the usual alternator. Solutions to + B1(V.b) 2 

+ B (V.c)2 + B[(b.Vxb+c.Vxc) ]2
(4) provide static configurations -for smectic C-liquid crystals. + 2B 1 3 (V.b)(b.Vxb+c.Vxc) + 2C1 (V.c)(b.Vxc)

II. STATIC SOLUTIONS + 2C2 (.c) (£.'xb) (10)
where the Ai Bi and Ci aceatcontts Itrdigth

There are six types -of well behaved surface which readily provide wer i, are elastic constants. Introducing the
static solutions for a restricted six term version (K1-K,) of the cylindrical coordinate system (rctz) we set
energy given in (3), namely, the Dupin cyclides, circular tori of a -
revolution, spheres, parabolic cyclcides, infinite cylinders and planes b - -&
(see [1],[5]-[7]). Solutions to equations (4) for a and c, including ~ cos + -sing
any related Lagrange multipliers, can be found and as an example 2 - sirvp + cosp
we now mention the-parabolic cylcides [7]. and assume that o = (c) with (O) = (o) = 0 where 0 is the
The Cartesian equation of a parabolic cyelide is [7] wedge angle (see Fig. 1). To induce a Frederiks transition we

x(x2+y2+z2)+(x2+y2)(Q-;).z2(Q+i)_(xi+Q)(Q+t)2 - 0 (5) apply an electric field of the form
where the confocal parabolae essential to -its construction are E (12)

y2 
- 4Q(X+Q) Z2 -42)

( 1 across the bounding plates of the wedge of concentric cylinders
(6) where U is the voltage. The corresponding electrical energyz - 0J y - 0 J integrand is

and 2 and i are real parameters. Equation (5) may be -6 2
parameterized as 2w - Cao[] sln sin, (13)

x(l+0 2 +t 2 ) - IA(0
2
+t

2
-1) + Q(t 2

_0 2
_1) where ca is the dielectric anisotropy of the liquid crystal, co is

y(l+0 2+t 2 ) - 2t(2(02+I)+p) (7) the permittivity of free space and 0 is the usual fixed tilt angle
Z(l+02+t2) - 20(t.2_,U) associated with smectic C liquid crystals. To obtain a thresholdfor a Fredericks transition we add the integrands (10) and (13)

where -w < t,O,t < +cc (varying 0 and t while keeping i fixed and minimize the integral of this sum with .especrt to ct over the
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region r, <r <r 2 , 0O< a < 3, zI <Z < z 2  This -is
achieved -by solving the -following linearized Euler-Lagrange
e qu -ation -(see [81)

2~ d__ i 2(A 21+4A,) + &a&OI t 0 (4

wlhere Bz-A2 and A, are the suitably adjusted -temperature
independent parts- of the corresponding original elastic constants
appearing in (10). To satisfy Va = -0- at ct = 0,03 we make the
antiatz

tpot) - So sin~ a)01 (15)

Where pm- is suitably small. Inserting this ansatz in~to equation
(14) we -derive the Frederiks_ theshold -Uc as

2 _22 2(Caeopc -r 2 2 :II-
We therefore see -that by -varying _Ihe wedge angle -fl we can
evaluate the constants B2  and (A2 1 ,+A, )- -by measuring the
Fredericks -threshold-,for each value-of P3.
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OPTICAL TRANSMISSION MODELLING OF FERROELECTRT, LCDs r

J.; Ot6n, F. -Olarte, F.J. L6pez-Hlernndez and F. Mufioz-Latr~s

Dept. Tecnologia Fot6nica, ETSI Telecomunicaci6n, Ciudad Universitaria-
28040 Madrid Spain

Abstract.- Modelling of ferroelectric liquid crystal The optical transmission calculations are
displays involves angular and sptctral transmission of performed for all possible angles (0-3600, 10" steps)
real backlights, using commercially available and oblique incidences (0-800. 50 steps). Driven and
polarisers and actual FLC mixtures. Running times zero volts states are computed by suitably orienting
for a complete case may be extremely large. -the liquid crystal slab directors within the optical
Therefore optimised procedures and simplified system. Data for real polansers and backlights (380-
models for-precalculations become-necessary. A fairly 770 nm, every 10 nm) are then included, and the
accurate description of the optical behavior of real overall transmission for every angle is computed.
FLC displays in working conditions has been The second, so-called continuous-varying
achieved. Polariier angles optimisation, spectral and profile (CVP) model, is based- on Berreman 4x4
angular transmaiiru- t.'ts and color coordinates formulation 16,7] and may be used for any arbitrary
calculations are the most u eful results. director profile. Input data and .output results are

defined as above. The -truncated series expansion of
I. INTRODUCTION Berreman's method- is avoided using explicit

expression5 for 4x4 propagation matrices of
The tuse of ferroelectric liquid crystals (FLC) homogeneous slices of the material, as proposed by

for manufacturing high quality displays has drawn W6hlc, et -al. 13J.] Results from both methods are
considerable attention since surface stabilized similar, the former being faster but restricted to
(SSFLC) bistable structures of these materials were simplest profiles.
reported by Clark and Lagerwall [1]. A simple
bookshelf geometry with uniform layers perpen- I. RESULTS
dicular to the glass plates was proposed, and a fast
electrooptical switching was demonstrated. Further In the examples given below, the following
work by them and other researchers 12-41, however, elements are used:
showed that the usual -configuratiofis found in real Backlight: C.I.E. D65
structures are far more complicattd. tilted Color filters. EMI RGB/standard fluorescent lamp
bookshelf, splayed or chevron. Polarizers: G1220

Optical: transmission models may greatly help Material: ZLI 3654 (Merck).
to develop- these devices. Under the point of view of
commercial displays, the most interesting 00
information that a computer model may provide is
the one related to optical transmission properties of/,
actual devices In-working conditions. -

080 0t65 - ou rce-I. PROBLEM FORMULATION

Two models for angular and spectral "o
distribution of light transmitted- through FLC
samples have been prepared and tested. The first
model -called slab model- can compute light 2. Jim
transmission through FLC cells whose director 0 40 ,
orientations are defined by a small number of
homogeneous slabs. The mathematical description of 3. p
the optical system (i.e., polariser, glass, anisotropic 0 20
material, glass, and -polariser) Is based ongeometrical-optics- [5].

0,38 0.48 058 0.68 0.78
1 This work is supported in part by ESPRIT II Wavelength (microns)

Project 2360 FELICITA and TIC Program from
spanish CICyT. Figure 1.- Transmission spectra for different

thicknesses. Backlight: D65. Slab model.
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The high oirefringence of the clear state in FLC Transmission data may De transformed into
displays-may-Influenve .he output of Wide spectrum C.I.E. colour coordinates. Figure 3 shows thebacklights. lgur-e 1 showsthe spectral response of a evolution of dominant colours and saturation when
150 tilted bookshelf with a 30 surface pretilt angle. sample thickness is varied from 0 to 5 lpm. No other
The region of shorter wavelengths is remarkable cell parameter (tilt angle, pretilt, birefringence, FLC
affected for higher thicknesses. The clear state is configuration, oblique incidence, chevron/tilted
bebaving like an almost ideal retardation plate. The bookshelf angle) produces any relevant colour
-models predict little spectral changes for samples nmigration. However, sample thickness (strictly, the
below- 21ir for a typical birefringence. This should product An.d) produces dramatic effects in- colour
be considered- a design parameter, specially in ecordinates as it does in luminance (Fig. 1). Again
colour displays, where luminance of the blue filter thiknesses below 21im are advisable. The central
may be considerably reduced, curve of figure 3 shows a D6E The outer curves are
Figure 2 is a 3D plot of oblique incidences. A 150 red, green and blue filters currently used for
chevron with 100 pretilt at 30 oC is represented. commercial colour displays.
The central region of the plot corresponds to nearly 4 0normal incidences; angles are linearl varying with •
distance from -the centre. The outer regions are
grazing incidences up -to 800. Rotation of the viewing j
angle is achieved by rotating the figure. While the X/
clear state yields a fairly symmetric hat shape, the
dark state shows small maxima at 450 for nearly ,,
grazing incidence. This is due to residual lightpassing through non-ideal polarisers. Contrast 40 "

curves-may be-direety derived from these plots. t

0 0

O.3& ;f>'4.J2~L-080 ..0. 0 00--2 00 0 040 0.60030 4 lative transnision x-axis

V Figure 4.- Experimental (1 and predicted (solid)
450 oblique transmission of a 21tm FLC cell rotating
between fixed crossed polarisers. Slab model.

An experimental setup consisting of a He-Ne
Brightness (clear state) laser, two fixed crossed polarisers and a PLC

sandwich twisted 450 has -been prepared to test
oblique incidences. The sample is rotated 3600

003 while switching. The output in rilar coordinates
(Fig. 4) is a daisy-shaped curve where four "petals"
are maxima -from one of the states interlaced with
another four maxima from the other state. Both
theoretical and experimental daa are nurmalised

Brightness (dark state, xS) using normal incidence. A fair match of the results
Figure 2.- 3D plots normalised to source luminance is found, specially in the angular values of the
through parallel-ideal polarisers. CVP model, maxima. These values are related to the projection

of the tilt angle on the plane of incidence thus giving
information of the actual FLC configuration.

dashed=normal incidence REFERENCILS
solid=450 incidence
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USING SIMULATED ANNEALING IN THE DESIGN
OF COVERING CODES
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02150 Espoo, FINLAND

AbstractTheorem :(stergrd, [13, Theorem 3]) If there is a (q, i, M)R
Simulated annealing has turned out to be a very efficient seminormal code and q is a prime power, then there is a (q,n +

method in the-search for covering codes. We discuss three q, q- 2M)R + 1 code.
methods, all using simulated annealing, for finding such codes.
The direct approach and the approach using matrices have
earlier been applied-to some extent. The third method, the Strongly seminornal codes are also of importance in constructing
use of simulated annealing in finding acceptable partitions for covering codes. These constructions are not presented here, but the
seminormal codes, is novel. Ali these methods have led to new interested reader is referred to [13].
codes, better than any other known in the literature.

lI. hIULA'EI ANNEALING
. INTRODUICTION

The algorithm used in our research is only a slight modification of
Covering codes ori;inated bacl ii, "198, when Taus s and Todd the uriginal simulated anneahing algorithm presented by Kirkpatrick

[10] discussed the problem group.theoretically. During the years et al. [6, 7].
many contributions to the research have appeared irt different jour- In the pesentaotin of the methods that have been used we focus
nals within the areas of coding theory and cumbinatoricb. The m.atn our attention on the defijnit of the neighbuuring -onfigurations
interest has concerned binary codes and ternary codes=of overing and the energy function. Appropriate .ouling schedules cai usually
radius 1 (the so called football pool problem, see e.g. [8,-11]). There be determined by some practical experiments.
has been considerable-recent growth in the interest in the area (cf.
[3]). IV. TIE METHODS

The problem of finding covering codes can be formulated as a
combinatorial optimization problem. Simulated annealing I.SA) has Although wery tu n4ni;iire the nunberU f cudewvrds cuveringa
turned out to perform-amazingly well in the search for such codes, certain space (to determine q(n, R)), the methods to be presented

here attempttofind coverings with a certain number of codewords.
II:.COVERING CODES The minimization is attained by sequent attempts-(runs) to find

coverings with-fewer-and fewer codewords (the direct approach).
We consider the space l ' consisting of all words of length n and A. The Direct Approach

coordinates belonging to the set {0.... q - 1). A code C C Fn
covers Iq with radius R if every word in F," is within Hammming The first results-concerning the use 0 f -biulated annealing in
distance R from some-codeword in C. The iamming distance be. coding theory aere presented by El Gainal t al. ,ii 1987 '21. In
tween two words is the-number of coordinates i, which they differ. tha' paper covering code, were nut consWiderd, hvweer, later thi
A q-ary code of length n that has Al codewords and covering radius same year these were treated by Wille in [11].
R is called a (q,n, M)R code. We denote The implementation of the direct approach is quite straightfor-

ward. The energy function is simply the number of words not cov-
Kq(n,R) = min{M [ there is a (q,n,M)R code). ered by the codenords. When we are searchingfor a code C that

covers F with radius ft the energy function is

Example 1. P, = {000,001,010,011,100,101,110,111}. The

code C = {000, 111) is a (2,3,2)1 code, since the words within 1Ham. E = I{z E F;' I d(x,C) > )I.
ming distance I from 000 are Ci = (000,001,010,100} and from III
are C2 = (111,110,101I011), and C UC2 = F2. K2(3, 1) = 2, since In the annealing process we go through all codewvords. A neigh-
there is no (2,3,1)1 code as is easily seen. bourhood configuration is obtained by replacing a codeword c with a,

Codes with different kinds of partitioning properties have turned randunily chben word L', such that J "- dtc, c') :-- K. The cudewords
out to be very useful in constructing nL% codes from old ones. The could also be replaced with completely random words, hoveier, ex-
concepts of normal and scminormal codes aere intruduced ii j3; perinients have showed that tins way of defining the nteighbouthood
and [4], respectively, and in [13] the notion of scminormal codes configuration is inferior to the pre%iou bly mentioned one.
was presented. In this-paper we show have simulated annealing can It has turned out that for coverngtradii I- 1,2,3 codes with lip
be adopted to prove the seninormality of codes. We now define to about 100, 40 and 15 cudeaords, re pe vcltv, ycan be found within
k-seminormal and strongly k-seminormal codes. reasonable time. Even an ordinary personnel computer can be used

Definition 1: (Ostergfrd, [13, Definition 21) A (q,n,MA)R code for this (most of our work has been done on a 10 Mllz PC/AT-
C is said to be k.semmiormal, if there is a partition of C into k compatible computer). With an increasing number of codewords
subsets C7o,.... k-1 such that, for all x e F', with d(z,C) = R, the processing time required grows very fast, and the search for

the (3,7,186)1 code found in [8] required many attempts and an

max{d(z, C)) <R+ 1. extremely slow cooling rate. In the binary case the following theo.
rein can be used to overcome this problem in some cases.

Thcorem 2: (0stcrgird, [12, Theorem 2]) Let C _ ) he a
code of covering radius R that has n codewords. Then there is a

Such partitions are called acceptable. The definition of strongly (2, b + 3q, 2?n)R code.
k.seminormal codes is obtained by removing "with d(z,C) = R"
from Definition 1. The following theorem shows how seminormal In the following subsections tLo other methods for finding coy-
codes can be used in the construction of new covering codes. erings with many, codewords are discussed.
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B. Covering Using Matrices all the sets and the random displacement consists of changing the
The-method-to be presented in this section was first-considered codeword in question and a random codeword in another set.

by Kamps and-van Lint [5] and later generalized by Blokhuis and If we want to prove strong k.seminormality, only a slight change

Lain [1]. In [91 van-Lint Jr. generalized it to arbitrary covering radii, to the energy function has to be made.

Let A = (I;M) = (a, ... , a) be-a r x n matrix where I is the V. CONCLUSIONS
r x r identity matrix and M is a r x(n- r) matrix with entries from
Fq. For E e F the R.cov'ring of s-using A, SA,F(.5), is:defined a Simulated annealing hu, turned uut tu perform burpriuingl) well

n in the search for covering codes, as a matter of fact probably no other
SA;R(.) = {s+ ' Iaj E Fq, {aj i4 0}1 _< R, 1< i <n). area of coding theory has profited somuch by this method. This

j=1 can partly be explained by the fact that for example packing (error-
correcting) codes are very structural of their nature and so for ins-

Consequentl, A F-I correponds to coering in the traditional tance algebraic methods can be applied-in the constructions. Ilo wsense. A- subset S of F fl-covers F using A if ever, many known record-breaking coverings (the (3,6,73)1 code

found in (81 to mention one) seem to possess no pattern at all.
= U s,,n(s). In spite of the good results reported-here, there is still some work

ses to be done-on this subject. This concerns especially the method of

Theorem 3: (van Lint, Jr., (9, Theorem 1.4.4]) If S R.covers covering using matrices, with its special problems.

using a-r x n matrix A = (I;M), then T ={w E Fn I Aw E S} ACKNOWLEDGMENT
covers 17 with radius R. 1WI = IS- _ n-r. This work-has been financially supported by the Finnish Academy.
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A-GENERAL PURPOSE DISTRIBUTED IMPLEMENTATION OF SIMULATED ANNEALING

R. Diekmann, R. Liiling, J. Simon
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University of Paderborn, Germany

Abstract: We-present a problem independent general purpose III. Parallelization
parallel-implementation of simulated annealing on-distributedparallelWe examined several parallelization approaches known from
message-passing multiprocessor systems. We give -a classifi-catin o -cobintoral otimzaton poblms.For typcal literature concerning -their- suitability for problems of the dif-
cationferentclasses. Kirkpatrick's ideas of locking parts of the con-
representatives of the different classes good parallelsimulated fn
annealing implementations are-presented. A new parallel SA- figurations [3] were found to be inefficient when implemented

in large distributed systems because no fast locking-mechanism
implementation is introduced. It works simultaneously on sev- is available.
eral markov chains and decreases the number of chains dynam-
ically. Baiardi's model of a processor farm [2] provides nearly optimal

speedup when used for problems of the second clr 3. In this
I. Introduction approach new configurations are generated by one master pro-

Simulated Annealing (SA) was first presented by Kirkpatri.k cess and sent to a numbet ofslave processes for cost evaluation
et al. [5] for solving hard combinatorial optimizativn-problems and acceptance deision. If this method is applied to problems
and has proven to be a good technique to a lot of applica- of the first class, the master is a bottleneck. He is not able to
tions [3,4,6]. The disadvantage of this probabilistic-approach generate enough new configurations to keep a large number of
is its large-amount of computation time needed for-obtaining slaves working.
a near-optimal solution. Some-attempts at speeding up simu-
lated annealing by using parallel computing systems have been III.a One-Chain
made.

made.To get rid of this bottleneck new configurations must be gen-Two paraelization strategies are possible. In the first, prob- rated by the slaves themselves. Only system updates are still
lem describing data is distributed among several processors. controlled by the master, A version of this idea was described
This kind of-parallelization depends on the given problem and by t e mpne d on f s ae macie
is not easy to find for every optimization problem. by Aarts et a. and implemented on a small parallel machine

Therefore We consider a second strategy which is based on
the parallelization of the actual simulated anneaing algorithm. In our implementation all slaves work on the evaluation of one

Every processor gets the complete problem instance-and exe- markov chain If a slave detects an acceptable configuration

cutes the sequential steps of the annealing algorithm in paral- the master is informed. He initiates a system update.
lel. This approach is problem independent and easy to adapt. For convergence properties it is not profitable to use the firstlel.Thi aproah i-prble inepeden an eay t adpt. detected acceptable configuration- for- a global update. In a
Some authors describe this technique using parallel systems
with shared memory [1,3]. For special problems [2] distributed synchronization phase the master collects all accepted configu-

systems are used in the same way. rations and chooses one for a global update. Quickly calculated
transitions are not favored.

Aarts et al. [1] first decribed a technique where all processors
work in parallel on the evaluation of one markov chain. With ..............................
this idea we obtain a speedup of 23 with 64 processors when .. *1'€1.qc

using a selfadapting cooling schedule. -

We present an improved parallel SA algorithm that provides .
a speedup of 41 on 121 processors using a selfadapting cool-
ing schedule. In this approach all processors start working on
a number of distinct markov chains. The number of chains. 3.."P

is reduced dynamically until all processors evaluate only cne ...... ,proc
chain. Fig.1: Results of One-Chain with a selfadapting cooling schedule

All algorithms are implemented in OCCAM-2 on a full recon-
figurable transputer system. A ternary tree is used as hardware topology for our i-nplemen-

tation. It provides minimal path length from the master-node
II. Classification (root of the tree) to all other nodes and has a maximal degree

The optimization problems are -classified according to their of four (since each processor has 4 communication links).
evaluation time for the different steps of the sequential an- Using a fixed cooling schedule (with fixed initial temperatuie
nealing algorithm. The most important two classes are: f0, temperature decrement in = atn-I and fixed chain length
1. problems where the generation of new configurations and L) we achieve nearly linear speedup results.
the cost evaluation take equal time (e.g. TSP). A selfadapting cooling schedule according to Iuang et al. [4]
2. problems where the cost evaluation is much more expensive is implemented. For the evaluation of the standard deviation
than the generation of configurations (e.g. placement). p we use a smoothing technique similar to Otten [6].
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Measurements of speedup and efficiency are shown in fig. 1. -not all values from all clusters are available on the root-node.
With this technique, it is not profitable to use more than 40 Therefore L-is calculated before the computation of-a chain
processors. The convergence behavior is equal to that of the starts according to a technique used by Otten [6].
sequential algorithm. Measurements of speedup and efficiency can be seen in fig. 4.

III.b Par-Chain
------- --------o*------ ........................... -. ........ -a 

' . -
.....-....

The-behavior of the One-Chain is worse in the presence of high . . .. l.c.. y, ..

temperatures when implemented in large distributed systems.
Many synchronization phases appear because almost every-new
configuration is accepted. For that reason no linear speedup is
achieved.
To overcome this disadvantage several markov chains can be speedup

usedrand speedup is achieved by shortening the length of the _ ............. * __._._.___ ....
individual chains. To guarantee convergence the chain length . . ... .. ... " M .. proc

cannot be-reduced arbitrarily. Since at lower temperatures Fig.4. Results of the Par-Chai-n implementation
the behavior of the One-Chain is much better, the idea was to
combine these two methods [1]. IV. Conclusion and further work
When the-algorithm starts all-processors calculate their own We presented a general purpose parallel implementation of SA
markov chain according to the One Chain method (fig. 2). Af- on distributed multprocesor systems. This approach is prob-

ter a certain time a global synchronization step is made. All lem independent and easy to adapt. Ihence it can be used
processors=send their configurations to the-root-node which as a tool of universal applicatiun fur approximation of hard
controls the masters of One Chain. It chooses one of the con- combinatorial optimization problems. To out knowledge it is
figurations-for further work. the first problem independent parallelization of SA-for large

distributed systems.
r"ed. I red. 2 red. Nq-2 red. N -1 dsrbtdsses
-e. e. ed e. Our next step is- to combine methods from genetic algorithms

r['] with the given SA parallelizations. Better convergence be-

"__ __ .__o,.--havior is achieved by using a pool of markov chains. In the
global synchronization phase of-the Par-Chain algorithm the

phase 1 phase 2 phase N-1 obase N root-node chooses a pool-of configurations for further work.
Fig.2: Reduction of number of chains The members of the pool and their rate of reproduction are

selected concerning their 'goodness'. First experiments idi-
In case of low acception-rates, processors are clustered dynam- cate also a better behavior in speedup.
ically. This-is done by building subtrees (fig. 3). Each cluster
now-calculates one chain according to the One-Chain imple- References
mentation. While the number of chains is decreased, the chain
length is magnified. The combination steps are repeated until [ B. Aarts, F. de Bont, E.Iabers, P. van Laahoven:
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Abstracf We show that local search heuri.qtics for grid solution. The SWAP neighbornood of an embedding is the
and-hypercube embeddings based on the successive swap- set of embeddings obtained by swapping the embedding of
ping of pairs of vertices, such as simulated annealing, are two vertices.
P-hard and- unlikely to run in polylogarithmic time. We
have developed- and implemented on the Connection Ma-
chine CM-2 a new massively parallel heuristic for such em- 2 P-hardness Results
beddings, called the Mob heuristic, which gives excellent
results in-practice. We show-that local-search algorithms for grid and hyper-

cube -embeddings are expected to be hard to parallelize
1 Introduction by-reducing them to the circuit value problem (CVP), the

canonical P-complete problem.

Graph-embedding is the NP-complee- problem of mapping Problems in NC can-be solved on a parallel machine with

a graph -into-another graph, ca.led a network for clarity, polynomially many processors in polylogarithmic time. If
a P-complete problem is in NC, then P, the class of prob-

hile minimizing a cost function on the -embedded- edgesNC, a
. 'the graph. Graph embedding has application in VLSI ey
(Very Large Scale Integration) placement and the mini- highly unlikely result. Since logspace-reducibility is-tran-

mization of data movement in parallel computers. An- au- sitive, if -a problem A is P-complete and we can find a
tomatc graph-embedding tool optimizes -communication logspace -reduction of-it to another -problem B in -P, then

-resources, permits fault -tolerance, and allows parallel pro- B is also P-complete. The definition of P-hardness does

grams to be divorced to some extent from the structure of not require that the decision problem be in P. A P-hard
the underlying communicationnetwor, problem is-at least as-hard to solve as a P-complete prob-

In this paper, we address grid and hypercube embed- lem.
dings. The-cost of a grid embedding is the sum of the CVP is the problem of computing the -value of a Boolean

half-perimeters of the boxes enclosing each edge. The cost circuit from a description of the circuit and-values for its in-

of a hypercube embedding is the sum of the Hamming: puts. CVP is P-complete [4]. Monotone CVP, a restricted
distances-between -the two verticesof each edge. Neither version of -CVP which uses only the operations AND and

cost function measures routing congestion, but reduction OR, is also P-complete [1].
of edge lengths can reduce congestion as a secondary effect. Graph partitioning is a special case of graph embedding.

Local search heuristics, of which steepest descent, The graph-partitioning problem is to partition the vertices

Kernighan-Lin [21, and simulated annealing [3] are well- of an undirected graph G = (V E) (jVI even) into two

known examples, have been established as the heuristics of sets- of equal-size such- that the-number of edges between

choice for general graph-embedding problems. The recent them is minimized. We use the following- result to-give re-

availability of general-purpose parallel processing hard- ductions to local search algorithms for grid and hypercube

ware and the- need to solve very large problem instances embeddings.

have led to increasing interest in parallelizing local search
heuristics. Theorem 1 For the graph-partitioning problem, local

In local search algorithms, an initial solution is con- search under the Kernighan-Lin neighborhood is P-
structed, usually by some random procedure, and the cost complete. Local search under the SWAP neighborhood is
function f is computed. Changes are made to the cur- P-complete, or P-hard if the local search algorithm is ran-
rent solution, and the new solution, which we say-is in-the domized [5,7].
neighborhood of the current -solution, replaces the current

This work was supported in part by-the National Science Foun- The result that local-search under the SWAP neighbor-
dation under Grant CDA 87-22809 ai,d the Office of Naval Research hood for graph partitioning is P-complete was indepen-
under contract N00014-83-K-0146 and ARPA Order Nos. 4786, 6320. dently obtained by Yannakakis and Sch.ffer [9].
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..X- rder E " " .we connect the closest vertex of every clique to v with an

o .O- ,_ xP-- : r:'-"- .i-., 0 zander edge, of which there are 2L. The solitary vertices
-- re-not anchored, and can thus move freely. We shall show

that the expander edges and cliques constrain v to move
I only along the x-axis between the two vertical lines.

Solitary Vertices ,Both constructions have the property that all possible

p ositive gain swaps in thi. problem correspond to positive
DxDClqusxDqucs gain swaps in the ass riated graph-partitioning problem,

and thus mimic the computation of the value of a circuit.

We find that any local-search based algorithm is P-hard if
N.* ' - every swap accepted by it corresponds to-a positive gain

Aand. i Edges = _J ] swap in the-graph-partitioning algorithm.
....._ _ - Since local search heuristics based on the SWAP neigh-

*i ,V~X ) Sohitm vc,s borhood for grid and hypercube embeddings are P-hard,
S_____ -_________ it is unlikely that a parallel algorithm exists that can

find even a local minimum solution in polylogarithmic

Figure 1: Graph partition to grid embedding-reduction. time in the worst case. This result puts experimental
results reported in the literature into perspective: at-
tempts to construct the exact parallel equivalent of serial

The-graph-partitioning completeness proof can be burn- simulated-annealing-based heuristics for graph embedding
marized-as follows. A-graph G is constructed from a mono- have yielded disappointing parallel speedups.
tone boolean circuit C. The graph G contains subgraphs
corresponding to the AND and OR gates in the circuit
C as well as auxiliary subgraphs. A partition of G into 3 The Mob Heuristic
equal-sized sets- is given as a starting point. By apply-
ing improving swaps- until a local minimum is reached, the We have developed a new massively parallel heuristic,

value of the circuit C can be computed- directly from the which we call the Mob heuristic. The heuristic is closely

resulting graph partition. related to both Kernighan-Lin and simulated annealing.
The algorithm uses a mob-selection rule to swap large sets

Theorem 2 For the graph-embeddng problem on the grid of vertices, called mo , across planes of a grid or hyper-
and hypercube, local search under the SWAP neighborhood cube. If the new 7,bedd:ng found has a smaller cost, the

-zs P-complete, or P-hard if the local search algorithm is search is repeated on the new embedding with the same

randomized. mob size. If the cost increases, the neighborhood of the
new embedding :s searched with a smaller mob size. We

To prove Theorem 2, we give two logspace reductiuon assume that Mob executes a number of iterations that does
that map-the graph G used in the g.aph-partitionlng proof not exceed a polynomial in the number of graph vertices.
into ini.lal embeddings i:. the-grid and hypercube. The full A "schedule" determines the rate at which the mob size
description of the constructions are given In 6. Wc give dercases. The P-hardness result given-above applies also
a sketch here of the grid embedding construction, the con- to the Mob heuristic if the mob size is fixed-at one.
struction for the hypercube embedding problem is .sihnilar. The mob-selection rule searches for an approximation to

For the grid embedding problem, the construction shown the subset that causes the largest improvement in the em-
in Figure 1 consists of E grid with two vertical lines L,, L, bedding cost and is designed to be computed very quickly
which have unit horizontal separation. The line Lu reprc- in parallel. On the hypercube a hyperplane is chosen
sents a logical value of 0 while the other line represents d at random and vertices are swapped between hypercube
logical value of 1. Let (Xo, I') be the initidl partition of neighbors across the chosen hypercube axis. On the grid,
G. Let K be the maximum degree of G. (K - 9)15'. The a distance d of l1,2, 1, 8, 16,... on either the X or Y axis is
vertices in the set X0 of G are placed oi L as siun in chosc at random, and vertices are swapped between grid
Figure 1 and above them is an equal number of solitr, ncighbors that are a distance d apart. In both cases a gain
vertices. The .ertices in 1 are placed on L, abw,, an is computed for every vertex to find the vertex pairs whose
equal number of solitary vertices. Thcise vcrtic(, on li c.&chaige would cause the largest individual change in the
vertical lines Lo and L1 are spaced D verwtic grid poajiv embedding cost. A group of high-gain vertices of size mrwb
apart, wherc D - K 1 1, to leave enough rom fr Ilit rcsL is s.cleced to move. To avoid sorting by gain, an expensive
of the construction. With this constiuctivn v'c biio, that operation on a massilc pcaralel niachine, we use adaptive

the only swaps accepted by the local scarh ,curitic ore binart Lcartl k, identify a sit of vertices with gain g or
between a vertex of G and the opposing bulitr,,., t i... lArgcr in coch set ,here 9 is the smallest gain such that at

To limit the movement of a vertex v in G, ve p-1i. u 1. itib, rob vtrtices have a gain greater than or equal to g.
(J - 2K i 2) D x D anchor clqv,'s to lie left ,oid anh r Weselect cmob vertices ,t randon from this set.
L anchor cliques to I he right of the to.(, t i ,l A Ia,.. iwl Wec valuated the pcrf,,mnidice ,f the Mol' hyper i bc
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250. percentage decreases as the degree increases. The empzr-
0. , .-.- iceal parallel complexity of the Mob heuristic on the CM-2

20- (on random graphs) is time O(log I E) with 21E1 proces-
200

sors.
The absolute speed at which an- embedding is produced

ISO shows that Mob can be implemented-very efficiently on a
SIMD-style machine. It takes approximately 36 minutes
to find an embedding of a 500K-vertex, 1M-edge graph,

- 00 the largest graph that would fit into the CM-2, into a

1024 x 512 grid. Due to excessive run times, previous
heuristics reported in the literature were able to construct
graph embeddings only for graphs-that were 100 to 1000

k times smaller than those used in- our experiments. On
0 small graphs, where simulated-annealing and other heuris-0 500 1000 1500 2000o 2500 000 3500 4000 oo

rt.raton. tics have been extensively tested, -our heuristic was able

to find solutions whose quality was at least as good as
Figure 2: Convergence of Mob simulated annealing.
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Abstract 2 Four Graph Types

In parallel computation, a common requirement is the The energy metric we use here for annealing is the
mapping of a problem graph of-communicating tasks onto distance- variance function as defined in [1]. This attempts
a netwoik graph of processing elements such that. (1) the to spread a problem graph evenly over the network graph

communication-distance is minimized, and (2) the prob- -while minimizing communication distance by weighting
lem graph is evenly distributed over the netwurk. When the two metrics of communication distance and the vari-
using simulated-annealing on this problem, how doeb the ance of the number of problem graph edges that can be
-relative structure -of the two-graphs affect performance? said to e incident on a-network graph vertex as a result
To investigate this question, we used simulated anneal- of mapping. Ultrametric correlation coefficients are -com-
ing to map four- graph-types of varying "structure", rep- puted as described in- [7]. We -now investigat: the effect
resenting possible problem graphs, onto a graph with a of problem structure on the behavior of simulated anneal-
very regular structure, -representing a network of process- ing and quenching by -mapping members of four different
ing elements. These results show that higher regularity graph types, (1) random, (2) geom-tric, (3) torus, and
produces°(1)-a-higher but narrower range of -final energy (-I) n-cube, onto a torus. These graph types were chosen
values, -(2) a higher distance-energy correlation and (3) a to represent a-range of "structure". The random graph
higher degree of ultrametricity. can be said to have no structure. The geometric graph,

as defined below, has more structure with similarities to
a torus. The torus and n-cube are very regular intheir

I Introduction structure but are similar and dissimilar, respectively, to
the network graph.

Simulated Annealing is a computational technique of find- These graphs are defined in the following way. All prob-
ing a near-optimal "solution" to an-optimization problem lem graphs have 32 vertices and an average vertex degree
by making random changes in the solution and proba- of 5. This ensures that any difference in numerical energybiistay m acceptiang t change dn othesolutionan r it results from differences in graph structure, i.e, how wellbilistieally- accepting the change depending on whether it
improves or degrades the solution [3, 1]. How well-simu- the graph can be mapped, rather than just the number of

lated annealing performs is dependent on the energy land- vertices and edges involved. A random graph is generated
-scape of the configuration space. How can we determine by defining n vertices-and connecting any two with prob-

the character of the landscape for a given configuration ability p which results in an average degree of (n - 1)p
space? Solla et al. hypothesize that configuration spaces [2]. Given the desired degree of 5, it is easy to compute

exhibiting a high degree of ultrametrcity are more suit- the required p. A geometric graph is generated by ran-
able for annealing [7]. Can we use ultrametricity and the domly distributing n vertices over the unit square and
correlation between energy and distance to determine if connecting any two vertices that are contained within a
annealing will perform well on a given class of optimiza- square with side 0 < k < 1 where this smaller square can

tion problems? Concomitantly, how does the "structure" wrap-around to the other sides of the unit square. This
of a class of problems affect the degree of ultrametricity definition is intended to produce a topology similar to a
and performance? We will investigate these questions by torus. (If wrap-around was not allowed, the generated
mapping four different graph types that represent prob- graph would be more similar to the lyout of a printed
lem graphs with a range of-structure onto a regular net- circuit board as defined in [2].) Jere the average degree
work graph. is 4nk2 . Given the desired degree of 5, it is easy to com-

pute the required k. The problem torus will be a 4 x 8
*A full-length version of this paper is available from the first grid but with extra edges added in a symmetric manner

author at lec@aerospace.acro.org. such that each vertex has a degree of 5. Finally, the n-
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cube with 32 vertices-naturally has a degree of 5. Finally,
the-network graph will-be a 3 A 3 torus, each vertex will to 4. All annealed solutions are set at distance zero and
have a-degree of 4 in the typical grid fashion. This net- the distance axis shows how far away the closest quenched
work graph may seem small but it is not a degenerate sulution permutations are. Since the problem graphs all
torus and it was deemed necessary to hold down the cost have 32 vertices, all distances arc in the range (0, 32). The
of checking permutations. All of these graphs may seem energy axis, hovcver, is scaled to-the minimum and max-
small but each configuration space hab a size of 9". imum values of all annCalingb and quenchings and then

'For each problem graph, we will-do 100 slower anneal- quantized into 32 bins. The Nertical axis then shows the
ings and 100 faster annealings (called quenchngs) onto number of soluti uns in a particular bin. The vertical scale
-the network graph. In all cases, the same initial map- ib arbitrary but uniform across all graphs. This graphical
ping-will be used but with a different seed for the random display hui% at a glance the distribution of the annealed
number generator. In all cases, an even 0.5/0.5 weight- and quciched solutions relative to one another. For com-
ing will be-used in the distance-variance energy function. parison, the general distance distribution of all possible
The temperature control parameter has ar initial value of configurations from any one configuration is shown as a
100 (z 50x the initial-energy value) and an exponential dotted curve.
decay factor of 0.9. At each temperature, thermal equi- Figures 1 to I show the following. The random and
librium will be determined as in [3]. for a problem uf size geometric gtaphs have very similar results, there is a sig-
-n, equilibrium is reached after an hanges have -been ac- nificant rang, -of annealed energies and an even broader
cepted or bn changes have been attempted (acepted or range of energics for the quenched solutions. The addi-
not), whichever comes first. The user is free to choosc a tional "structure' in the geometric graph did not signif-
and-b under the constraint that 0 <. a < b. For quench- icantly change the distribution of solutions found. All of
ing, a/b = 1/2. For annealing, a/b = 128/256. The algo- the queinched solutions are in a narrow range of distances
rithm terminates when the configurations at the last three from their closest annealed zolutiouns. There is no appar-
consecutive temperatures show no improvement, i.t., the cIt correlation between the distance between solutions
configuration is "fr zen" [5]. and their difference in energy. In fact, the distribution of

For each quenched-solution within each graph type, the quenched svlutions seems strongly influenced by the prob-
map permutation with the minimum distance to any an- ability of finding a close configuration within the general
nealing solution is found. We then plot the distance versus distribution of configurations.
the energy as a histogram surface as shown in Figures 1 Th, torus and n-cube graphs, however, tell a different
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higher energy can't find a-closer annealed solution implies
Graph Type 11 Qienching Annealing that the configuration space itself has a regular shape,
random - 0.028 0.036 that "valleys" with the same shape have multiple occu-
geometric 0.033 0.035 rances such that a quenching that:lands with energy E in
torus 0.238 0.401 one valley may be distant from an annealing with energy
n-cube 0.167 0.222 E-e in another valley but has a-closer isomorphic permu-

tation in-that same valley. Such an interpretatiot, is con-
sistent with the argument given by Solla et al. in support

Table 1: Ultrametric Correlation Coefficients of the correlation between move distance and ultrametric-

4.0 ity. However, it is an open question whether these configu-
ration spaces have 'self-similar' or 'fractal-like' valleys, as
described in [6], such that similarly-shaped valleys occur

3.0 .................................... with a recursively decreasing size. The observations dis-
cussed so far lead us to conjecture that regularity in any

E 2.0- . optimization problem produces a configuration space thatI reflects the same-structure in which low-lying minima are

1.0 ................ ultrametrically distibuted. This implies that when higher
i regularity exists, a shorter annealing schedule can be used

with a higher probability that the resulting maps will not
0.0_ be far apart in-energy.

ran geo tor cub

Figure 5: Range of Absolute Energy Values References

story. The annealed'solutions have a tightly-clustered en- [1] D.II. Ackley, "Stochastic Iterated Genetic lIillelimb-
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PROPERTIES OF SIMULATED- ANNEALING
WITH INACCURATE COST FUNCTIONS

Daniel R. Greening*

ABSTRACT Existing programs attempt :to bring state probabilities close to

Inaccurate cost or energy functions appear in many paral- equilibrium at each temperafure [1]. Thus,-we can gain information

l simulated annealing implementations. Such errors alter the about annealing behavior by looking at the homogeneous chain.
equilibrium cost, change the speed to approach equilibrium, and We can guarantee ergodicity-if these properties hold.
affect the quality of the final result.

We show that identically distributed Gaussian errors do not probability Vs E S, F G,,., = 1 (1)
affect equilibrium. Non-id Gaussian errors and bounded errors O'ES
can alter equilibrium; such changes vary with temperature and coverage Vs, s' E S, 3k > 1, [(G 6 0] (2)
error magnitude. The convergence speed under bounded errors c
also depends on temperature and error magnitude. aperiodicity 3s ES, [P,,. 6 0] (3)

Finally, we show that constraining errors to a constant factor finiteness 1si1 GZ
+  (4)

of the temperature guarantees convergence in a restricted case. G,.J(5symmetry V(s ,s') G S x S,),, G,, 5

(1) states that G, is a-probability vector. (2) -guarantees that the
1 INTRODUCTION annealing chain is irreducible. (3) and (4) make the chain is aperiodic

and finite. Irreducible, aperiodic, finite Markov chains are ergodic.
Simulated annealing-is an algorithm to find nearly-optimal solu-

tions to-NP-hard problems [1]. Figure 1 outlines the approach: so is 1.2 Inaccurate Cost.Functions
the:initial state, G,,,, is the generation probability, random returns an
uniformly-distributed random number from [0,11, C is the cost func. Parallelalgorithms-can reduce communication costs by usig some
tion, andT is the-temperature. The sequence of temperatures T is stale information, instead of maintaining-elaborate synchronization to
the temperature sedule. It is generally presumed that an optimum local information up-to-date. Stale data cause inaccuracies in the

schedulekeeps the average observed cost close to its equihbrium value cost. Experiments show thatallowing inaccuracies can improve speed,

(not necessarily true, see [2]). but can degade results [4, 5].
Two questions arise: How does the result quality of asynchronous

1. T -To; simulated annealing compare to that of sequential simulated anneal-
2. s4- so; ing? How fast does asynchronous simulated annealing converge-to a
3. while not done solution, compared to sequential simulated annealing?
4. s' 4-generate(s) with probability G,,,,, Using a thermodynamic analogy, Grover showed the effect of bound
5. A 4- C(s) - C(S'); ed errors on the partition function-[6]. Durand and White analyzed
6. if (A < 0) V (randomo < t.-AI) then s, s; equilibrium properties for bounded-errors on a restricted algorithmic
7. T "reduce-temperature(T); class [7]. Gelfand and-Mitter showed that state-independent noise,
8. end while; under some conditions, -will not affect asymptotic convergence [8].

We do not assume state-independence; most applications appear to
Figure 1. Simulated Annealing Algorithm exhibit strongly state-dependent errors. We expand the scope further

by considering both fixed error bounds and Gaussian errors in the

Many parallel implementations involve approximate cost- functions general case, and by examining the effect of bounded errors on speed.

(3]. Some sequential implementations also use approximate functions: Experiments have hinted that when errors are proportionally con-

examples include congestion and wire-length estimates in circuit place- strained to temperature, results improve. Invoking these observations,

ment [1]. researchers have modified asynchronous algorithms to obtain better
final states [9, 10]. Our last result validates their -assumptions.

Properties Proofs for equilibrium properties and convergence speed are omit-
1.1- Annealing roted (see [11]). Proof of the final result, on convergence to global op-
Define-acceptance matrix at time t, AP), A(, - Cmi[°,((s)-C('))/T,. tima, is retained.
Deft- inhomogeneous Markov chain P for simulated annealing,

- f G,,A( 0, ifs S j6 2 EQUILIBRIUM PROPERTIES

" -, =~ 1 - # s'Pt, otherwise We refer to the true cost, C(s), of state s, and the erroneous cost
C,(s) = C(,) + e(s), of state s. c is a random variable dependent on

If-we fix the temperature, A() = A, P(" = P, and the chain is homoge- s, thus C,(s) is a random function.
neous. If it is also ergodic, each states has an equilibrium probability 2.1 Bounded Errors
p(s) independent of the initial state.

_ indpeden o te iital tae.If cost-function errors are bounded, then we have f c e _<.
*University of California, Los Angeles. dgreentcs.ucla.edu.
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Theorem-1 Let p,(s,T-) and p(s,T) be the equilibrium probabilittes Let p(V) = -v.E p(v), and let S1/2 = {V C SIp(V) < 1/2).
of state s at-temperature T, with bounded errors and -wthout errors, Define:the global-conductance as the niininium ndU ttance over all
respectively. Then, subsets with stationary probability below 1/2, thus,

e(--,1Tp(s,T) < pj(sT) < e( -f-ITp(s,T) (6) I = in IV (13)
VES1l2

Equilibrium behavior is often characterized by its "macroscopic
properties." Any macroscopic property, F(T), is the expected value This global conductance provides a good measure for annealing speed
of some function, f(s), 6ver the state space, It is related to another speed measure, the dominant eigenvalue [12].

Others have-examined the effect of adjusting- the move spaces to
F(T) = f(s)p(s, T) (7) obtain better annealing speed, using conductance and eigenvalues [13,

seS 14]. Here, we show how the size of the errors constrain the global
Theorem 2 Let F(T)-and F(T) be equivalent macroscopic proper. conductance.
ttes, for function f, at temperature T, unth-cost functions C, and C, Theorem 4 Consider two different annealing chains P and P, with
respectively. Then state space S and generation probability G identical. Annealing chain

P has cost function C, and P. has cost function C,. They are related
e(1-)IT F(T):5 (T) 5 e(rF.)ITP(T) (8) by C(s) +f_ < Cc < C(s) +7. Let I' and I, be the corresponding global

A commonly measured macroscopic property, the average costis conductances. Then,
constrained by Theorem 2. e3(-)/I < I e3(/'-)/T',I (14)

2.2 Gaussian Errors
4 CONVERGENCE TO GLOBAL MINIMA

Simulated annealing typically operates on structures with discrete cost
functions: thus the errors appear-as discrete values. However, as we Simulated annealing can-be made to converge monotonically to the
add-state variables and as-the maximum number of uncorrected in- optimum result, using an appropriate temperature schedule Define
terdependent moves increases (through increased parallelism or slower global optima set So such-that s E So-* C(so) = min{C(s')1s' C S}
update times), the errors can approach a Gaussian distribution. The most general results presume no particular structure to the

In many instances, particularly-in parallel- applications, the proba- state space, other than those specified by (1) (5). We pay a penalty
bilty distribution of the observed cost function Ce(s) is reflected about in time for generality. Under these prepositions, a simulated annealing
the true cost C(s). Cost-junctions exhibiting- this behavior appear-in temperature schedule with T(t) = c/logt will-converge to the mini-
work by Durand and White [7]. mum energy states [15, 16].

Thus, it is reasonable to investigate the effect of Gaussian random Proofs of convergence for-these general spaces consider sets of local
cost function 0,, with:mean E[Co(s)] = C(s). We will show that minima Rk, and presume the cost function returns an integer. Let 10
when the variances of the state costs do not differ greatly, simulated be the set of all-local minima. Roughly, (Rk \ Rktad) is the set of local
annealing with inaccurate costs converges to a good solution, minima which can be escaped to a lower cost by ascending a change
Lemma 1 Let the cost of each state s be Co(s)-= C(s)+X., where X, in cost of k (i.e., the height of the cup containing the local minimum).
is an independent random variable. Ezecute the simulated annealing Thus,-if the state set is finite and fully-connected, there is some d such
algorithm in-Figure 1 with lines 3 and 6 sampling random variables that Ad C So (see [16] for a rigorous definition).
C.O(s) and Cu(s') instead of bounded random variables, and with T Theorem 5 Suppose an annealing chain satisfies (1)- (5) and has cost
fixed. If (1)-(5) are satisfied and T > 0, the resulting-homogeneous function C,(s, t) with time and state dependent errors c(t), such that
Markov chain P6, is ergodic, and the equilibrium probabilities are given C(s) + (t) < C,(s, t) < Ce(s) + 7(t). (15)
by

i)Q= e O TE[e-X;IT]" Let biT(t) < f(t) < 7(t) <_ b2T(t), where b, and b2 are constants. Let
Pthe temperature schedule be of the form T(t) = d/log t, where d e Z°+.

Then the algorithm converges in probability to the set of global minima
Corollary 1- If all X, are identically distributed, and the resulting if Rd C So.
Markov chain is ergodic, then P,6 = p and F4. = F. PROOF. Suppose the transition matrix Pt for some Markovian system
Theorem 8 -Let C: S -+ R be a cost-function, and let- its station- at time t is constrained by (16).
ary Boltzmann distribution be p: S - [0,11. Consider a- random cost DOI (t ) < p. < e~e-/: jT(, (1
function g: S--. R, where each random variable (s) is an indepen- - ,, - (16)
dent Gaussian distribution with mean C(s) and variance a'(s). Let where ci and C2 are positive c nstants. Assume for some integer d > 0
P4: S -4 [0,1] give its stationary Boltzmann distribution. Then po(s) that (17) and (18) hold.
can- be bounded by 00

e(zi-)l2p(s) < p4,(s) < - ) (10) e-air'Q) ' Co (17)

Corollary 2 Macroscopic property F4, is bounded by oe - d- IT (1) < co (18)

£(Z-F)/27 2F(T) < F(T) < e(V-41)127.F(T) (11) t=
We can then conclude that (19) and (20) are true [16].

3 EQUILIBRIUM MIXING SPEED Vi E S, lirn P(X(t) E JidX(0) =-i) = 1 (19)

If P is a Markov chain and p(i) is the stationary probability of V: E Rd, lir sup P(X(t) = iIX(0) = i) > 0 (20)
state i, define the conductance of a 5'abset, v, V E S as t-00

I = viG0VP(i)Pij Let c5 = e
- and c2 = e-b2. These values satisfy (15) and (16).

(12) Choose d so that A C So. Such a d must exist, since (1)-(5) are
Ziev p(i) satisfied. Let T(t) = d/logt. This satisfies (17) and (18). By (19)

In words, the conductance of a subset V is the conditional probability the erroneous simulated annealing algorithm converges in probability
that a transition will leave V, given that we start in V. to the set of global minima. U
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5 CONCLUSION [13] Gregory B. Sorkin. Simulated annealing on fractals: Theoret-
ical analysis -and- relevance for combinatorial optimization. -In

Calculation errors in simulated annealing affect the equilibrium ilam JDaly , dirlvance reearia opages 31William J. Dally, editor, Advanced Research in VLSI, pages 331-
cost and the speed at which equilibrium- is-reached. Analytic results 351. MIT -Press,-Cambridge, Massachusetts, 1990.
presented in this manuscript constrain equilibrium properties with a
bounded or Gaussian random cost function. In addition, we constrain [14] R.H.J.M. Ottendund L.P.P.P. van Ginneken. The Anneaing Al-
annealingspeed with a bounded cost function. gorithm. Kluwer Academic Publishers, Boston, 1989.

For bounded errors, as the range of-the observed cost increases
relative to the true cust, equ~ibrium pruperties and annealing bpeed [15; Bruce Hajek. Cooling sthednluL for uptlinal annealing. Mathe-
diverge ex.ponentially from true equilibrium and sequential anneal- matics of-Operations Research, 13(2).311 329, May 1988.
ing speed. For Gaussian errors, as the difference between the lowest [16] John N. Tsitsilis. Markov chains with rare transitions and sim-
and highest variances increases, equilibrium properties diverge expo- ulte nNeali. Ma hais f ra tions a d

nentially. Finally, all these quantities diverge exponentially with the ulated annealing. Mathematics of Operations Research, 14():70-

inverse-temperature. 90, February-1989.

Researchers have speculated that tuning errors to a constant fac-
tor of temperature helps the system converge. Our final result shows
that guess to be correct, at least in-the case of inverse logarithmic
temperature schedules.

This work was supported by-the IBM T.J. Watson Research Center. I
gratefully acknowledge the comments of Frederica Darema, John Tsit-
siklis, Albert Boulanger, and Griff Bilbro.
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Time-homogeneous Parallel Annealing Algorithm

Kouichi Kimura Kazuo Taki
Institute for-New Generation Computer Technology

1-4-28 Nita, Minato-ku, Tokyo 108,-Japan

Abstract temperature. -However, since the temperature on each processor -re-
mains constant, the algorithm itself is time-homogeneous. Thus we

We propose a new parallel simulated -annealing-algorithm. Each pro can-avoid the task of carefully reducing the temperature-according to
cessor maintains one solution and performs the annealing process con the tme, which is ebsential fur the perfurmanace of the -conventional
currently at a constant temperature that differs from processor to pro sequential annealing algonthm. In-other words, this algoithmn auto-
cessor,-and the -solutions obtained -by the processors are-exchanged inatically decades how many steps should be taken at each temperature.
occasionally in some probabilistic way. A Vpropriatc Louling oched the ruajurityo f steps bhould be devuted to s me ertical temperatures.
ule is automatically constructed from-the set of temperatures that are However, it-is necessary tv allocate an appropriate temperature to
assigned-to the-processors. Thus we-can avoid-the task of carefully each-processor beforehand. Namely, we heve-to specify-a set of tem-
reducing the temperature according to-the time,-which is essential for peratures, fronmwhich the algorithm- will construct a cooling schedule.
the performance of the -conventional sequential algorithm. This-set should-be chosen wisely according-to the estimation of the

In-this paper we propose-a scheme of the -probabilistic-exchange of equilibrium (static) -relation between the temperature and the energy.
solutions and justify it from the viewpoint of probability-theor. We It must cover the region-of temperature, only in which the equilibnum
have-applied our algorithm to a graph-partitioning problem. Results energy varies virtually. 'Here the concepts of-the scales-by S. White
of experiments, and comparison with those of the sequential annealing will be useful [4].
algorithm and-the Kernighan-Lin algorithm, are discussed:

2.2 Probability of Exchange

1 Introduction Investigating the necessary condition which the probabilistic exchange
must=satisfy, we determine the probability of-exchange.

Simulated annealing is a general and powerful technique to sohe-dif Imagine that the annealing process is performed independently at
ficult-combinatorial- optiniization problems- [I]. It -consists of many each-processor-at a. distiant-constant temperature. Then- the d,stribu-
iterative-steps, each modifies the current solution randomly and a. tion of the solution il eauhprocessor approaches Boltzriann-distribu-
cepts it with probability min{1,exp(-AE/T)). 1Here -AE represent. tion of the rezpective temperature 13]. The lower the temperature is,
the-gain -obtained by the proposed modification in terms of the -en- the better the solution that will-be-found, but after a longer time.
ergy (objective function) E, and T > 0 is -the temperature which is Now we introduce prubabilistic exchanges of the solutions between
gradually reduced according to a cooling schedule, the procebsrs and intend to accelerate the convergence of the solutions

Unfortunately, -the theoretically optimal cooling schedule, which so that we can find a better solutin at the lowest temperature more
guarantees the convergence to the optimal solution, proves to be too quickly.
slow for practical- use 12]. Cooling schedules with geometrically de Let p(T,E,T',EI') denote the probability of the exchange between
creasing-temperatures are often used in applications. To obtain more -two sulutions with -energy E and E', at temperatures T and T'.
elaborate cooling schedules is-an active area of research [31. Since we expect a better solution at a lower temperature, we define

-In this paper we-propose-a new parallel simulated annealing algo- p(T,-E,T',E') = 1 if (T - T')(E - BI) < 0.
-rithm. It- automatically -constructs an appropriate cooling schedule On-the other hand, if(T-T')(E-E') >o, p(T, E, T', E')is uniquely
from a given set of temperatures. determined as follows. In-order to accelerate the convergence, a prob-

abilistic exchange of the solutions -must not, disturb the equilibrium
distribution. Hence the detailed balance equation must hold between

2 An Annealing Algorithm Parallelized in the distributions before and after the exchange:
Temp erature I E I Elp-T) cxp(-T)- Z-)-- e xp(--7) -p(T, E,T, )

2.1 Outline of the Algorithm I E I., 1 .

The basic idea isto use parallelism for various temperatures, to per- Z(T)--T)- T(T) exp(-T) - I

form annealingprocesses concurrently at various temperatures instead where Z(T) denotes the partition function. Therefore we obtain
of sequentially reducing the temperature according to the-time. I' 1 if AT-AE < 0

The outline of the algorithm is as follows. Each processor rmaintains p(T, E,lT, E') exp(- AE) otherwise
one solution and performs the annealing process concurrently at a
constant temperature that differs from processor to processor. After where AT = T- T', AE= E-E'
every k annealing steps, every pair of the solutions from the processors Note that p(T, E,T',E') > 0 for VT VE VT VE'. This means that a
with adjacent temperatures are- exchanged with some probability p, solution can go through a non-monotonic cooling schedule.
which is distinct for each pair. The algorithm can be stopped- after This probability is quite different from that of choosing a solution-
any large number- of steps and we will find a well-optimized solution temperature pair in the systolic statistical cooling algorithm by
on the-processor that has the lowest temperature. We refer to f = 1/k E. Aarts ct al. (5). The advantage of the former is that it does-not
as the frequency of (probabilistic) exchanges and p a.; the probability of contain the partition function and hence can be computed easily.
exchange.

Since exchanging the solutions between processors with different
temperatures is nothing but changing the temperature for each partic-
ipant-bolution, each solution &ill select its apprupriate cvuling sched- We verify that each probabili stc exchangu uf solutions in fact acceler-
ule dynamically through successive competitions with others for lower ates the convergence of the algorithm.
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Let p denete the distribution of the solutions at an arbitrary time. 3) Note that the total number of annealing steps in (a) and that in
It-will change into pA after one annealing step at each processor, or (c) are the same. (a) outperforms (c) unless f is-too small.
into pC after one probabilistic exchange for each pair of solutions,
whefe A and-C are the respective transition probability matrices [6] 4 Conclusion and Future Works
Let lr denote the equilibrium distribution. It can be shown (61 that

D(74[p)- D(-rllpA) and D(irljp) D(7r1lpC) We have proposed the time-homogeneous parallel annealing algorithm,
where D(ir!Ip) denotes Kuiback-Leibler divergence of r and p, which in which an appropriatc wuling schedule -i tutomatically and proba-

represents the discrepancy between them [71. Here strict inequalits bilistically constructed from a given set of temperatures.
hold unless p = 7r. Moreover D(7r ]p) -- 0 follows from the observation The behavior of this algorithm is theoretically tractable, since it is

in the subsequent subsection. described in terms of a time-homogeneous Markov chain. -In-particular

Hence the distribution of the solutions monotonically approaches the we have proved its monotonic convergence property.

equilibrium distribution during the execution. We have experimentally observed that this algonthm automatically
constructed a better cooling schedule than that which assigned the

24 Time-homogeneity same number of annealing steps at each temperature. We also ob-
served that this algorithm is robust for-the choice of the-frequency of

The above algorithm is time-homogeneous: it has no control parameter exchanges.
to change over time. This has two implications. The following require further investigation.

Firstly, the behavior of the algorithm is described in terms of a time- (i) How many processors should we use?
homogeneous Markov chain. In general it is an irreducible and acyclic (ii) How should we assign temperatures to the processors?
Markov chain over a finite state space. Hence we can easily establish (iii) How do we find the optimal frequency of exchanges?
its convergence property [6]. (iv) Does this algorithm probabilistically select the theoretically best

Secondly, in executing the algorithm, we can stop it at any time and cooling schedule, the best assignment of the annealing-steps -to each
examine whether a satisfiable solution has already been obtained. If temperature?
one has not, we can resume it again for a better solution, and can just
continue it as long as we like. In contrast, in the conventional sim- 5 Acknowledgments
ulated-annealing it is necessary to re-schedule the temperature when
we resume it, once it has entered the lowest temperature. We would like to thank N. Ichiyoshi, K. Rokusawa, and E. Sugino for

valuable discussions.
3 Experimental Results
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Parallelization of the Simulated Annealing Algorithm:
Application to -the -Placement Problem

Bernard-Virot (LIFO)
University of Orl6ans-BP 6759
45067 Orldans C~dex.2 France

Abstract: We present~a method of parallelization of the eData partitioning- One distributes the data (chip poqi
simulated annealing algorithm, applied to-an instance of the tions) among the processes.
chip placement- problem. We give a mathematical -evaluation
for the synchronization cost and-for the speedup of the method. *Tasks-partitioning: -One distributes the-tasks among tile
We show that, for-each stage of the-algorithm, there exists an processes, the data being shared.
optimal number -of processes, which depends only on a small With the data partitioning method a process can move only
number of measurable parameters. So, in order to obtain the it h che d er tonigcet od a p move ord-
best speedup, our-method makes the number of employed pro- itsown chips. In order to accept or reject a chip move, accord-
cesses vary dynamically during the-execution of the-algorithm. ing to the Metropolis algorithm, one has to know the-current

An- implementation of the method on- a shared memory ar- length of- all the equipotentials connected to that chip. But

chitecture is described, as-well- as its application to-a real size two chips-belonging to twoadifferent-processes can belong to

problem: the placement of a graphic card made up of-272 chips the same equipotential. So,-if erroneous computations of the

and 638-equipotentials. energy variation are not admitted, then one must forbid si-
multaneous moves-of such chips. Even for a-small number of
processes- the synchronization time becomes prohibitive. For

1. The TMetropolis algorithm example, suppose that each-equipotential connects 4-chips-on-
the average, and each chip belongs-to 10 equipotentials. Then,

Let us recall briefly the classical optimization method based for- every-trial moire of a chip, a process must-lock those-of the
on-the Metropolis algorithm I1. Let E be the energy function 4 x 10 = 40 chips which belongto other processes, i. e. 15 % of
to minimize, defined on-the state space e of a system . For the total numberin our case. If more-than seven processes run
each state in 0, We define a set of-neighboring states, and we simultaneously, then there exists an undesirable waiting time
call elementary move each~transformation bringing-a state x to due to the lack of available chips. Let -us point out that this
a neighboring state-y. -We-give a transition- matrix Q = (qxy) method leads to a dynamic partitioning problem which can, in
on 9 x 0, markovian, symmetric and irreducible, such that turn,-be solved by simulated-annealing 131.
qzy > 0 if and only if x is a neighbor of y and x 6 y. With the tasks -partitioning method the chip positions are

We model the dynamic system by a Markov chain (X,) over shared data. One has to decide what exactly we mean by a task
0, controlled by a~parameter-T called temperature, and defined It-may mean completing a move (coarse grain-decomposition),
in the following way 121. Suppose Xo,..., X,, have already been or finding out an acceptable move (medium grain decomposi-
built. We choose at random-an elementary move bringing to a tion). One-can even think of a fine grain decomposition-where
state Y,,. according to the-probability law two or more processes cooperate for-the computation of the en-

ergy variation involved by a single trial-move 14]. The coarse
Proba(Yn = ylXo,... , X 0 ) = qx;,y. grain decomposition clearly requires a mutual exclusion proto-

col in order to avoid contradictory decisions. Moreover, while
We impose, with probability 1, a chip is moved, all-the chips belonging to the same equipoten-

(Xn+1 = Yn-or Xn. 1 = Xn), tials must be locked. The fine grain decomposition is "processor
" oring- the consuming" since each trial move involves-the cooperation of

-the-choice being random according~to the law several processes. It is suitable for-a massively parallel architec
ture, where a processor can be efficient only for simple actions.

Proba(X+i = -YnIX,... , X, Y) = min (1,ezp(- T )). The medium grain- decomposition involves no lock-at-all, and
only minimal synchronization. The parallelization method we

Here AE denotes-the energy variation corresponding to the ele- studied corresponds to this choice. In the sequel, we will call it
mentary move bringing from Xn to Yn. This movewill be called the parallel trials method.
a trial move. If X+l = Yn, then we say it is an acceptable
move. Otherwise=(Xn+l = Xn), it is a rejected move.

Now, if we take for T a decreasing function of n tending to 3. The parallel trials method
0 sufficiently slowly, (T = Tn > C', where C is a suitably cho-
sen constant), then we can prove that the law of X, converges The method was previously used-by S. A. Kravitz, R. A.
to-a measure supported-by the set-of the absolute minima of Rutenbar t51, and also by E. Aarts and J. Horst. Starting from
the energy -function E (cf. (2)) . a common initial state, the processes build independent Markov

chain, until one of them (at least) obtains a number S, fixed
in auvance, of successive acceptable moves according to the

2. Parallelization of the placement problem Metropolis algorithm. Such a process will be called a winner.
Then, all the processes synchronize. One chooses at random

In the sequel we study the parallehization of the-Metropo- exactly one of the winners and lets its current configuration
lis algorithm, applied to a specific type of problem, namely the (resulting from its S acceptable moves) be communicated to the
chip placement problem. One can think of two dual paralleliza- others processes. Then, one starts again from the new common
tion methods: state. Thus, each process executes the following algorithm.
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while not Termination-test do 1i tj
found := false; mycount :0 0; N)
while (not found) do

choose at random a move m: Let-us denote-by sN-th-emean-time needed by N processes to

if Test(m) then synchronize and to agree on a-new starting configuration. We

my-count := my-count + 1; denote by

it (my.count >= S) then rN tN + sN

found = :TRUE; the total-mean time needed to achieve a move.
fi We assume sN is proportional to the number of processes:

fi .sN ;s aN (we postpone the discussion of the validity of the
done hypothesis SN aN until the end of the section 4), whence
Synchronize; the formula

done

The variable my-count is private, whereas found is shared. N

Termination-test is the test defining the termination of the Note that, since -tLis the-mean waiting time for an accept-

algorithm. In order to avoid deadlock, it must have the same able move with-exactly-one process, we have

value in all the processes. Test(m) is a function returning TRUE c

if the-move m is acceptable and FALSE otherwise. In the pro- a
cedure Synchronize the processes synchronize and agree on where c is a constant, which can be viewed as the sum-of the
the starting configuration that they will use in the next step. times to choose at random a-move, to compute the correspond-

The role of the parameter S is crucial, because there are ing variation of energy, and to take the-decision of acceptation
different phases in the execution of the-algorithm. At low tem- or rejection. The parameter c depends on the implementation
perature, few of the trial-moves are acceptable. So, synchro- of the algorithm, on'thearchitecture, and on the instance of
nizing-the processes for each acceptable move (S = 1) involves the placement problem.
only-a small waste of time, with respect to the-synchroniza- An elementary computaton shows that N, considered as

tion time involved by-a greater value of S. Moreover, choosing a function of N, reaches its minimum ot for

S = I maximizes the speedup produced by independentparallel

searches of-an acceptable-move.
At- high temperature the situation is quite different. Most N=N ,t t s =(3)

of-the moves are acceptable. So, the speedup produced by the a a -c
parallel searches of an acceptable move is not very significant. and that we have
If we synchronize the processes as soon as an acceptable move is
found, then the synchronization tinie can become prohibitive. rN.,, 2 2f/ (4)
This will moreover favor the moves for which the decision is
the fastest (for example, the translation of a chip with a small Therefore, for a fixed temperature T, there exists

number of connections). In the opposite, if we choose S suf- an optimal number-of-processes N = N 0p. Moreover,
L

ficiently large, then we obtain Markov chains long enough so ,pt is approximately proportional to a -.
that the total computation time of a chain can be considered For this optimal value of the number of processes, the speed-
independent of the choice of the trial moves. To sum up, at up G weobtain can be defined-and computed in the following
high temperature, the parameter S plays the following roles: way:

• reduce the synchronization overhead: th - greater
is S, the smaller the number of process synchronization; = 4(/ +fat) (5)

make the acceptation probability independent of
the types of the moves: for S sufficiently large, the When the temperature is sufficiently low, the acceptance
computation time to find out a number S of acceptable rate cc is small and, therefore, tL is large. Thus, we may write
moves can be considered independent of the complexities
of the tried moves. G 2 " pj (6)

4. A small model Equation-(3) above shows that G is then proportional to a-2

4.1 Local -analysis (constant temperature) 4.2 Global analysis (variable temperature)

In this section, we fix a low temperature 7' and we take
S - 1. We denote by a the mean acceptation rate, that is W have chosen to dccre.se thc temperature by steps, fol
the probability that a trial move be acceptable, following the lowing the exponential law T = (0,90)tTo where Tk denotes

Metropolis algorithm. If T is given, then a is constant. Let tEi kth step's temperature.

us call tNy the mean waiting time for the first acceptable move, In order to determine the length of the klh step, one may

when N processes make parallel independent trials. If a is consider two types of rules. Let Lo denote the length of the

sufficiently small, then we may estimate that Markov chain at.d Ll the number of accepted moves, both
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counted from the beginning of the current step, and let Co and 4.3 Discialsion
C1 be suitably chosen constants (initially, L = L = 0, and
we always-have Lo >/-1). In this section we discust the relations of our method with

the architecture and the implementation.rule : The ckth step ends when Lo >_ Co or L1 >_ C1; The algorithm containsa random choice among the win-
:Thek step ends when L C; ners, after every S accepted moves. On a shared memory archi-

u T tecture this choice can be made simply by a specialized process

-Let us= remark that, in order to compute/Lo, one has to decide (master). On a distributed architecture-it would probably bc
how to- take into account the moves rejected by the parallel better to use a more symmetric algorithm, the winners electing
processes. An extensive discussion of this problem can be found one of them by means of an election algorithm.
in 16). We made the assumption that the synchronization and up-

At low temperature, under the first rule, the steps are cut dating mean time si€ is'proportional-to the number of pro-
down into a constant'ength determined by C0, leading to an cesses. Let us remark-that ;, depends on-the implementation
exponential decrease-of-the temperature. For our instance of of the algorithm and on the architecture, but it does not depend
the placement pioblem the experiments done with this rule on the instance of the placement-problem. On a shared mem-
-highlighted the tra-p of the annealing in a local minimum. The ory architecture, if-the synchrohization protocol uses a critical
second rule makes the steps longer, proportional to r- 1, where section, then sN is bounde&below by a constant muitiplied by
a-denotes the ctifteht acceptafice. rate, slowing down the tem- the number N of processes. go, our hypothesis corresponds to
perature decrease. Our experiments done with this second rule a good implementation of a protocol belonging to this class. On
led to-a mean energy 20 % smaller than with the first rule. a distributed architecture the situation can be quite different.
In the sequel we therefore consider only the second rule. The For example, on a grid of N processors, the time to broadcast
need for-a very-slow temperature decrease seems mainly due a value, and thus to update the data structures, is proportional
to the constraints involved in our problem. We postpone the to /fN-, and no critical section is needed. However, the corre-
discussion of this point until section 5. sponding proportionality constant is likely to be much greater

Let us denote by Uk the mean acceptance rate in step k, by than that of the shared memory case.
tNk the corresponding mean waiting time for the first accept-
able move with N processes in parallel, and by rl, k the mean
time needed to achieve a move. Equation (5) above shows that
the optimal speeduip Gk for the kth step is then given by the 5. The-placenriefi proble
relation

I + Vt tThe previous algorithm is implemented on a Sequent ma-
GI Lt:_ J chine (Balance 8000). It is a 32 bits-shared memor multi-proe2sor architecture, with a singl bus and a cache memory.

or, since tk c The machine we used had eight processors. We stdied one in-
stance of the chip placement problem, namely the placement of

a a graphic card made of-272 chips and 638 equipotentials. The
GI C (1 + ! ak) energy function we had to minimize has the following form2 Faak  c

Therefore, if we choose dynamically, for every step, the E = 4f P r + qEJ
optimal number N..1 of proccsses given by equation (3), then where we denote by
we-have 1 1 .a

lk-T "k = " F- + a), Ef the total length of the wires,

whence, finally the formula Er the sum of the overlapping areas oIf the chips taken two
by two,

2a c (7) Ed thesum of the ar as of thechips parts extending beyond
V ak the limits of the board,

Since all the steps contain the same number of accepted p and q two adjustable weights.
moves we may deir- the global speedup G :jd for K successive
steps by the relation We have chosen the following elementary moves: the exchange

of Lwo chips, the rotations of angle k', the translations small
G lrL enough to ensure that a chip is never entirely outside the board.

- tjri€ One imposes several constraints:

Using the equation (7) above, we can write 0,1.& as a function . Some chips, such as the connectors, must remain fixed.
of the sequence of acceptation rates Uk, I < k < K_ * There are forbidden areas, that no chip may intersect

G ± l (f ( ,K 1  * When the annealing ends, we want to get Er t Ed  0:
_ +a)) _ (8) all the chips must fit in the rectanfe formed by the
k board, without any overlap.

Lquation (8) allows the effe,.tvc omputaton a. fi or!el to satisfy Ca.yzptotkally) the latest constraint p
c and ork are easily measurable. and q must tend to Ioo with the length n of the Markov chain,

from the beginning of the simulated annealing. Let us denote
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by~pn, qn and Tn the current values of the weights p, q, and of 0.1.2 Move -achievement mean time r N
the-temperature T. D. Geman-and-S. Geman 171 showed-that

the ratios E-.and in must-tend to-+co very slowly, namely
Tn -Tn

-Pi <- log-i and qn , a = 0.45, S = 1. The mean acceptance. rate is c = 0.45,

Y C o n - corresponding -to a relatively high temperature, and-we syn-

where C-is a suitable constant. In particular, both the decrease chronize the processes as soon-as an-acceptable-moveis found.

of Tn and the-growth ofthe weights pn and qn must be very mve achlevent an tireslw fw aeT =I o
slow. If-we take Tn = , then the above constraint on P-

would imply p,1 :5C 2 and-therefore, the condition-p,' -4 +oo
is-not satisfied. This explains why temperature steps-with con-
stant length are not suitable for optimization problems with
constraints (see section 4-2 above). 4 ..

6. Numerical -values 3

6.1- Local analysis

We determined experimentally the parameters we intro- j ............................ .........
duced in-the section 4, by computing a mean on-5000 iterations
at a constant temperature. o aW''u.u.'lLLLILL L.l

o i 2 3 4 5

6.1.1 Synchronization and updatingzmean time sN froc nber

am l,1 urJa A a Fig. 2 a =0.45, S= 1

We can thus see-that choosing S 1 at high-temperature
slows down the algorithm (Fig. 2).

6 ............ ......... ....... ......

a=0.45, S =4. The mean -acceptance rate is acc
S .. 0.45, and we synchronize when-a process has found 4 successive

acceptable moves.

........................ .. e aclevemnt. man tire

O U I I I I I I I I I 1 1 1 f I I-- -'

0 2 4 6
rro ne r -. . . .... *.. . . . . . . . . ... . . ..;- -,.- -

Fig. 1 The theoretical graph is drawn-with
surrounded squares. 2 ....... ............ ..........

We deduce from this graph (Fig. 1) the estimated value for
a:

a ; 0.7 ......... ..........

The-divergence of the theoretical graph from -the experi-
mental one for N > 7 is due to -the processors'saturation. In
fact, the hypothesis sN = a N is legitimate only if each-process o rs I t I I - I I I I
gets a processor as soon asit-is ready to perform~a step. This 0 2 4 6

is not-true when the number of processes is close to the number, proa umber

of existing processors (eight), because in the UNIX system, at
least one of the procssors has to run the kernel's processes. Fig. 3 a =0.45, S = 4

The local speedup is optimal when N = 4. Its measured value
is-G rj = 3.5 1.2 (Fig. 3).

r.1  2.78
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*-a = 0.05, S =1. The mean acceptance rate is a = 0.05, 0.2.1 Global speedup
correponding to a-low temperature, and we- synchronize as
soon as a process has found -an acceptable move. an acceptation rate vs termperature

nove achleve nt man tire'

204

C
............ ......

0.3

t .

. .......................... .n. 2e : *r

0.1............................OL

e % l L. ..LL .±.LLJ. I..L J

0 iOD .200 300 400

Ii i ,,i iiiterture
0 2 4 6

proc fuber Fig. 5 mean acceptance rate

Fig. 4- c 0.05, S= 1. The theoretical graph The graph (Fig. 5) above shows the measured variations
(r1 = 22, a = 0.7) is drawn with of the mean acceptance rate considered as a-function- of the
surrounded squares temperature. Using its- values -and- the relation (8), one can

compute the global optimal speedup G,1,6, obtained when theIn-this case (low temperature) the experimental value of algorithm runs, for each temperature, heoptimat number of

Nope is 7 (Fig. 4). Its value computed- by the-relation (3) processes. -For the instance of the placement problem we stud-
above, with-rl-= 22et a = 0.7 is ied-6ne obtains the value

22G- 0.7 5gob ,:7.5

0.7- The next graph (Fig. 6) shows the estimated optimal num-

The -measured speedup is C- r - = 22 ber of processes, computed by the relation (3). Recall thatr7 7. 3 Its value corn- the -machine-we used had8 processors. Thus, one see that -we
puted-by the-relation (6) is could not run-this optimal number-of processes for tempera-

tures-lower than 30.

G t 2.7
2 ortial rrocessus nu ber vs tenperature

43.1.3 Local speedup

With the notations of-the section 4 above, the parameter 23 ....................... ............ .
a depend,'!z, the implementation of the algorithm and on the
architecture. 'rhe values oftj and c depend also on the instance 20 . .............
of the placen .nt problem. Using their measured-values and the P
relations tzsj, (4) et (6) above, one can compute the following 0
table, whlich shows-the estimated ptimal number of processes 1

and the local speedup, for-different values of the acceptance
rate c. . . ..

a Nop G
N.... . 0. . ......... ........... .............

0.05 6 3 5
0.01 13 6.5 C'

0.005 18 9 0 100 200 no 400

0.2 Global analysis Fig. 0 optimal processus number

In-this section we study the algorithm behavior when the
temperature is varying. 0.2.2 DEnergy

We performed five simulated annealing for the same ins-
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The results above show that the parallelization method we

studied is-not a massive parallelization method. But, it gives a

significant speedup at low temperature.

In order to obtain the best speedup, one must adapt dy-

namically the number of processes to the current mean-accep-
tance rate. The notion of adaptative strategy was introduced
by S. A. Kravitz and R. A. Rutenbar. In (51 they juxtapose
different parallelization methods, leading to complex and, a

priori, not optimal schedules. Our theoretical model allows us

to compute the optimal number of processes, and the speedup,
for each step of the algorithm.

The algorithm and the theoretical model are general-enough

to handle both shared memory and distributed architectures.
They were tested only on a shared memory computer. how-

ever, on a distributed architecture, the synchronization and
updating mean time, as a function of the number of processes,

is likely to behave differently, leading to new estimates for the
optimal number of processes and for the speedup. We plan to

experiment on a distributed computer based on Transputers.
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THREE-DIMENSIONAL ELECTROMAGNETIC PARTICLE-IN-CELL SIMULATIONS
OF-PHYSICAL DEVICES'
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Science Applications International Corporation

1710 Goodridge Drive
McLean, Virginia 22012 USA

Abstract - We present an overview of three-dimensional electro- "Kitchen sink" rhivics - Algorithnis for describing surface
magnet2c-particle-in-cell ,PIC) simulation technique! for vector physics, radiation, and other dirty" processes are developed
supercomputers, and their-appliation to the icabstic desgn of tb needed. These can include phenomenological descriptions
physical devices. We first desribe the fundamental building as well as more fundamental models.
blocks of electromagnetic PIC codes. We then discuss code Geometry specification and visualization - While not physics
architectures for combining these components into a working modules in the strict sense, these components are critical to
design tool, using the ARGUS system of codes as a specific a working three-dimensional PIC model. Complex geometries
case study. Finally, applications and examples are discussed can be extremely difficult to set up in three dimensions, sim-

I. INTRODUCTION ilarly, extracting some essential physical behavior from:com-

For more than twenty years, computers have been used plicated three-dimensional field topologies and particle flows
is often a daunting task. Combinatorial geometry tools (al-

to simulate systems of charged particles subject to both ap- in for a pti onstorbelpeomed o the-

plied electromagnetic fields and to self-consistent fields gen- lowing for basic Boolean operations to:b performed on three-

crated by the particles themselves. Codes of increasing gen-

erality and complexity have evolved over this period. To- ten workstation-based) are essential parts of an overall design

day, with the widespread availability of vector supercomput- system.

ers, three-dimensional codes which can self-consistently treat III. CODE ARCHITECTURE
relativistic particles, electromagnetic fields, complex multima- Three-dimensional electromagneticPIG models must han-
-terial structures embedded on the computational mesh, and re- die vast quantities of data: atypical moderately-resolved sim-
alistic boundary conditions have become essential tools in the ulatios quie ofdthe o ofp100 m o rsof stm-

physcs nd nginerig cmmuitie. Te~gncraityof uch ulation may require of the order of 100 million words-of stor-physics and engineering communities. Theogenerality of such.

codes permits state-of-the-art modeling of, for example, mi- age. Domain decomposition algorithms must be coupled with
crowave -tubes (lystrons, magnetrons, traveling-wave tubes), memory management and data management techniques for op-accelerators, electron guns-and eletron optics systems, solid- timizing the-use of fast memory for each calculation and for
state devices, and antennas. In effect, supercomputers have efficiently moving. data between memory and disk as the cal-

culation proceeds.
transformed electromagnetic PIC codes from research projects
into truly cost-effective design and problem solving tools. In SAIC's ARGUS code, for example, problems are de-

composed into spatial regions known as field blocks, which are
II. PHYSICS MODELS then arranged on a set of generalized lattices known as logi-

The basic building blocks of an electromagnetic PIC code cal supergrids. The size of each field block is chosen so that
include the following: the block will fit easily into memory; data-handling routines

move blocks between disk and memory as needed. Disk I/O is
Field solvers - These consist of both direct and iterative algo- overlapped with computations wherever possible. Algorithms
rithms for solving particular subsets of Maxwell's equations. used by both the field and particle routines permit global so-
The full electromagnetic set and the electrostatic limit are the lutions in the entire physical domain byperforming sequence-
most common, with the magnetostatic and magnetoinductive independent operations in each field block, followed by sharing
approximations useful under certain circumstances. In addi- of data at interfaces. Solutions in individual blocks may be
tion, the full set of Maxwell's equations can be solved either advanced either synchronously or asynchronously; this archi-
in the time domain (as an initial value problem) or in the fre- a

quency domain (as an eigenvalue problem). The latter tech- tecture is naturally suited to parallel processing.
nioue is an efficient and accurate way of determining electro IV APPLICATIONS AND EXAMPLES
magnetic spectra. Three-dimensional electromagnetic PIC simulations are

Particle pushrs - These perform temporal orbit integration of now widely -used fur research and design in a number of diverse
relativistic particle species, and accumulate the source terms areas. We briefly describe two different types of calculations
needed by the field solver. The particle equations of motion that have been pcrformcd with the ARGUS code.
may include elastic and inelastic scattering from background Iicrowave device and antennia des.rn - The process of measur-

species, interactions with matter, and terms describing rate ig the rf propeities and mode structure of a microwave con-
processes. figuration with no applied voltages (i.e., with no particles in
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it) is -known as -cold teating. It is -typically -the first series of Accelerator design - The simulation codes traditionally used in

measurements made when developing~a new-device. Once the the particle accelerator -community have either employed sir-

cold-test -properties of the structure are-satisfactory, the de- plified physics models (for example, ignoring space charge ef-

signer will proceed t,, hot teatin9 , or-measurerients where the fects), or else have not-been-fally three-dimensional. However,

device is under voltage and partideb are present. -As described modern accelerator deigns are -indeed three-dimensional, as

above, cold testing can be performed 1IL-eithe die-time duma can be seen from the Lawrence Berkeley Laboratory constant

or the-frequency domain, current variable voltage (CCVV) device shown in Figure 3(a).

ARGUS has been used to predict -the -cold-test behavior Fully three-dimensional PIC codes are therefore necessary to

of numerous devices, including microwave cavities, high-power do a proper analysis.

rf tubes, and high-frequency component-pakages. Typically, We are currently u.ing ARGUS to study such devices, with

the code is first benchmarked against a-cunfiguration for whid the goal of determining-anr optimal match between the accel-

experimental data-is available, agreement is-usually found to crating system and attainable beam parameters. Preliminary

within a fraction of a percent. Parametric scans -are then- per- results from such a calculation are shown in Figure 3(b).

formed to quantify the-behavior of the-device across the range
of interest. It should be stressed that these devices are usually
of-sufficient geometrical complexity that-analytical-solutions .
are-impossible (see Figures 1 and 2, for example). The only al- 2.. . . . ... .. ..
ternative to numerical simulation would then be to-construct a do-.-.4 41h
prototype and perform- an experimental- study, a process which a

is usually far too costly and time-consuming.

Fig. 3 (a) An ARGUS simulation of the LBL CCVV accelera-
tor. The "fingers" are electrostatically charged in a quadrupole
configuration so as to provide alternate gradient focusing and

a defocusing of the beam in the transverse plane as it is acceler-
s., '- -s , ated by the voltages on the plates. (b) Comparison-between an

" ." ARGUS simulation and an envelope calculation for the CCVV

Fig 1 (a) ARGUS representation of a portion of a high:power accelerator. An x-z projection is on the left, and a y-z projec-
antenna used for ion cyclotron -resonance plasma heating in tion is on the right. The upper plots show the boundary of the
a Tokamak fusion reactor. (b) ARGUS-generated contours of beam as predicted by the envelope code, while the lower plots
the z-component of the electric field at -the midplane of -the show the actual beam trajectories as calculated by ARGUS.
antenna-when driven at its fundamental operating-frequency.

V. SUMMARY

Three-dimensional electromagnetic PIC simulation is a ma,
- -' -ture, well-developed, and cost-effective technique for the anal-

ysis of a wide variety of physical devices. As supercomputer-

based codes become increasingly better coupled with
workstation-based graphical capabilities, these integrated sys-

Fig. 2a ARGUS gridding of a microwave/millimeter wave in- ters have moved to the forefront as everyday design tools. As
tegrated circuit module housing. always, work in the field is ongoing, and we expect to see even

more dramatic advances over the next few years.

Work supported by the SAIC Independent R&D Program

and by the US Government.
2 Also contributing to this work are 0. Anderson, S. Bran-

2 don, C.F. Chan, C.L. Chang, A. Drobot, X. Ko, M. Kress,
A. Mondelli, J. Moura, J. Petillo, and L. Soroka.

Fig. 2b Electric displacement vectors for the lowest mode of

the device.
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APPLICATION OF THE DETERMINISTIC PARTICLE METHOD
TO THEWIGNER-EQUATION

FRANCISN1ER
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91128 Palaiseau Cedex
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Absti:The Wigner equation that we present here was (1.5)
proposed- by physicists as a model for quantum d
electronic devices in the kinetic regime. The first member V.) Vx)e-i u 11 dx
of this equation is a drift term while the quantum effects
are taken -into account in the second member via a
-Fourier integral operator. We solved this equation-by a A ,lasslcad seni-group analysis provided in-[ II states
deterministic particle-method for which -proved the that the operator
convergence. t - x+ qE 0p- OV] generates a

continuous unitary group in-LOi 2d). Thus,-if the initial
L- The Wigner equation data belongs to L4R (), this equation admits a-unique

The Wigner equation models the motion of electrons solution which satisfies
in an external electrostatic potential, which we-shall
decompose in order-to describe quantum tunneling (1.6)
effects : the-electrons are accelerated by-an electric field E II w1t Il II WllL2
and partially tnnel through a potential barrier given by a
real function V(x), x c IRd. This-equation governs the
evolution of a -distribution function w(x;k,t), where
xc eR, p eR and t s R are respectively the
position, the- impulsion-and the time coordinates: In order to solve numerically, we used the

deterministic particle method introduced by P.A. Raviart
(1.1) and S. Mas-Gallic in [21 [3]. The exact solution of

ItW + k D.w- qE DPW = GV]. w equation (1. 1) is approximated by a linear combination
w qI  of delta finctions:

~w(t=O) W
(2.1)

The real numbers I, m and q are respectively the Planck (.
constant, the mass of electron and its charge. The w(xvt) J w.(t)8x - 40))8(p - PAID
operator 6{V] is a Fourier integral operator defined by

The motion of the particles in-the phase space is given by
((.2)

(eUm1.wkx, p, t) V'f +..L~ q + (2x.-2i dxj p'(t) pit)R 'd t d i}

x v%{x,p',t) ei(P'101 dp' dtl while-the control volume of the particle i, w1), does not
depend on t and its weight, wi(t), is an approximation ofThis integral can also be written as a convolution with w(vx,(t), p,(t), Q. The weights evolve ac ording to

respect to the impulsion variable:
(I.3) (2.3)

d1_t Ot = oj-(, (x(t) - x(t)) p(x(t), p() - pt)) WAt)
(OVA ,p, t)/ q(x,p-p') w~x,p',t) dp',

that we obtain by first regularizing the integral operator
with in the x direction

(1.4) (- Imfc M (ov. ,t f. fo x.x1 qx.p) X

x wtx',p',t) dp' dx'
and

and then using a quadratural fomitila.
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The numerical analysis of this method-relies on-Wm' P REIRCNCES
estimates for the solution of equation (1.1), This
estimates can not be obtained by the-classical semi-group [11 P.A. Markowich . "On the equivalence of the

analysis which yields only (1.6). -By using the Schrodinger and the Quantum Liouville

convolution form of the integral -operator, we have equations", Math. Math.in Applied Sci. 11 459-

proved in 141 the estimate 469 (1989).

(2A) 121 P.A. Raviart :"An-Analysis of Particle Methods",

II w(t) ,1, < C(t) l1 Ww, Lecture Notes in Mathematics 1127.

h 131 S.Mas-Gallic and P;A. Raviart : "A particle
tinder the assumption method for first order symmetric systems",

Numer. Math. 51 323-3525 (1987).

Sup [ u Do-)I d <W 141 A. Arnold and F. Nier: "Numerical-Analysis of
p u V d(u the Deterministic -Particle:Method applied to the

li+ 11 J I Wigner Equation", submitted.

Then the classical arguments of consistence and-stabihty 15] W.R. Frensley . "Wigner-funtiol model for ,i

yield the convergence of the method-with order m resonant-tunneling semi-conductor device", Phys.
Rev. B 36 1570-1580-(1987),

III - Application to the simulation of a

resonant tunneling diode 161 F. Guyot-Delaurens- and P. Degond: "Particle
Simulation of the Semiconductor Boltzmann
equation for-One -Dimensionnal-lnhomogeneois

A model proposed by physicists (51 for the Structures", Journal- of Comp. Phys. 90 65-97

simulation of resonant tunneling diodes-relies on-the (1990).
one-dimensionnal (d=l) Wigner-equation where the
potential V(x) describe a double barrier. 171 R.W. Hockney and J.W. Eastwood : Comnputer

simulation using particles, McGraw-Hill (1981).

V(x)I

v0

The-equation (1.1) has to be solved in a bounded domain

[(0,L X[pmin, Pmax] with physical- boundary conditions
given in 151 at the boundaries x=0 and x=L, and artificial
boundary conditions for p = Pnin and p = Pmax- We
chose periodic boundary conditions which are the-easiest
one to take with the particle method. This model can be
improved by coupling with the Poisson equation in order
to take into account the electrostatic interaction. Then the
electric field-depends on the position E = E(x) and is
derived from the electrostatic potential. We compute this
potential by a-Particle In Cell method commonly used for
this coupling 161 [7].

The main difficulty of this problem is due to the
singularity of the barrier potential of which the Fourier
transforn does not satisfy the inequality (2.5) even for
m=0. The particle method was proved to converge in this
case but in a very weak sense and- without any order.
Moreover, the integral (1.3) is an oscillating integral
which makes the numerical computations rather heavy.
In spit, of this, we got results which allowed to justify
thc simplified models used by physicists,
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-NUMERICAL INVESTIGATION OF THE STRONG-EVAPORATION OF A POLYATOHIC GAS

Carlo Cercignani Aldo Frezzotti
Dipartimento di Matematica del Politecnico di Milano Dipartimento di Matematica del Politecnico di Milano
Piazza Leonardo da Vinci 32 - 20133 - Milano - Italy Piazza Leonardo da Vinci 32 - 20133 - Milano - Italy

.Abstract The aim of the present paper is -the c of a gas with j internal (indistinguishable) degrees
presentation of some results about the-numerical study of freedom. The quantity n(x,t,c) -is the number
of the -flow of a polyatomic gas between one density of moleculen having the internal energy C,
evaporating- and one totally absorbing .plate. Density, N(x,t) Is-the total number density, U(x,t) is the-mean
velocity and temperature profiles are obtained in the velocity of the gas, Tt(x,t) is the translational
range O.Oi<Kn<O.l by solving a kinetic equation by a temperature, T(x,t) is the overall temperature. The
combination of Monte Carlo and finite difference -

techique. - collision frequencies have been calculated from thetechniques. viscosity p(Tt):

I. INTRODUCTION e = (i-z)v, an= zutot' Ptot = NkTt/p(Tt)

The mathematical description of evaporation and being z the fraction of anelastic collisions.

condensation phenomena is a classical problem of Since the main difficulty lies in the modeling of
anelastl collision, it seems reasonable to restrict

kinetic theory and a large number of papers has been the use of EGK terms to that process only. A second
devoted to the study of its various aspects. model was therefore obtained by replacing the first
Most of the previous Investigationvwere aimed at collslonal term by the full Boltzmann Equation to
studying evaporation problems connected to monatomic describe elastic collisions. The second term was leftgases. However, in -many situations,whlch are relevant unchanged. -f hard sphere interaction -is assumed to
both from- the scientific and practical point of view, describe elastic collisions, then Eq. (1) takes the
one is faced with the evaporation of polyatomic descring ew fo
species.The strong evaporation of polyatomic gas -in a following new form
half space has been considered by Cercignani who
extended Ytrehus' trimodal Ansatz2  to obtain f+ g
approximate solutions of a BGK-Ilke kinetic model by

moment method. The aim of the work described in the d2  [
present paper is the modeling of the evaporation of a (l-z)-f- IF( )f(§ ,c)-F(%)f(g,)1 x
polyatomic -gas by the direct numerical solution of a 2

kinetic equation. The approach has the obvious 1§ksi6 dade dO + z ii (T -f) (4)
advantage of requiring no a -priori guess of the larn

k
sn di - coll 

a

distribution function, therefore it has a wider range
of applicability as compared to the moment method. The In Eq. (4) d is the molecular diameter and vcol is
one-dimensional flow resulting from the evaporation / the mean collision frequency calculated as
condensation of a polyatomic gas between two parallel
plates is considered-as model problem. 2  f

II. BASIC EQUATIONS co I N

As is well known the-mathematical description of the roklsinO
behavior of a polyatomic gas is still an open problem The reduced gstrbuton function (x,t,)) is defined

-that3 has been approached- in a variety of different as F(x,t,g)=Jf(x,t,§,0dc.
ways. a
Holway's kinetic equation4  The kinetic equations are solved specifying the

af + ( f) f initial values f(x,O,g,c) and the boundary conditions:

f(O,t,§,c) = T an(N,, ) > (6)

was used as a starting point for this study, since it f(Ltgc) 0 w<0
lends itself to a simple numerical treatment. In Eq. x

4i) the functions 'e' and T are defined as follows:
el an The boundary condition (6), which holds at the

n(c) [ (_2 1 evaporating plate, specifies the distribution function
- exp - (2) of the molecules emitted from the condensed phase. The

(2nRT t t temperature T is the wall temperature, while N

denotes the saturated vapor density at the temperature
and T . The boundary condition (7) at x=L implies that the

1 'ST - .-second plate Is perfectly absorbing. As is clear from
3 exp 2RT x Eq.(6) it has been tacitly assumed that the

onl (2RT )evaporation coefficient is unit.

CJ/Z-1 111. Description of the Numerical Technique
exp - - (3)

F2(j/2)(kT) ( The numerical algorithm is based on a consistent
finite difference discrutization of Eqs. (1) and (4).

Eq. (1) approximates the collisional term by the sum The Monte Carlo method is used to evaluate the
of two BGK-like terms. The first of them describes collision integral at the right hand side of Eq. (4).
elastic collisions, while the second models anelastic A generalization of thg time-splitting method by
collisions.in Eq.(l) f(x,t,§,c) is the distribution Tcheremissine and Arlstov was used.

In this work, the region between the plates has been
function of molecular velocities C and internal energy divided into a number of cells of variable size, and
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-the distribution functions assumed to be constant
within each cell. The size of spatial cells was
smaller in the -regions of stronger gradients. A
similar procedure has been adopted to represent the 0.9 .

distribution functions in the velocity space. A
-regular net of nodes is arranged into a finite domain
of -the velocity space assuming that the distribution o.a ...
function is constant within the cell volumes. The
domain has to be chosen in order to contain most of
the particles at any stage of the calculations. As C-" 0.7 FIG.1 Tenperature Plot, z - 0.5
far as the discretization of f in the space of T - Moe
internal energy c is concerned, it was convenient to - t sodel

-represent the distribution function through a set of 0.6 o
values calculated at the nodes of a Gauss integration
formula with unit weight function on the interval
(O1E ]. The distribution function was assumed to 0.5

vanish for c>E
max

0.4 2 4 6 8 10 12 14 16 18 20
-IV. RESULTS-AND DISCUSSION

The numerical method described above has been used to
obtain approximate solutions of Eq. (1) and Eq. (4)
:for values of the Knudsen number Kn in the range
[0.01,0.1]. The Knudsen number considered here is 0.9
defined as A./L, being A. the mean free path when the

-gas is in equilibrium with the condensed phase. Only
the case of a diatomic molecule (J=2) was considered. 0.-
The values of the parameter z were selected in order
to have the anelastic collision frequency not too
different from the elastic collision frequency. In 1.

this-way the relaxation phenomena associated with the
Internal and translational degrees of freedom occur on 0.6 a
a scale-of comparable magnitude. T
The-first result of the analysis was that Eq. (1) and .- o

-Eq. (4) give-very close results for the same values of ..... T
-Kn and z. The largest difference was found In the
profiles of the rotational temperature shown in Fig. I
in the case Kn=20, z=O.5. The difference is due to the 0.__. . . . ..___ •____ 0_
fact that the value of the overall collision frequency 0 10 20 30 40 50 60 70 so 60 100

given by Eq. (5) is slightly higher than the value X

.calculated from viscosity. Therefore, most of the
results have been obtained from Holway's model. The
effects of the internal degrees of freedom are more V. REFERENCES
evident in the translational temperature profiles
(Fig. 2). The density and velocity profiles are very 1. Cercignani, C.,"Strong Evaporation of a Polyatomic
close to those of a monatomic gas. Finally, values of Gas". Rarefied Gas Dynamics, ed by S. S. Fisher, AIAA,
the back scatter-fraction are presented in table 1. It N.Y.), 1, pp. 305-319 (1981).
was found that, as expected on the ground of the
moment method calculations of Ref. 2, a larger 2. Ytrehus, T.,"Theory and Experiments on Gas Kinetics
fraction is scattered back to the surface in the case in Evaporation". Rarefied Gas Dynamics, ed. by J. L.
-of a polyatomic gas. Potter, AIAA, N.Y., 2, pp. 1197-1212, (1977).

3. Bird, G.A.,"Holecular Gas Dynamics", Clarendon

Table 1 Back scatter fraction vs. l/Kn Press, Oxford , 1976.

I'10 20 so 100 4. Holway, L. 1!.,"New Statistical Models for Kinetic
Theory". Phys. Fluids 2, pp. 1658-1673, 1966.

0 0.130 0.143 0.155 0.160 5. Aristov, V. V. and Tcheremissine, F.G.,"The
conservative splitting method for solving the

0.5 0.142 0.167 0.183 0.188 Boltzmann Equation". USSR Compt. Math. and Math.Phys.
20, pp. 208-225, 1980.
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KINETIC RIEMANN SOLVERS FOR EULER EQUATIONS

B. PERTHAME
Dpartement de Mathdmatiques

Universitd d'Orldans
BP 6759

45067 Otldans Cedex 2 (FRANCE)

Abtact. a family of riemann solvers for the Compressible This is achieved using a kinetic approximation to
Euler equations is presented, which preservs physical Euler Equations
properties of the-flow. They are obtained using a kinetic at f + v. V f = 0 on (n At, (n+l) At)
approach to the Euler Equations.

f (nAtz,v) = pnlfrfl X[v - 1)*Fr

I - INTRODUCTION where f (1, w12, w22 ) X(w) dw = (1, 1, 1) and

We derive from the kinetic theory of gas, a family of 0 X(w)_<X(-w) .The classical choice of X ( w) is the

Rieman type solvers for the Compressible Euler Equations Maxwellian X (w) = exp k- Iw 12 12) 1 2t (see Deshpande
of fluid dynamics that we call Boltzmann solvers, for instance), In order to preserve (i) - (iii) we propose to use

The system we solve is other choices of X, which also give better numerical results.

aP+ax Pu +a uThen, Fi+ l/2,j is exnlicitely and easily caltulated using

I y pu2  0 at z = (xi+1/2, yj ) the exact solution to the transportequation

-t pu1l+ ax (pu12 + p ) +_ay Pu 112 0,i~t P2+~x~r~r y puu2=O Fil/2 ,j=Jv1(1,V1,v2,Iv12/2+Tt
t + -Pulu2 +ay(U2 p =1v)

t f(nAt,zv)dv

at E +ax CE+p)ul +-y (E+p)u2 = 0, )=.5(2-,/'Y--l).

E= 1/2 p +pe , p= pT =(y-1)pe. Indeed polynomial choices of X lead to integrate polynomes
1 Pu-12 +in order to get Fi+l/2,j (See Perthame SIAM J. Num. Anal.

And w- will use arectangularrmesh 1991, to appear). The properties (i)-(iii) are proved for the
Mij = C (x,y), I x - xi 1 -Ax /2, 1 y - yj I < Ay /2} numerical scheme for particular choices of X, in noticing that

where xi = i Ax , yj =j Ay. The problem we address is to they hold for the transport equation and that we solve exactly
whernd j i m apoxiax ofAy The robl e adrsysem ithe transport equation.
find finite volume approximations of the above system under Neglecting the comers, the exphuit formula for F, I/2j
the fojn is for the first order scheme

ijn+l " Uij n + crx (Fi+l/2j - Fi -l/2j) Fi+lI2,j = F+( Ui,j ) + F-( Ui+l j)

+4sy (Gij+l/2 - Gij-1/2)=0 with

ax= At/Ax, Oy = At/Ay, where Fi+lp j for example is F+(U) =v> O v (l,v,u2, Ivl2/2+lul 212/2+(112+X)T)t

an appropriate approximation of 4[(v - u)/4T I dv,

(pul, PU+p, pulu2, (E-+ p) Ul) (xi+1/2, Yj) and F- is obtained integrating for v:50. In this simplificated
such that, under-a CFL condition, formula we have specified

(i)- Pijn+ l > 0, Tijn+ >- 0, X(w) = 4(w 0 4(2)-with

(ii) the entropy inequality holds (1,w2) (w) dw = (1,1) and 054(w)-4(-w).

(iii) the maximum principle on the entropy holds
Sijn+l < Max(Sk,e n+l Mk,e neighbor mesh to Mij IlI. NUMERICAL RESULTS.

where S is an entropy of Euler Equations for instance The following figure presents, for a 2D stationary
reflection problem, the improvment obtained using the exact

S = p(Y"l)/T, solver, using comers, compared to the simplified solver
described above.

These properties can be realized using an exact solver iRssunM. AEFLEA1011 P11COLC, (2. -

(Godunov) i.e. by computing the exact value Ui + l/2j at the 25

mesh interface.
2.0

1
4

II. 3OLTZMANN SCHEMES. I.0

We present another method, which allows to possibly
take into account the comers effect (dependency of F /2j o0 1.0 25 5 Ys 4 42 5 50 s go

on Ui+lj+ 1 for instance) r.tlt trii
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AMACSYMA PROGRAM FOR TIlE IIIROTA METHOD

WILLY IIEREMAN AND WUNING-ZIIUANG
Department of Mathematical and Computer Sciences

Colorado School of Mines
Golden, CO 80401, USA

Abstract - ilirota's method for finding soliton solutions of nonlinear If the original PDE admits a N-sohton solution then (6) will
evolution and-wave equations is briefly discussed and illustrated, truncate at level n = N provided fi is the sum of precisely N simple
A MACSYMA program that automatically carries out the lengthy exponential terms. For simplicity, consider the case of a three sohton
algebraic computations is included, solution (N = 3). Then,

3 3

I. INTRODUCTION f= exp() = exp(ki -wit+8), (13)
-Ilirota's di'ect method 1,2] allows to -construct exact soliton i=1 i~i

solutions of-nonlinear evolution and wave equations. The lengthy
but straightforwardcalculations-inherent to this method can easily where -k,,w, and 6, are constants. Of course, (7) is trivially satisfied,-but.~~~~wera (8)gtoradclcltn deterrent tho diserio law, anea

be performed with any -symbolic manipulation program. In this whereas (8) determines the dispersion law,
-paper-we presenta..sample program in MACSYMA to illustrate = k , i = 1,2,3. (14)
-the symbolic calculation of-one, two and three soliton solutions
of-well,-knownnonlinear PDEs such as-the Korteweg-de Vries, the The terms generated by B(f 1,f1 ) in (9) justify the choice
Boussinesq, the Kadomtsev-Petviashvili, the Sawada-Kotera and the f2 = a12 exp(01 + 02) + a13 exp(0 1 + 03) + a23 CZP(02 + 03)
shallow water wave equations [1-51. a2 exp (k +k 2)x-(w + w 2) t +1 +621

-II. THE IlIROTA-METIIOD + ai3 exp [(kI + k3) X - (wI + W3 ) t +6 1 + 83]

-]Iirota's method requires: + a23 exp[(k2 +ka)X - (W2 +W3)t+2 +3 , (15)

(i) a:cler- change of dependent variable, and (9) allows to calculate the constants a12,a13 and a23. With (14)

(ii) the-introduction of a novel differential operator, one obtains (k, -ki )
(iii) a perturbation expansion to solve the resulting bilinear equation. aj= (k - )2 ij = 1,2,3. (16)
Details about themethod can-be found in almost any book on soliton
theory [1-41, here we merely outline the-procedure. Then, B(fi.12 + f2.fl) in (10) motivates the particular solution

Our leading exampleis the Korteweg-de-Vries equation [1-41,ut +6uux+ ua = 0• (1 f3= bszsexp(0s + 02 +03)

U9+ 6U +u 11 = 0--- bi23 exp [(k1 +k 2 +k 3 )X-(wI+W 2 +W3 )t+61 +62+63], (17)
Substitution-of 0... .t) 02 In f(x, t) (2) and one calculates

ut:z,t) =2z 0: 2
inoO2(k, - k2)2 (k, - h) (L-2 - k3)2 1

into (1) and one integration with respect to x yields, b,23-= a12 a13 a23 = (k, + k2)2 (k, + k3 )2 (k2 + k3)
2 "

ff.t --fxft + ff4. - 4f~f3. + 3f22, = 0 . (3) ( 1 +k 2
2 (i+k 3

2 ( 2 +k 3
2  (8

This quadratic equation in f can then be written in btlincar form, Subsequently, (11) allows to verify that indeed f4 = 0. In the sixth
equation of the scheme B(f2-f3 + f3'f2) should equal zero in order

B(f-f) 4' (D.D, + -D) (f-f) = 0 . (4) to assure that fs = 0. If so, it will-be possible to take fi = 0 for

where the new-operator is given by i > 6. Finally setting c = 1 in (6), we obtain

(-O)(fg) = 
(O X(, ) 0(,', , • (5) f = 1+exp01+exp0O+exp 03

+ a12 exp(Oi + 02) + a1 exp(01 + 03) + a23 exp(O2 + 03)

Introducing a book keeping parameter c, we look for a solution + b123 exp(0 + 02 + 03) , (19)

00 which upon substitution in (2) generates the well-known three soliton
f= 1+ f.(6) solution of (1).

n=1 The construction of N-soliton solutions 11-6] with N > 3 is

Substituting (6)-into (4) and equating to zero the powers of c, yields tedious and the necessary algebraic simplifications and factorizations

O(co) :B(1-1) = 0 (7) are bound to fail if carried out by hand. Hence the need for a

OW) B1( + h) = 0 (8) symbolic program that relieves us of the elaborate calculations.

O(C
2) : B(1.f2 + fs-fi + f2-1) = 0 (9) III. MACSYMA PROGRAM FOR, THE :IllROTA METHOD

O(0) : B(1-fa + fif2 + f2f1+ f131) = 0 , (10) This preliminary program calculates the one, two and three soli-

O(tA) :B(I f + f-f3 + f2 f2 + f13f + f4-1) 0 0 , (11) ton solutions of a fairly simple completely integrable PDE, provided

n- it can be transformed into a single bilinear equation for the new vari-
0(c') :B(2f,'fn-) = 0 , with fo = 1, (12) able f. The program is written in such a way that the extension for

1=0 the N-soliton is straightforward. The structure should also allow to

Thisscheme is general %hatever theexplicit expression of the bilinear 'translate' it into the language f e.g. MA1IilL.\AII(,A, MAPLE,
operator B is. For the KdV equation 13 is given in (4). or REDUCE. The user must select the alie of N and also provide

the bilinear operator B for the PDE.
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/* MACSYMA-program for the IHIROTA-METI[OD *1*For the Boussinesq equation [1-6], ust-Us> -3(U 
2

)2" _ U.I. 0,
wvritefile("thrce..soliton..sawada-kotera.out") one has again (2) and-

40; B(f,g) :=Dx1[O,2](fg) - Dx[21(fg) -- Dx[4](f,g).
i3(fig):=Dxt[l,1](fg)+Dx[6](fg)S The results-then are wi = -il ki = 1,2,3, and
showtime:truec S 3~ k
depends((f,gJ,[x,y,tJ)$ a 3 =V1+.iki k~2+ i 1ij=,23
-Dx[n](fg);=-Stm((I)A(tj)*n!*diff(f,xj)*diff(g,x,n-j) a' 21,21'

Dy[n](f,g):=sum((-1)A(nj)*n!*diff(f,yj)*diff(g,y,n-j) (21)
/(j!*(-j)!jOu)SThe program did also -determine-the explicit form of

Dxt[m,n](fg):=sum((.1)A(m-j)*m!*sum((.1)A(n.i)*n!* b123 = a12 -ai1 a23.
diff(diff(f,xj),t,i)*diff(diff~g,x,m-j),t,n-i)
I(i!*(n-i)!),i,0,n)I(j!*(m.j)!)j,0,m)S aFor the- Sawada-Kotera equation- [2,5,6],
for i:1 thru-n do qi]:o$ s ut + 45u2u.. + 15U.,U2 x + 15uu 3 z + U5 z =- 0, one has -(2) and
qlJ:sum(exp(th(ix,yt)),i,l,n)S B(f,g) :=Dxt[1, 1](fg) + Dx[6](f,g).
gradef(th(i,,y,t),,k4i,fiJ,.omfiJ)S Furthermore, w, = k§- , i = 1, 2,3. The coefficients are given by
bonfl:expand(ev(13(1,f[1]),diff))S 

_(ki - L.,)2 (k? - kik1j + k21)
bonft:expand(ev(bonfl))$ a,3 2( -

fori:1 thru n do (cqone[i]:ratcoef(bonfl,exp(th(i,x,yt)),1),

if n>1 thten(tfl:sum(afij]*exp(th(i,x,yt))*exp(tlh(j,x,yt)),jj+1,n), j, j 12,3-, (22)

om[1J; b13 a1 2 a13a 23. (23)
om[2J;
om[31; * For the shiallow-water wave equation-15],
bon f2:expand (ev(b(1f[*1+b(f11J7f[])+b(f[2j,1),di ff))S UX~t + 3uut - 3u. f. tt dx' - u,- ut-= 0, one uses u = 0.. ,If
bon f2:expand(ev(bonf2))$ and-B(fg) :=_Dxt[3, 1](fg) - Dx[2](f,g) --Dxt(1, 1J(fg).
if-n> 1 then~for i:1- thn- n do (for-j:i+1 thru _n do(Thprga cluaedtt
eqtwvo[ij:ratcoef(bonf2,exp(th(i,x,yt))*exp(th~jx,y,t.)),1), ___________

a ij]:factor(rhs(part(solve(eqtwojij],a[ijJ),l))), -- (1 + k~( =123, (24)
if-n>2 thien(tfq3]:sur(b[ij,k]*exp(th(ix,yt))!exp(thojX~y,t))* 

_(k - kj)2 (kl- kikj+ 1-j'3), i, j =1, 2,3. (25)exp(th(kx,yt)),kj+I,n)a. -3)

413:ev(113+t13)))))S$- (

4[1,2]; The program could not determine b1,23 a12 a13 a23 due to the
a[1,3]; large number-of terms in f3.

bonf3:expand(ev(b(1,13)b) Jt2J+(4J1j)+bf[3I,1),drff))S Hfirota's bilinear operators used in these examples, Dxt[m, n](f,g),
bonf):expandqev)bonf3)) Dx[n](fg), and Dy[n](f,g) are defined in the program itself.

length(bonf3); REFERENCES
if-n>2-then -(for i:1 thru n do (for .i:i+1 thru-a do (for-k-j+1 thru-n [1 _-R Ilirota, in: B&Lklund Transformations, the -Inverse- Scatter-
do(eqthreejij-k:ratcoe(bonf3,exp(th(ixyt))*expth,xy))*-

exp~thk~x~yi),I),ing Method, Solitons, and Their Applications, Lectu -re -Notes
expthk]fyctorrspatsl),qh-e1jk,),jk)I)))) in Mathematics 515, ed. R.M. Miura, Springer- Verlag, Berlin,
bfi jsk]: factor rhs1 rt s l e e t re;, ~ J b i J~ ] , ) ) ) ) 1976 , p p . 4 0-68 .

b[l1,2,3J; [2] It. Ilirota, in: Solitons, Topics in Physics 17, eds. R.K.
closefilecO; Bullough and P.J. Caudrey, Springer-Verlag, Berlin, 1980, pp.
quitO; 157-76.

IV. EXAMPLES AND TEST CASES [3] M.J. Ablowitz and I[. Segur, Solitons-and the Inverse Scatter-

*For the KdV equation-[1-6], uj + 6uu., + u3, = 0, one uses (2) ing, SIAM Studies in Applied Mathematics 4, SIAM, Philadel-
and BC!,g)_:= Dxt[1, 1](fg)+ Dz[4J(fig). phia, 1981.
The output of the program confirmed the results in (14), (16) []PG rznadRS onoSltn:a nrdcin
and (18). []PG rznadRS onoSltn:a nrdcin

* Fo th Kadmtsv-Peviahvil eqatio (26JCambridge University Press, Cambridge, 1989.
(ut + 6uu. + u3.). + 3u2i, =0, one has u-= 2 O nf(r, y, t) [5] J. Ilietarinta, A search for bilinear equations passing Ifirata's
and-B(f,g) := Dxt(1, 1](fg)-+ Dx[4](fg) + 3*Dy[2(fg). three-so! iton condition, Parts I-IV, J. Math. Phys. 28, 1732.
In this case 0, = k-,x + 1.y - -,t, and for simplicity we selected 12, 1987, ibid. 2094-101, 1987, ibid. 2586-92, 1987, ibid. 29
li = ki m(i = 1, 2,3). 028-35, 1988.
Note: insert the-line l[i] := k[i] * m[i] at the beginning of the []J leaiti atal no beEouinEutosi

progam.We btai wm= (k-k+ 3m 1)-m =1 ,23 and Physics, Proceedings of the Summer School for Theoretical
aq (-i- k -mi+ m)(i k- +mi- m),ij= 1,2,3. Physics, Les Ifouches, France, March 21-28, 1989, eds: Rt.(ki + ki + i - m,)(k. + k., - in, + in,2) Conte and N. Boccara, Kluwer Academic Publishers, pp. 459-

The program could not calculate b123 = a12a 13 a23 in a 7,90

reasonable amount of time because the equation for b123 has
267 terms in exp(Oi + 02 + 03).
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A -DIFFERENTIAL-DIFFERENCE EQUATION FOR.
HIGHER NONLINEAR- SCHRODINGER EQUATION

Thiab R. Taha
Computer Science Department

University-of Georgia
415 GSRC

Athcns,-GA 30602 U.S.A.

Abstract - A new- differential -differcnce equation is obtained which has where E is the shift operator defined by E Vi,, VLi. £ = 1, 2.
as-its-limiting-form-a-highcr nonlincar-Schr6dinger (HNLS)-cquation. Performing the operations indicated in k4) rcsults in four equations
This- new equation- is -constructed by-methods related- to -the -inverse which are given by
scattering- tranisform (1ST) and-can-be used-as-a numerical -scheme for
the-HNLS equation. z (A,, A) -C.QR+ R.B.+1 = 0

-1. IN-RODUCrION B.,, - zB, + Q.(AR+, - D.)

In -1975- Ablowitz and -Ladik -proposed a -now discrete cigenvaluc (5)
problem, an-appropriate-generalization of a-discretized version of the -R D -- ,
ceigenvalue-problem iof Zakharov and-Shabat, as a basis for generating z C,.+ - z.+RD.j-1.
solvable discrete equations [I]. They derived-discrete (differential-
difference) vcrsions -of- thc- nonlinear Schr6dinger (NLS), Kortewcg-de .(bD)+ ,.1  -R. B. = 0
Vries (lKdV),-modi fled KdV, and "sine-Gordon" equations. z

In- 1984 Taha and, Abbowitz derived differential-difference and where A. AA, = A,,+, - A,, etc.
partial-difference equations for-KdV,-and MKdV equations [21. In this
paper-a -differential.-difference equation is obtained which has as its Using the-ideas in [1,2,31, the coefficients for the time depen~dence
limiting form the-HNLS-equation of the cigenfunctions; are expanded as follows:

4q, = q., + -8q,, ql+ 4 q +6q (q)2  AR 2,2 A2),B 2k] fk1

+ 2q 2q +6q~iiq (1) 2(6)

This differenti al-difference equation can be-used as a numerical scheme C,, k ~)(i _ -
2 D,)

for-the HNLS-equation (1). -omo .- ,C,- 5 ilsasse oWith the expanded fr fAB, ,.D.()yed ytmo
11. DERIVING NONLINEAR DIFFERENTIAL-DIFFE-RENCE twenty equations -in eighteen unknowns corresponding to equating

EQUATION powers of z5 , z 5, z4 , z -, -.. , z,z'1, all of which must be
The -key step in-obtaining diffcrential-diffcrence equations which independently satisfied. Carrying out the algebra we find the values of

-can be solved by the -- inverse scatternng transform is to make an A4, (4 , D,,-41 in -terms of the potentials [2]. The remaining two
association between the nonlinear evolution equation and a linear equations are the evolution cquativnb. rur the speual oase associated
ecigenvalue (scattering) problem. To find a nonlinear differential- with the NLS and HNLS equation we let RR, -Q: twhere Q. is the

difrec qualo asociated with the H.NLS equation, it is essential omlc Lojgt o 2, then the remaining two coupled equations

to-use (a) a suitable-cigenvalue problem e.g.. arc consistent under the conditions:

V1.4:-. = z V1, + QR() V.2" A!4 ) - DP4  = D. - AS~ l)'

V~,* =-!V2 , RQ)iR(2) A -(2) DF) = D - A 12) = .(7)

A?~Y -D 9) = D2Y' - A!W y
where z is the cigenvalue and the potentials R.. Q., are defined on thea
spacelike interval In I < and the time t> -0. and (b) the associated with cc " = - = -1* and y =y* and the nonlinear
time dcpendence, diffecrential-difficrence equation is

VIR, = ARVlR + BR V2. (3) Q"= (I +i IQ. 124[P(QR+1 + QR-i) + a {(QR2 + Q,,.2)

V7AI= CR VIR + DR, VUA

where the functions A,. BR,, CR. DR, depending in general on the + QR.2 IQ.+,12 + Q._2 IQ.,1 2 + Q,(Q. Q~
potentials. The-equations for determining the sets AR. BR,, CR, DR, and
hence the evolution c uation are, obtained by requiring the cigenvalue z
to be time invariant C- = 0) and by forcing the consistency + QR(RIQ-i + Q,,iQ,.i)+ YfQR (8)
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-Let Qn = Ax q., taking-the limit-as Ax -4 0-in (8) and-by a proper
choice of the consta.ts

____ -161 __0i_

(a) cc = 2, - 6 and: I = 301 yield. the
12(Ax) 12(Ax) '  12(Ax)

NLS equation

iq, =q, +2-ql 2q ; (9)

(b) a-_ --- 4 , ynd y -- 6- yields the HNLS
(Ax) (Ax) 4  (Ax)

equation-(1).

Ill. CONCLUSION

The differential-difference equations derived in this paper have as
limiting forms the NLS and HNLS-equations. These equations can be
used as numerical schemes for -th associated nonlinear evolution
equations. These IST schemes have a number of special properties (2].
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Nonlinear Evolution Equations and Painflev6 Test dtd =SE 7t = -.S2E,- = aS,
W.-H. -Steeb -and -N. -Euler

and mi -3, M 2 = -4, mn3 = -4 and rnz = -1. For thc
-Department of- Applied-Mathcmatis -and Nonlinear Studies expansion cocients we obtain Silo= ~ S2 ,. A,~ 3 0  2

Rand- Afrikaans 'University, -Johannesburg 2000, South Africa E0  lzI. From the domninant behiaviour we coniclude that the sys-
tern with the dominant terms is scalc invariant under t -* c-'t,

Si -~ OSi, S2 -~ c
4 S2 , S3 - 0,53, E *-* cE. Next we deter-

Abstract: The-Painleve- test is-a powerful tool [1-6] in thc study mine the resonances and tile Kowalev.ski exponents. Inserting
of nonlinear evolution-cequations. We can study the integrability the ansats 1, 2,3)
of ordinary -and partial differenlial eauat ions. Exact solutions
can be-constructed. Biicklund transfornattons- ..:.._ .. can
be-derived within -this app.-oach. By making use of the Painleve S1 (t) = Si,o(t - i)"" + A(t -tj'

test- the-con struction of Lie B.~cklund-symmetties is straightfor- E(t) = Eo(t ti)' + D(t -tj-
ward. It also plays a fund, vental role in the investigation Of it h ytmwt h oiattrsw idtersnnethe chaotic -behaviour for ordinary differential equations. We inotestmwthtedmnatersefndheeoacs
apply-the Painlev test to the anhar-monic oscillator, the semi- -1, 4, 8, 3/2i V1 5/2. The KoiNalex ski exponents can be found
-classical Jaynes- Cumm ing -model, the energy eigenvalue le~vl I no from the variational equation. We find that the resonances
lion equation, the 1Catomdscv-Pctvia.5hmhd equation, the nonlin- and the Koiialeiski exponenits t~icd.The two Kowalevskj
-ear Klein-Gordon equation and the self-dual ang-Mdils equation exponents I and 8 can be tclated to fist integials. We oh-
and-its connection with-the Yang-Mills equation, tamn It S, + S32 and 1, = aS3 - orSjE + (dE/dt)2 /2 since

Ii(e3 Si,e4 S2 ,e'S,,c'E) = c8(S22+S32), 12(c 3Si,e 4 5 2,64
3 ,e1E) =

First we discu, ardinary differential equations. The ordinary e4(a53 - aSE + (dE/dt) 2 /2). Using the first integrals for tile
differential equations are extended-into the complex domain,. ytmwt h oiattrsw ido npcinta

the first integrals for the Jaynes-Cummings model are-given by
Definition: An ordinary differential equation-is said to have the I, = S2 +S22+ S32 and 12 = aS3 -aS E + 1/2j 2 E 2 + (dEdt)2 /2.
-Painlev6 property when every solution is single valued, except at From the Painlev6 test we find that itice Jaynes.-Cu mmings; model
the fixed singularities- of the coefficients. That is, the -Painlev6 admits a Laurent -expansion of the form (j = 1,2,3)
property requires that the movable -singularities are no worse
than poles. 00 00

Theorem: A necessary condition that an n-th order ordinary Si(t) = FS~j(t -ti)+-', E(t) =~Er(1t)- '
i~o i=0

differential equation of -the-form dw/dlz =-g(w) where g is ra-
tional-in w has the Painlev6 property is that Ciere bs a Laurent with thr", arbitrd~y constants (including t,). The expansion co-
expansion 00eficients are dete-mined by a recursion relatioa. In particular

(Z)=-(Z- _-Ik Z~j(Z _Z1)jwe find Si .= S2,, = S3,1 = Ei=0. This local expansion
Wk(Z =( -~mk akjz -ziYis not the general solution (owing to the complex resonances)

whicn requires five arbitrary constants. We now construct an
witih A - 1 arbitrary expL.ision "oefficients (besides the pole )o- exact solution from the Laurent expansions (9) through (12).
c3ition wvi-ici iF arbitrary). Let k be tile modulus of the elliptic functions sn(z, k), cn(z, k)
In the fo!lowing we give two examplc, where we apply the-P;%inlev6 and dn(z, kJ. We define K'(k) .= f,(1 - t1) -

1 /2 (1 - k12 t2 ) -11 dt
test to find solutiotis. where V' := I -kV. By the addition-theorem of the Jacobi
EXample 1. Tha erniclas,ical Jaynes-Cumnmings model is given elliptic functions, we have sn(z + XK', k) 1/ksn(z, k). Sim-
by ilarly cn(z + iW', k) = -i/kdn(z, k)/sn(z, k), dn(z + WI', k)=

-icn(z, k)/sn(z, k).-Fror points in tile neighbourhood of the point
dS1  d32 S+ 3  z = 0, the fuinction sn(z, k) can be expanded by Taylor's theo-
dt S dt 1 3 rem in the form sn(z,;.) - sn(0, k) + zsn'(0, k) + 1/2z2 sn"(0, k) +

d53  E +2 li'E = a, I/3!zsn"'(0,k ) + - - whlere accents denote derivatives. cc
= -SE,7d 2 +sn(O, k) = 0, sn'(0, k) = 1, sn"(0, k) = 0, sn"'(0, k) = -(I + P2)

where ju and a are .or stants. There is numrneical evidence, that etc. the expansion becomes sn(z,k) = z - !(I +I k 2 )Z3 +

tile systenr shows chiaotic behaviour fot cetLain parameter values Thlerefore cn(z,k) (I (sn 2Z)1/2 =1-1/2z'+... and dni(z,k)
and initial conditions. To perform the Painlev6 test we have (12 k 2 Z)11 2 

= 1 1 +'.

to consider the system in tile complex domain. For the sake ofkz 2 +. .Cneutl

sunplieit~y we do not chiange our notation. First wve look lor tile 1I + k
2  1 k)+

dominant behaviour. Inserting the ansatz (j = 1,2,3) sr Z+i', k) = s n (,k) +z 6kT 2+ 62k zk"

Si(t) 0. S;,o(t - tiy'", E(t) cc Edt - ,I)" Sirnilarlv, we find that cn(z + iK', k) = -f + 22z -iz +... and

into the Jaynes-Cuinrrings model we fiid thiat tile syttm with da(z +zK',k) = ~+ 2-klz + . It follows that at the point
tile dominant termns is given by z = iK'; the functions sn(z, k), cn(z, k) and dn(z, k) have simple

poles, with tile residues Ilk, -ilk-, -i, resr'--tively. We can
focus our atfenton to tile quantity E since S, can be derived
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from E. Then the quantities S2 and-S3 can be found. Comparing
t he Laurent expansion and the expansion of the elliptic functions V(11

we-find that-the Jaynes-Cummings model-admits the particular I2 + 411(A - Ao) 2

solution (in1the real domain) -(t)-= Eodn(tIt, k) where E The general solution contains three free parameters -1, 12, and Ao
16fa, k 2(1-+ (1 -- c)/c), 2= c(p 2 _)/(4(VF'T- 1)) which are determined from the initial values E(A = 0), p(A = 0),
and and V(A = 0).

_ -(Y 2- 2 [a2 - 4(,2 1)31 +(, 2 - 7)(12 ) • Next we-consider partial differential equations. Suppose that
-there are-n independent variables, and-that the system of par-

The quantities S1, S2 and S3 can now easily be -found from tial differential equations has -coefficients -that are holomorphic
Thyesqumngits mod non C'. We cannot simply require that all the solutions of this
- um mig It d e rg systembemeromorphic on Cn, since arbitrarily nasty singulari-
Example 2., In the study of energy level motion of the-Hamrin ties can occur along- characteristic hypersurfaces. The following
operator we-arrive for a-two level system at-the following-system definitiof [2 of the- Painlev&property avoids this problem. If
of ordinary differential:equations S is a holomorphic non-characteristic hypersurface in Cn, then

dE dp = 4V 2  dV Vp every solution that- is holomorphic on Ce\S extends to a mero-
A P' dA E ' W - morphic solution on C'.

To perform the Painlcv6 test we consider the system in the corn- In other words, if a solution has a singularity on a non characte
plex domain. Inserting-the ansatz-E(A) cx E(0)(A - Ao)", p(A) cx ristic-hypersurface, then that- singularity is a pole-and nothing
-p()(A-Ao)n, V(A) c V(0 )(A-Ao)'-and comparing the exponents worse. A slightly weaker form of the Painlev6 property was for-
yields n = q:= m - 1, where m is arbitrary at this stage. Obvi- mulated by Weiss et al [1]. It involves looking for solutions 0 of
ously, all terms are dominant. Therefore, the dynamical system the system of partial differential equations ;n the form
is scale-invariant under A -- e-1 A, E -4 e-'E, p--, ,+lp, 00

-V - -- ' +V. Next we determine the coefficients E(°), p(o), and u = ' 2 u ¢e
n=0

-0 °) . Requiring that EM0 }, p(O), V(0) 0, we find m == 1/2, where 0 is a holomorphic function whose vanishing defines a
n = q = -1/2. Furthermore, p¢0 = E')/2 and V' = iE{°)/4 non-characteristic hypersurface. Substituting this series into the
with E(0) arbitrary. Consequently, E(A) = E(°0 (A - A0)' /2, partial differential equations yields conditions on the number a

p(A) =-E(0)/2(A - Ao)1'/, V(A) = zE(°)/4(A - )o) - 1/2 is a solu- and recursion relations for the functions u.. The-requirement
tion, where E(0) and -Ao are arbitrary. However, it is notV the gen- is that a should turn out to be a non-negative integer, and the
eral solution which requires three arbitrary constants. When we recursion relations should be consistent, and that the series ex-

determine the resonances, using-this solution, we obtain -1,0,1. pansion should contain the correct number of arbitrary functions

When we determine the Kowalewski exponents, using this solu- (counting 0 as one of them).
tion, we also find--I, 0,1. The Kowalewski exponents 0,1 can be
associated with-the (polynomial) first integrals of the dynamical It has been found that integrable equations satisfy- this weaker
system. On-inspection, we find that -h(E,p, V) = p2/4 + V 2, form (perhaps after a change of variables), whereas non-integrable
;12(E,p, V) = EV are first integrals. Then we obtain the scaling equations fail it. To establish Painlev6 property is-more difficult
behaviour (the Painlev6 property implies the weaker form, but -the reverse

implication need not-bold in general). However, it seems that in
IsI(7-I2E, eilp,$2v) =s tIi(E,p, V) practice, the weaker form is sufficient to ensure integrability.

1(-12( E, 61/2p, 1/2 V) = c°l 2(E,p, V) The Painlev6 property seems to be a useful indicator of integra-

where the exponents of c give the Kowalewski exponents, namely bility or solvability, or both. Integrable here means ther exists a

0 and 1. Thus, the dynamical system is algebraic completely nontrivial Lax Pair for the system.

integrable. Inserting the expansion Example 1: The Kadomtsev-Petviashvili equation is given by

i() (- o1/r j)A oj 02 u u)2 + +U02U3+ 92=0

p(A) = (A Ao)" 2 op()(A -

j=O where a2 = :1. The Kadomtsev Petviashvili equation is a com-
-/ o pletely integrable soliton equation. The Katomdsev Petvialshilvi

V(A) = (A - A) - L/ , Vo)(A - A0)i equation has the Painlev6 property. We consider the generalized
i=o variable-coefficient Kadomtsev Petviashvili equation

into the given dynamical system, we find one more arbitrary
constant (besides E(°) and Ao), so that the expansion represents 8u Ou\2 L02Uu u Ou Ou
the general solution. The system does not pass the Painlev6 test, + +

due to the dominant behavior. However, it passes the so-called FtO x / x x Xa
quasi-Painlev6 test, i.e., it admits an expansion of the form given
above with three arbitrary constants Obviously, we can also find 0u O2 u . Ou
the general real solution to the dynamical system, namely y + d(y,t)- + c(y,t)- = 0

_ /_ 16J~(A -Ao) 2
E_ 2(A) =!1 1  (A-Ao) 2, p 2(A) 2 +4I1(A Ao) 2
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where a(y, t), b(y, t), c(y, 1), d(yit), and e(y, t) are analytic func as being equivalent if they are related by a gauge transformation

tions. In order that the generalized Kadomtsev Petviashvili A' = f1'AfQ + fl-'dfl, where S1 is a G-valued function on V4.

equation satisfy the Painlev6 property the function a, b, c, d, e The self-duality equations are *F = F where *-is -the Hodge

have to satisfy the system of equations duality operator. These equations form a set of coupled first-
order:nonlinear partial differential equations for Aa. They are

Oa 2  + d 1Oc 8e 492e underdetermined (fewer equations than unknowns),-but this un-
t 2 y c = 0 derdeterminacy can be removed by imposing a-'gauge condition'

ac Od . such as Ao = 0. The self-duality equations are invariant un-
- + 4ac--2c- + d- = 0 der gauge transformations. The self-duality equations are com-

' -y pletely- solvable as a consequence of the twistor correspondence.
(2bb(2b- ) = . The equatins possess the Painlev6 property. Many other inte-

grable partial differential equations which also havethe Painlev6

These equations are necessary and sufficient conditions for the property can be derived from the self dual Yang-Mills uquation.

generalized Kadumtsev Petviashvili equations to be transformablt Finally, let us discuss an interesting connectiun of the self-dual

into the Kadomtsev Petviahvil-equation, provided that c -0. Yang Mills-equation and the Yang Mills equation. From the self-

If c = 0, the equation may-be transformed into the Korteweg de dual Yang-Mills equation we find, after reductiun, the system of

Vries equation provided that b = 0 and OanOt + dOa/9y + 2a 2 
- ordinary differential equations duildt = u2u3 , du 2/dt = 1414,

0. Example 2. Consider the nonlinear Klein Gordon equation du3/dt uiu2 When we differentiate this system w ith respect
to-t and-insert it into the new second order equations we arrive

W/Oq= v'. Inserting-the expansion at

V = ' ,' 
j  dV I I Iu 2  2 P = U

we find m = -1, vo2 = 2'€€€ and This system does not have the Painlev6 property. It-is-not inte-

grable. From the Yang-Mills equation D(*F) = 0 we find, after-¢o o - Onvoc - O ol = 3 v1o

vo - 3v 20 + 3Vov2 reduction, the nonintegrable system

20,,qv3 + 02 + € + ,V 2,, + + = 2VOv 3 + 62 o. C --u ,(U + U), !fu= -U2 U + U)--- t +u),-- u2u=+~

At the resonance r = 4 we obtain d 2 U 2 ).

20,,v3 + 2i,,v3 + 20 v3,, + V2,C = 6vOVlv3 + 3v2vI + 3voV2. d+u
This system is nonintegrable and can be derived from the Hamil-

Inserting the equations for-the coefficients into the above equa- ton function H(u, i) (u' + u' + us)/2 + (u2u + uu + uu)/2.U
tion for the resonance we obtain-a "huge" partial differential It shows1chaotic behaviour. Furthermore, we find that it does

equation for 4 [6). If 0 satisfies-thbis condition, then the expan- not pass the Painlev6 test. Tie resonances are given by -1, 1

sion coefficient v4( , q) is arbitrary. The nonlinear Klein Gordon (o t wofld) an d . The res-
(twofold), 2 (twofold) and-4. Studying-the behaviour at -the res-

equation admits the symmetry-vector fields {],8 O IOZ 0 - onances we find a logarithmic psi-series. The two systems are

D/Oq, O/M +O/Oq - vO/Ov). equivalent up to the sign on the right hand side. Since we con-

Next we construct similarity ansgtze: sider the system in the complex domain for the Painlev6 test we
(1) From O/Oq and 0/0 we find s = cj + c2i and v(rq,) = can find that the two systems are related via the transformation

f(s). We obtain df/ds2 = f 3 /(cc 2 ). This equation passes the t -- it.

Painlev6 test. Therefore ¢(iq,4 ) = cl q+ c9 satisfy the condition REFERENCES

on 0. 1. Weiss J., Tabor M. and Carnevale G., J. Math. Phys., 24,

(2) The symmetry generator O/O- i8/0r leads to the similar- 522(1983).

ity ansatz v(q, ) = f(s) with s = i,. It follows that dfl/ds2 + 2. Ward R. S., Nonlinearity 1, 671 (1988).

(df/ds)/s - f 3 /s = 0. This equation does not pass the Painlev6 3. Steeb W.-l1. and Euler N., Nonlinear Evolution Equations

test. This is in agreement that 4(q, ) = does not satisfy the and Painlev6 Test, World Scientific, Singapore, 1988.

conditional equation on 0. 4. Steb W.-Il. Problems in Mathematical Physics, Volume I:
(3) The symmetry generator O/OC + r8/O - vO/Ov leads to Advanced Problems, Bibliograplisches Institut, Mannheim, 1990.
the similarity ansatz v(i,*) =f(s)I with s = ij/ . It followsthe imiariy asat V00 =XOR ith5 =q14 Itfolows 5. Clarkson P. A., BM Journal of Applied Mathematics 4t4,
that d'f/ds' + 2(dfds)/s + f 3/s = 0. This equation passes the Carkso90 .
Painlev6 test. This is in agreement-that O(i/, C) = q/[ satisfy the 2 (.conditional equation on €. 6. Euler N., Steeb W.-I1. and Cyrus K., Physica Scripta 41,

289 (1990).
Exanple 3. We now consider the self-duality Yang Mills equa-

tions. Let G be a Lie group (the 'gauge group') and g it Lie

algebra. A gauge potential (connection) A is a g-valued I-form

on V. The corresponding-gauge field (curvature) is the g-valued

2-form F := DA = dA + [A, A] where DA is the covariant exte-

rior derivative of A. Two gauge potentials A and A' are regarded
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might contain points on the basin boundary that are

accessible from basln{A) (or basin{B}) but not

SOME NUMERICAL METHODS FOR accessible from the transient set R\S(R). Hence, the

LOW DIMENSIONAL CHAOTIC DYNAMICAL SYSTEMS ASST method for finding accessible points on S(R) Is,

generally speaking, not a procedure for finding
by Helena E. Nusse accessible points on the basin boundary. A third

Fac. der Economische Wotenschappen R.U. Groningen,

Postbus 800, NL-9700 AV Groningen. The Netherlands question is: "Given a line segment J that has one end

point in basin(A) and the other end point in basinBP).

Studieng chaicbeavior. systms oexate ores Describe a procedure for finding a numerical trajectory
transient chaotic behavior. Famous examples are the ontebsnboundary that starts on J and which is

H6non map, the forced damped pendulum, the forced acce si fou taow

Duffing equation and the Lorenz equations. Let F be a

differentiable, invertible map from the n-dimensional The numerical methods ("straddle methods") described

phase space to itself, such that the derivatives of F below have been developed in colloboration with J.A.

and its inverse are continuous. Let R be a transient Yorke. We restrict our attention to cases in which

region, that is R is an open and bounded set in the there is only one positive Lyapunov exponent.

phase space that contains no attractor. The stable set For the straddle methods below, we use the notions

S(R) is the- set of points (in R) which stay in R for of "escape time" and "c-refinement". The escape time

all time under forward iteration of F; we refer to Tkx) of a point x in the transient region R under the

R\S(R), the complement of the stable set S(R) in the map F is the minimum value n such that Fn(x) is not- in

transient region R, as the transient set. The invariant R; the escape time T(x) is infinity if Fn(x) is in R

set Inv(R) of F in R is the set of points in R which for all n. For {x,y} on a line segment J we always

stay in t for all time under forward and backward assume for convenience that the ordering on J is such

iteration of F, and we assume that Inv(R) is nonempty. that we may write x < y; we denote [x,y) for the

We study transient regions in cases where the segment joining x and y, and ix-yI for the distance of

trajectory through almost every Initial- point x and y. Let (a,b) be a pair of points on J. For every

eventually leaves the region. We are looking for c > 0, an c-refinement of (a,b} is a finite set of

trajectories that stay in the region R as long as we points a g0 < g, < ... < gN = b in [a,b) such that

wish to compute them. A first question is "Find a R.la-bI Igk-gk+lI , c. a-bI for al k. 0 , k , N-1.

chaotic trajectory numerically that remains in the

region R for an arbitrarily long period of time."

STRADDLE METHODS. Straddle methods involve a

A -point p in S(R) is accessible from an open set V refinement procedure In which 2 points on a curve

if there is a continuous curve K ending at p such that segment are replaced by 2 new points In some cases the

K\{p} is in V. We first investigate the case where V is points have different roles. Usually each of the

the transient set R\S(R). A second question is- "Given refinement procedures takes a pair of points and

a line segment J that crosses S(R) transversally, returns a pair of points; such a returned pair is on

Describe a procedure for finding a numerical trajectory the line segment joining the two points of the original

on the stable set S(R) that starts on J and which Is pair. The distance between the two points in the

accessible from transient set R\S(R)." returned pair is smaller than the distance between the

points of the original pair. Straddle methods consist

Nonlinear dynamical systems often have more than one of applying the refinement procedure repeatedly until

attractor. The basin boundary is the set of all points the points In the resulting pair are less than some

for which each open neighborhood contains points specified distance c apart, say r = 10
-8

. If the points

of at least two different domains of attraction. A in the original pair are already less than a, apart,

generalized attractor A is the union of finitely many then no refinement is carried out. Next apply the

attractors, and we define basin(A) to be the interior dynamics; that is, apply the map F to each of the 2

of the closure of the domain of attraction of A. We now points of the resulting pair, giving a new pair.

assume for the transient region R that there exist 2 The basic numerical method takes a pair {an bn}

generalized attractors A and B, and each point in R which is separated by at most a distance o,, and applies

that escapes from R under iteration of the map F is the map F to each of the points of this pair, If the

either in basin{A} or in basin{B}. The stable set S(R) new pair F(a ),F(b )I is separated by less than a-,

n n
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then it Is denoted- la b ), and otherwise the ASST METHOD. The "accessible saddle dynamic restraint
I -_ (n+1 bn+ 1 } , oTe"cesbesdl yai etan

refinement procedure is applied repeatedly until a pair problem" is to describe a numerical method for finding

with separation at most o is obtained, and it is called a trajectory on the stable set S(R) that is accessible

(an+' bn+1). However, in order to produce the -first from the transient set R\S(R). The refinement procedure
pair {ao,bo), the method starts by applying the that is involved in the current straddle method is a
refinement procedure on the given pair (a,b}, whose PIM triple (refinement) procedure in which a PIM triple
points are presumably more than a apart. Writing I or (a , ,f ) is selected from the c-refinement P of the

n
[a n,b n ] for the line segment from an to b n, and to the Interior Maximum triple (a,c,b) such that [a,a I is in
precision of 'the computer we usually have I n+ c F(n). the transient set. This refinement procedure is called

We call the sequence of tiny straight line segments the Accessible PIM triple (refinement) procedure. The
{Innt0 a straddle trajectory. solution to the "accessible saddle dynamic restraint

problem" is the straddle trajectory using the

Accessible PIM triple procedure. We call the straddle

" . "- " trajectory (I an accessible saddle straddle
trajectory or ASST trajectory, and we call the straddle
method that generates the ASST trajectory InO the

~ '~ n nzO'
ASST method. An ASST trajectory typically resembles
(after a few iterates) a subset of the nonwandering

points in R which are accessible from the set R\S(R).

- -ABST METHOD. The "accessible basin boundary dynamic

-. problem" is to describe a numerical method for finding
-a trajectory on the basin boundary that is accessible

-from basin{A}. The refinement procedure in the current

straddle method that generates a proper straddle pair.
SST METHOD. The "saddle dynamic restraint problem" Let {a,b} be a straddle pair such that a is in basin{A)

is to describe a numerical method for finding a and b is in basin{B), and (a,b] intersects the stable

trajectory that remains in a specified transient region set S(R) transversally. Let P be any S-refinement of
for an arbitrarily long period- of time. First, we (a,b). In the unique proper straddle pair (a ,b ) from

describe the refinement procedure that is involved in P the point b is the leftmost point of P that is in
the current straddle method. Let {a,b} be a pair such basinlB), and as depends on the grid consisting of b*

that (a,b] intersects S(R) transversally, and all the points in P to the left of b . The solution

Let (a,7,9) be a triple on [a,b]. We call (a,3,,) an to the "accessible basin boundary dynamic restraint

Interior Maximum triple If both TR(7) > TR(x) and TR(2) problem" is the straddle trajectory using this
> TR (13); we call (a,r,f3) a PIM triple if (oc,7,13) is an refinement procedure. We call the straddle trajectory

Interior Maximum triple and l0-~l < lb-al. Assume that (In)n20  an accessible basin boundary straddle

({,0) is an Interior Maximum triple, and let P be any trajectory or ABST trajectory, and we call the straddle
c-reflnement of (4,13) including v. The procedure that method that generates this trajectory, the ABST method.

selects in the refinement P any PIM triple (a ,a ,93

is called a PIM triple (refinement) procedure. In this work we study the planar cubic map Ho(x,y)

The solution -to the "saddle dynamic restraint (ax - x3 + by, x) and the 3-dimensional H6non-like map

problem" is the straddle trajectory using the PIM HZ(x,y,z) = (I + y - zx 2 , bx, z - O.S + ax2).

triple procedure. We call the sequence of tiny straight

line segments (I n a saddle straddle trajectory or H.E. Nusse and J.A. Yorke. A procedure for finding

SST trajectory, and we call the straddle method that numerical trajectories on chaotic saddles. Physica D 36
(1989), 137-156.generate: the SST trajectory 1I n *nO , the SST method. H.E. Nusse and J.A. Yorke. Analysis of a procedure

Notice that each tiny line segment in an SST trajectory for finding numerical trajectories close to chaotic
saddle hyperbolic sets. To appear in Ergodic Theory and

straddles a piece of d (chaotic) saddle. An SST Dynamical Systems (1991).
trajectory typically resembles (after a few iterates) a H.E. Nusse and J.A. Yorke. A numerical procedure for

finding accessible trajectories on basin boundaries. Tobasic set in the (chaotic) saddle. appear in Nonlinearity (1991).
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Abstract will typically have a Cantor-like fractal
dimension d. V 4. This result is reached using

The present discussion attempts to show some the following scaling argument. The idea is to
mathematical connections beween chaotic find the equivalent to a triadic Cantor set
dynamics, fractal sets and dimensionality in two dimensions. Such a set should be
which may have relevance to physical systems. triadic Cantorian in every conceivable direc-

tion. It cannot therefore be the Cartesian
1. Introduction product of two such sets, dc = Log 4/Log 2 nor

a Cantor target dc . I + Log 2/Log 3. However
At least since the spacetime of relativity we know that a unit area A of an Euclidian
-four dimensions have occupied a special place manifold is given by -A - (i1)(1-) - I and
in physics. Modern -nonlinear science has consequently a corresponding or quasi area- of
reinforced this situation. 0. Roessler for a Cantor set is Ac = (d-) (de)-. it follows
instance has repeatedly drawn attention to then that in order to normalize AG it must be
-four dimensional sets as the frontiers of new multiplied by the normalization factor
phenomina associated with wrinkled and hairly &I= (A/Ac)z-By analogy in n dimensions- we
attractors (3]. Ruelle, Takens and Newhouse would- have ? = (A/Ac ),, . Denoting the n-th
envisages chaos as a- sequence of a finite Cantor-like fractal dimension in n -dimensional
number of -Hopf bifurcations leading- to a- space -by C1 and the dimension of the corres-
totally unstable torous in four dimensions ponding Euclidian space in n dimensions by
(4-). In fact one of the most important d'") = n it follows then that
discoveries in topology implies that four
dimensions are more complicated than any lower
dimension and surprisingly even higher -dimen- (1) I v--I
sion (5). To motivate -our approach consider a_ c (i
recent result [21 where it was found that c (, I€
haemoglobin has a surface fractal dimension
ck= 2.4. Now this is more profound than whered S is termed the escalation factor. This
finding for instance a two dimensional object is the set which we are looking for and the
with a fractal dimension less than two because result is now evaluated for d - Log2/Log 3 in
somehow holes could account for the reduction. table 1. Note that ot could- be equally
Here however they are insisting that it is a interpreted as the Floguet multiplier of a
surface.Consequently the 0.4 may be attribu - discrete map
ted to "negative" holes in the surface. It
must be a very rugged surface full with little
mountains trying in a sense to jump out into (C+i) - ' ) (o)
the surrounding three dimensions. Should we () |(e)
ever encounter a surface which has a fractal where n = vv 1 1, d- d and
dimension d >' 3, this would- be even- more c
radical. In a "facon de parler"-such a surface /
wants to reach out of the embedding three S
dimensional Eucledian- manifold. That way d-3
may be regarded as a "critical* dimension for G
tnis "strange" surface. Generalizing -to n -- (0)
dimensions we could say that whenevdr the Basic assumption 0 d = 0.63092
fractal dimension of an object -and the C
dimension of -the hosting manifold becomes
equal a critical state in the preceding sense Normality 1
is reached. For reasons which we are about to
make clear here, we will term this critical
state quasi ergodic criticality. In what 2 1.58496
follows we would like to show- that under a 3 2.51210
fairly reasonable assumption one can conclude 4 3.98159
that four dimensions marks a special point in Results 5 6.31067
chaotic dynamics. 6 10.00218

7 15.85309
2. Cantor-like sets and critical ergodicity 8 25.12655

The starting point of our analysis is the
generally accepted realization that fractals - TABLE I -
(6] are the carriers- of complex strange There are a fen.interesting observations here.
behaviour. Second and without going into First a("I) / is the fractal
detail, we follow Yorke's conjecture that dimension of the Serpenski gasket which is the
single Cantor sets are some how the back bone prototype of fractal lattices with infiniteof all strange behaviour (7). To that we add hierichy of loops. Second form l n< 4 we have

what we intuitively feel as evident namely 1">hile for n>4 we have ">> n . only at
that in one dimension it is extremely hard to n-4 we have a Cantor-like structure which
think of any simpler fractal set than Cantor's comes very near to a space filling set. The
middle third set (2] with dc - Log 2/Log 3. two dimensional geometrical analogue of this
If we can accept all this, which is not is the peano curve which is ergodic and shares
particularly easy to justify we can claim that a few properties with fat fractals (8]. We may
in four dimensional phase space a strange set say therefore that at n-4 the set is almost
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ergodic. The third observation is that for any
three successive dimension C _%-Z irrational numbers such as 3/4, W/5, and
This is strongly reminiscent of the Fibonacci = (I + Y5)/2 and dc = Log 2/Log 3, in
numbers (2] and the corresponding dimension arriving at some of the preceding conclusions.
will be termed the Fibonac i fractal dimen-
sion. Should we insist that 4c()=fd(1

-) . References
then we find that at n-4 the corresponding 1. Cook, T.A. The curves of life. Reprinted
Cantor-like dimension is dc - 4.23606 while by Dover Publications, New York (1979).
the Serpenski gasket (8] is replaced byd(=|/cp Originally published by Constable and Company,
where '4 is the Golden mean (2]. In fact our London (1914-).
table number 1 becomes identical to the table 2. Stewart, I. Does God play dice? Penguin,
calculated by Cook 11] for Botticelli's venus. London (1989).
The next step is of course the obvious t ing 3. Rossler, O.E., Hudson, J.L., Klein M. and
to do. We determine the escalation value c$ Mira, C. Self similar basin in continuous
corresponding to exact critical equality of systems. In "Nonlinear Dynamics in
d and n in four dimensions. This is an Engineering Systems". Editor W.Schiehlen,
ejementary application of our formula relating p.265-273,Springer (1990).
d') to n. This way one finds 4. Ruelle, D. and Takens, F. On the nature
c of turbulence. Commun. Math. Phys., 20, 167-I -I -I I g(1971y).

S. Stewart, I. The problems of mathematics.

=-(d ) =-yl V 1- 17 =oxford University Press (1987).S c -S 95 Becker, K.H. and Dorfler, M. Dynamical
This is very close to the Serpenski gasket (8] systems. Cambridge Press, English translation
dc  = 1.58496. Now a single Cantor set is by I. Stewart. (1989).
easily made to have any fractal dimension 7. Eubank, S. and Farmer, D. Introduction to
between one and zero. Within this range it is chaos and randomness. In "1989 lectures in
now interesting to consider the consequence of compleA systems". Editor E. Jen, pp. 75-190,
having taken a Cantor set with Hausdorf Addison Wesley, Redwood City (1989).
dimension dc = Log 2/Log 4. In this case 8. Vicsek, T. Fractal growth phenomena.
dc - 0.5 seems to be a distinct value between World Scientific, Singapore (1989).
one and zero which might be regarded naively 9. Grossmann, S. Selbstaehnlichkeit, Das
as the most "fractal" value in this unit Strukturgesetz im und vor dem Chaos. In
interval. It is also the correlation dimension "Ordnung und Chaos". Editor W. Gerok, pp.
found for period doubling chaos in the one 101-122, S. Hirzel Wissenschaftlicher Verlag,
dimensional logistic map as well as the Stuttgart (1989).
probability describing the random behaviour of 10. Kapitahiak, T. On strange nonchaotic
the tent map. It is an elementary matter to attractors and their dimensions, Chaos,
show, using the same previous formula, that Solitons and Fractals (a new journal by
dc = 2. The critical state thus shifts from Pergamon Press) Vol 1, number 1 (1991).
n = 4 to n = 2. 11. -El Naschie, M.S. Stress, Stability and
This is however another way of viewing the Chaos. McGraw Hill, London (1990).
"critical" ergodir state n=4. It is also
related to quasi periodically forced horse
shoe maps displaying peano-like dynamics (10].
Finally let us consider the implication of
shifting criticality in the present ergodic
sense to n-3. This clearly implies an
escalation factor d - = 1.732050. Notice
that in this case = 1.73205 is indeed a
value found frequently in two dimensional
Poincare maps of dynamic system as well as
numerous fractal objects found in nature (8].
The role of multifractals as well as fractal
sets made up of the union of different fractal
subsets in developing more accurate mathe-
matical model will not be discussed here.

3. Concluding Remarks

Looking back at table 1. One may be lead to
speculate if fully developed turbulence has a
fractal dimension, d "' 6.3 and that five
dimensional phase space is required to study
this phenomina. This would be for instance a
nonlinearly oscillating set described by a
phase space x , x and representing
temporal and spacial oscilation of a state
variable x. In addition we need a spacial
fluctuation OOand a temporal fluctuatione4.&as
forcing frequencies. This makes them indeed
five variables. Another worthwhile observation
i s that the Fibonacci fractal dimension
- ")- 1 + 1/(Log 2/Log 3) - 2.58496 is
identical to c a 1/(Log 2/Log 6) where
Log 2/Log 6 is clearly a reasonable measure of
the fractal dimension at period 3 chaos
of a Feigenbaum cuscad. Note also that
c - Log 2/Log 6 - 0.387 is very close to the
smallest value found for period 3 chaos of the
logistic map [9,11] (d ' 0.378).
It is, of course important to appreciate the
role of the proximity of some rational and
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QUASIPERIODICALLY FORCED SYSTEMS
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ABSTRACT
_Typicai similarities and differences between

strange chaotic and- nonchaotic attractors in , -\
deterministic systems and random behaviour are , .

discussed. It has been shown that based on a .. ,.' " .--

single time series it is impossible to
distinguish between these -types of behaviour
even using Lyapunov exponents technique.

Q. X

In last decade attention has been given to
a class of dissipative dynamical systems that
typically exhibit strange behaviour (1-3]. Such
behaviour has been found in numerical experiments
[3,41 as well as in experimental systems [5,61.

Recently two classes of strange attractors
have been-distinguished:
(a) a strange chaotic attractor - one which is ;'-

geometrically, strange' i.e. the attractor is
neither a finite set of points nor it is
piecewise differentiable and one for which -b.
typical orbits have positive Lyapunov X
exponents

(b) a strange nonchaotic attractor - one which is F fg. 1. The Poincare maps-of the quasiperiodically

also geometrically 'strange' but for -which forced eq. (1): a=n. , d=c. , = 2 +

typical nearby orbits do not diverge 1.05 , (a) strange chaotc attractor

exponentially with time (7-9, 15-21]. 0.002, the largest nonzero Lyapunov

Strange nonchaotic attractors have been -found exponent A=0.1183, (b) strange nonchaotic

-to be typical for quasiperiodically forced attractor c=0.006, A=-0.l2i3.
systems [7,18]. Recently they have been also got Lyapunov spectrum identical to that of
observed-in experimental system [21]. the original attractor [10).
Although one may doubt that these are periodic The technique of estimation of Lyapunov

or quasiperiodic orbits with sufficiently long exponents based on the reconstructed attractor
period but even in this case period is longer gives good results when we have at least one
than any reasonable observation and that is why positive Lyapunov exponent In the spectrum.
their name is justified. In what follows we consider the

As both types of strange attractors look very quasiperiodically forced Van-der-Pol's equation
similar ( compare for example Poincare maps of
Figure 1(a) and (b)), the value of Lyapunov -a( - x2)k + x = dcosutcoslt (1)
exponents seems to be the only quality which
allows us to distinguish these classes. For eq. (1) linearized equations exist and we

In this paper we present some numerical can compute Lyapunov exponents directly from the
experiments showing that it is impossible to formula
distinguish between strange chaotic and nonchaotic
deterministic behaviour basing on a single time A = 11M d(t)
series. -)w d(0)

For systems which equations of iotion are
explicitly known and the linearized equations where: d =Vy+ 2, while y is a solution
exist there is a straightforward technique of a linearized equation.
10,11] -for computing a complete Lyapunov In these cases we have computed Lyapunov

spectrum. exponents twice from the formula (2) and
Foe most of the experimental systems the from time series based on Wolf et al.

equations of motion are not known [ 12 1 or are algorithm [10]. In numerical similations the

in the form for which the linearized equations four order Runge-Kutta method with time step
do not exist [ 6,13]. In this case Lyapunov T/200, where T=2/ has been used. Strange
exponents are estimated based on the monitored nonchaothc attractors have been observed up
long - term time series. First the attractor is to T=i0 - The comparison of these results is
reconstructed by the well-known technique with shown in Figure 2.
delay coordinates (14 1. Our reconstructed From Figure 2 one finds that the
attractor though defined by a single trajectory calculation of the Lyapunov exponents from the
can provide points that may be considered explicitly known differentiable equation allows
to lie on different trajectories. It has been to distinguish between strange chaotic and
shown that in many cases this attractor has nonchaotic attracturs. This distinction cannot
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;a ___o_ _ _ o__o 11. T. Kapitaniak, Chaotic Oscillations in
Mechanical Systems, Manchester University

-d 5.0 o 5.0 ao Press (1990)

0.006 0.007 0.003 0.002 12. J.-C. Roux et al., Physica, 8D, 2, (1982)
13. K. -Poop and P. Stelter, Nonlinear

Q V-+1.05 V2+1.05 W+1.05 V7+1.05 Oscillations of Structures Induced
by Dry Friction . In: W. Schiehlen

max ( ed. ), Nonlinear Dynamics in Engineering
formula (2) -0.1213 -0.2834 0.1426 0.1468 Systems, Springer (1990)

time series 0.0845 0.0684 0.1183 0.1232 14. N.H. Packard et al., Phys. Rev. Lett.,
45, 712 (1980)

Type of strange strange 15. H. Ding et al., Phys. Lett. 137A, 167, (1989)

attractor nonchaotic chaotic 16. C. Grebogi et al., Physica 13D, 261(1985)

17. A. Bondeson et al., Phys. Rev. Lett.,55,
2103 (1985)

Fig. 2. The comparison of the values of Lyapunov 18. F. J. Romeiras et al.,Physica, 26D, 277,
exponents Amax computed from formula (2) (1987)

and estimated from time series. 19. M. Ding et al., Phys. Rev. A39, 2593 (1989)
20. T. Kapitaniak, and J. Wojewoda, J. Sound

Vibration, 138, 162 (1990)
be followed based on the Lyapunov exponents 21. W.L. Ditto et al., Phys. Rev. Lett., 65, 533
estimated from a single time series, as by this (1990)
method we obtained positive values of Lyapunov 22. E. Stone, Phys. Lett., 148A, 434 (1990)
exponents not only in the case of strange 23. J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys.
chaotic attractors but for strange nonchaotic 57, 617 (1985)
attractors as well. 24. M. Sano and Y. Sawada, Phys. Rev. Lett. 55,

This result may look quite surprising but It is 1082 (1985)
justified when we follow the method of Lyapunov 25. J. -P. Eckmann et al., Phys. Rev. A34, 4971
exponents estimation from the attractor (1986)
reconstructed from single time series. If a time 26. K. Briggs, Phys. Lett., 151A, 27 (1990)
series is irregular (not periodic, quasiperiodic)

it is not distinctive -from chaotic one and
the reconstructed attractor has got the
complicated geometry. Estimating Lyapunov
exponents from this attractor we have to obtain
a positive values for both strange chaotic
and nonchaotic attractors, as the whole
procedure explores the aperiodicity of time
series and not the explicite dependence on
initial conditions. As other methods of
estimating Lyapunov exponents from time series
[23-261 are also based on the same method of
attractor reconstruction it seems that using them
similar results are very likely.

The possiblity of having a system showing
strange behaviour without sensitive dependence
on initial conditions should not be overlooked.
It seems that more care will have to be given
in applying theprocedure of estimation of
Lyapunov exponents from time series to
experimental data. The general conclusion that
It imply can be misleading, as there are
systems for which distinction between strange
chaotic, strange nonchaotic behaviour is
impossible based on a single time series.
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Abstract A route to chaos in the system with T=wt. ,=(Wo os n)' 10 25 ( 0 ko o.
dry friction is analyzed. In spite of the
complexity of the system, a similar transition M=mnmm', K-kk_', v=wo .
to that discovered in the two-well 

potential

anharmonic oscillator is described and illus- B1 ,=q 1 u)_3 rn,1 sk,5 ,8 2 "q7 -
3M 1 1 sk~,.a=Ci(miuji) 1,

trated. Dry friction weakens the chaotic

dynamics and induces the occurrence of stick -1 '
and-slip transitions during the chaotic wan- a =C 3(mn wY' -! ,

4 =C 4(mw,) ',K1=krn1 W,
dering of the trajectory in four dimensional
phcse space. y,=w C2kp', Y2=U ,C4k ', x. kjtn,'(A),

1. INTRODUCTION K4 =k 4fn, 1 ,u(. R=ILgw'13 fl,.i° .  (3)

The aim of this-paper is to show the Using the transformations (3), the nineteen
"qualitative universal" transition to chaos in parameters of equations (1) are reduced to
a certain subclass of sinusoidally-driven non- fourteen parameters in (2).
linear oscillators, i. e., systems with a Such a general system has been investigated
two-well potential. The question of interest earlier by the authors [1-3] using a systemat-
is whether or not the scenarios leading to ical numerical approach. Transitions between
chaotic orbits discovered in simple uncoupled quasiperiodic, strange chaotic and strange
oscillators are likely also hold for much more non-chaotic attractors have been reported as
complicated: systems, such as coupled nonlinear well as some special chaotic dynamics has been
sinusoidally driven oscillators. Simulation discussed and illustrated. Here an attention
experiments show that the potential has two is focused on the influence of friction of the
wells, and- that chaotic dynamics will obtain, chaotic dynamics on the mentioned above sys-
in which each of the oscillators jumps between tem.
two wells in an unpredictable way. 3. NUMERICAL ANALYSIS

2. THE SYSTEM
We define: F,,=ILm-g,

We consider a system of two coupled
mechanical oscillators, both of which are F=(k,+k3 )x,-k 3x.+kzx3'-C 3x 2 -qcosw,. (4)
externally driven. The governing equations are When x,-0 and IFI<IF,I, the first oscillator

inix, (C 3 -Ci).*-Cj-;+C' x~,(k,,)V ,  is in a stick state. During the transition
from a slip-state to a stick-state, an accel-

-k 3 xp+k,,xy +*t1rL1gsgn(x1)- qtos(u,t+ ), eration jump occurs. During an exit from a
stick-state to a slip-state the acceleration

m +(C-C)x-C. x+C x,+(k , )x is continuous, but a jump in the third deriv-ative of the displacement appears. The veloc-
-- q2cos(w1), (1) ity in both cases is always continuous. During

"the transition over a stick area", but

where mn, and m 2 are the masses of the oscil-- without sticking, the acceleration jump also
occurs. When a regular transition, however,

lators, C,-Cs and k1-k15 are damping and from a slip-state to a stick takes place with
stiffness coefficients, respectively q, and q2 i[i<(I ,)mi, the one eigenvalue of the
are the amplitudes of the exciting forces with Jacobi matrix is equal to zero. When
corresponding frequencies w, and w,, and I r=- I u. and the acceleration jump does
denotes a phase shift between the exciting not appear, the Jacobi matrix is not singular.
forces. The following equations govern the dynamics in

In nondimensional form we have the stick-state:

Nj 'O.

:-i¢(KM'")°,+ .4RsrjnQ( .,) - fl cos(c,: ). %;'" M( ,i- ... - ,=Ar %. '  1 , ),

-MK(MK ')° A .S Ibr(v). (2) with the following transition-condition

where
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(cosI  (6)

We consider the behavior of the system (2) 0.6
for-the following fixed parameters:
v=M= K 1.0, i-Ix4-0.816326. =O.O,
y 1 -y,O.3. B1=O.05, B2 =0.2, and for two val- 0.0 50 10 0 20 250 300 350 400
ues of friction R.

Example 1 (R=0.05). -0.6

We take a = 4 =0.0 1 and a 3 X3 =0.3. For -2
-these parameters and without friction 

(R=0),

the system exhibits intermittent chaos. Fric- Fig.2. Time history for c=0.8 (R0.l).
tion dampens the chaotic dynamics 

of the

orbits and for R=0.05 we find a quasiperiodic
attractor. In the neighborhood of these param- • -

eters (for a,, 4 = 0.05 and a=X = 0.3), a
periodic attractor is found. An increase in a•,

(t=,a,) results in an increase in the magni- ' Jif
tude of the self-excited oscillations. The " "
periodic orbit grows and finally leads to . ' . '' ,
intersections of the stable and unstable man- "''' lI . ". 4 .€0 0. .90.2 ,.4
ifolds and a trajectory starts to wander in an " ' . /
unpredictable way between two potential wells. - •.
This situation is illustrated for Ctt=o = 0.2
in Fig. 1.

Fig.3. A strange chaotic attractor for ca=0.3

-0. 0.6 0.6 II
00o 200iliiI1

00~0 V000 40 oLV
0 020 3 100 200 300 400

Fig.l. Time history of a strange chaoticattractor (R=0.05)-. Fig.. Two different time histories from the
asame chaotic attractor.

Example 2 (R=0.1). 4. CONCLUSIONS

In the second example we analyze the influ- In the six-dimensional nonlinear mechanical
ence of the coupling between two oscillators. system with friction that was investigated,
The numerical calculations have been carried quasiperiodic and chaotic attractors are
out for the same parameters as in Example 1 detected. We have discussed and illustrated
and additionally for R=0.1 and M= I 0.a . that in this case, the route to chaos is the
When two oscillators are strongly coupled same as in the simple two-well potential,
(3 = 2.0o c=0.3) a periodic orbit is found. sinusoidally-driven oscillator. An investiga-

S, ation of the influence of dry friction on the
This orbit lies to the right of the origin. chaotic behavior of two coupled oscillators
However, to the left of the origin there is shows that increasing the friction weakens the
also another small periodic orbit. These two chaotic dynamics of the orbits. During the
orbits lie in two isolated potential wells. chaotic motion of the first oscillator,
Decreasing a. causes the trajectory to move stick-slip transitions are observed.
from the potential well and start to wander
between the two potential wells (Fig.2). The REFERENCES
escape, however, from one of the wells to theothe israthr rre.The ossbiliy o it I. J. Awrejcewicz, W.-D. Reinhardt, Some Com-other is rather rare. The possibility of i et totQus-eidcAtrcos ora
occurring increases with a further decrease in ments About Quasi-Periodic Attractors• Journaloc n iof Sound and Vibration 139(2), 1990, 347.

,1. For example, for cr,=0.3, one of the pro-
jections of the Poincard map shows a very com- 2. J. Awrejcewicz, W.-D. Reinhardt, Quasiper-
plicated dynamics (Fig.3). iodicity, Strange Non-Chaotic and Chaotic

In order to understand how two oscillators attractors in the Forced System with Two
move in a chaotic manner, two time histories Degrees of Freedom, Journal of Applied Mathe-
(for relatively long time intervals of the matics and Physics ZAMP, 41, 1990, 713.
same chaotic attractors) are presented in 3. J. Awrejcewicz, W.-D. Reinhardt, Observa-
Fig.4. In this figure one can also observe tion of Chaos in the Nonautonomous System with
stick states. These states correspond the a Two Degrees of Freedom, Journal of Applied
very short horizontal parts of ,(t). Mathematics and Mechanics (in press).
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"Indirect" Time Series Analysis for -One-Dimensional
Chaos Based -on Perron-Frobenius Operator

Tohru KOHDAt and Kenji MURAOtt

K(yushu Universityt-and Miyazaki Universitytt
Fukuoka 812t and-Miyazaki -889-12t t, Japan

Abstract A unified approach to-limie series analysis for where (g, h) =f 1 g(x)h(z)d4x. The invariant density f*(x)
oie-diinensional. discrete- chavs is given whidh is-based on the which-playb a key rule in urindirect inetiud is the eigelnfuiic-
Galerkin approximation -to the Perron-F rube nius integral op- tion of PT belonging to the-eigeiivalue 1, that is, *.L
erator. The-proposed method gives approximations with high f*(). The autocorrelation-function is defined by v4k)
accuracy to statistics of various chaos. Numerical results for < xr k(X) > - < x >. The first term of the rhs of this
I/j6 power-spectrum of-intermittent chaos also-show -that-in equation is rewritten as < .zrk(.) .s (Pf(),r), wvhere
the limit of zero frquencies, tile observed exponent-5 of the FFT the abuve property of P, is repeatedly used. Let h,.jbe thle
power spectru -m-of long-time trajetories is in-good agreement eige.ifunctionl uf 1', wvith thle eigenkvalue! A. foi thic weloalute

not-with the Procaccia-Schuster's estimate but withi ours. problem Ph,(x) = A,h,(.s) [2]. If we canl expand xf*(x) as
1. InrtroduIction xf *(x) = Zj = i7A1z(), then- we have p(k) = E'2 u4', the
There are two kinds of time series analysis for long-time chaotic Furier Transfurm of which gives the power spectrum S(.-)
trajectories {xm}' ,O generated by a 1-d discrete dynamical_________()
system xm+l =-i(xn), -r:1= [0,1] -- 1. One of them is the Sfr) Z =
" tim e- average -technique, in which we evaluate certain statis- i=2 (I - A,z)(1 A'I)
tics-of a sample long-time trajectory -{xn}n ,O with-soIUC ifli-
tial value x =-xo ; the other one is the "ensemble- average tech- where A Iu=i,( h)adz=cpjr)wth 0l~ < i' 1.
nique" under the assumption that ris mixing-with respect to an Qono and Takahuashi [3] [1] demonstratdta l. rdcl
absolutely continuous invariant measure, denoted by f (x)dx. theory of P, plays an important role in di scussions of the power
W~e give a unified approach to time series analysis-for chaos by spectru~m. It is, however, difficult to find exact solutions of
such an-enisemble-atverage-techniiquie. cigenvahues and eigenfunctions of P.,, because P, has the in-

The time-average techinique which is a usual method t21 is re- finite dimensionality. Such a situation- led us to consider an
ferred to as the "direct method'. On-the contrary, the ensemble efficient algorithm -of the indirect method.

aveag tchnqu i a in o "idiec mehos-because there III. :-Galerkin Approximations to the Perron-
is no iieed -to directly calculate trajectories. Hence such anl in- F-beisO rao
direct netliod-is expected to play-an important role in thecoret- Let A be-a- function space which is spanned by a-vector ba-
ic-illy understanding chaos. In fact, the existence of f(x)dx sis function (X). -Each coinpoiient of 1(z), denoted-by 1.&k~),

peritsus-to-heoetiall caculte he nsebleaveageof is an appropriately chosen piecewise polynomial of at most
several -statistics by using the Perron-Frobenius operator, de- DderewoecmiaonprxitstoI()bth
inoted by P2. [3],[,]. This operator, however, gives no practically Gaherkin method [5] such as f'(x) - Fq~2 ), where the su-
calculating method because of its infinite dimensionality. Such perbcript I denotes the transpose vf teetof.Using £(.r),

as'ituation leads-us to consider anl efficient algorithm for sys- we get < z) W > f'(Pte.) x) Furtherilorc, Using thle
tematically calculating statistics which is based ontlie Galerkin Galerkin method -with T(z) on A, %%C dppro.Xmniate to T~l

approximnation to Pr, onl a suitable function space[5]. Numer- such as P7 (x) = ,'(z) which leads us to readily obtain
ical experiments demonstrate that tile proposed method can < XT k(X) >= f (~t~)x), where the NY(D-+-1) x k(Da+ 1)
give approximatioiis with high accuracy to statistics of various matrix A, is referred to as tile Gaicrkin-approxiinated matrix
chaos. of the Perron-Frobemus operator where N amd D are iiitegers

II. Perron-Frobenius Operator and- Statis- to be given below. Thme explicit formi vf-Ik is given iiinj Let
tics of Chaos Iii be the i-th right eigenvector of PT with thle eigenvaliie X,

If Y= T(X) is mixing with respect to f(z)dz, then for almost for the easily tractable cigenvalue problem P'.hs A %il,.
initial-value x = ze sequences czJ=0(an chaotically behave. The constructing method of A is as, follows. We divide
Fromn the Birchoff indivi1dual ergodic theorem, the time average I into X siibinltervals (I.)} with partition1 points {,:k=' Iat-

of any Ll function F(x) along a trajectory {Zm}- , which is isfying 0 = co < cm < c2 < < r,% =1 such that
defind byT = lmm. n=-' F(r-x),i equal almost ev- I = U' 1 I., In = [C~,,-cnI. The above Galerkin approxi-

erywliere to Lte enbemble a-verage of F(z) ovecr 1, defined-by inations-depend on the appropriate zelectionn uf (-.,= adl Uf

< F >= f, E(z)f'()dx. The direct time series anal3,sis is i)[s.A simple but efficient procedure, however, us uniitted
- based on using R. However, the socnsitic decndencc on ini- here for selecting {,,. Next, we take bases 1.k(Z) such as

tial conditions, one of chaotic properties[I], Prevents- u's from t0&(Z) =Pflk((Z(XlZ), 0 < k < D, I S u < N. Iii the
prediely evaluating T. On the other hand, tile indirert time above equation, XnX is tile char-ater-itic fmiction oif L, and
senies analysis is based on using < F >. We begin with re- pnk,(.) is the L-th order Legendres polnomil Which is or-
viewing relations between typical statistic-, and. P,. tliogonal to eadi other on I,,. For nist 0 f prac tical usage-,.u

Tile operator P2. i deied byIPf(x) Al(x - r(!i))li!,),d!i. use D 2. When r has a bounded inv Ariant densit%, thec tin
ror any Il functions of boumuded %ariations g(2-)-and Ji(x), P, tion .5(z), referred to d-s d. supplemlenltary fontuiul. is taki..
lias the important property % r) 4 2) (Pgz(x).Iu(.r-)), t%, he 1. On thle other )land. ihues an unmoded invaridmio
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density, s(x) is chosen torbe-a singular function which approx- Example 2 Let
irnates-to singularities of-the unbounded invariant density and
the inner product (g, h) must-be also replaced-by the weighted T() X+ UX, 0 <-X < X,

inner product (g~~h)~ fjg(x)h(z)w(x)dx wvith the weighting I(xz/1- ) x X, <

function , ) 2 x
IV. Numerical Examples whiere 7T(x,) 1, u > 0, 1 < z < 2. Thi map-generates inter-

Example 1 Let mittent chaos with the power spectrum i/gJ. Figure 3 shows

Iaz + (a + b -- ab~/b 0-< z < , = (I - 1/b)lft the power spectrum S(v) by our method (thme smooth solid line)
r(Z) = 6x )X and STmQ') with T = 21' and in = 100 by the direct method

- 1) 5p < ~ I(the-fluctuated line), each of which is in good agreement each

This map can generate periodic c havs fur suitable parameters. other in wide frequenm.) railgf. Iii applying vui iidlid, m;~
Figures 1- and 2 show f*(x)-and -the power spectrum ST(L') for used s(.r) -- -('"1 beause ihas the uzivundetf invariant
periodic chaos of period-6 which-are calculated by out method. density-with a (z - I)-th-order pole at E 0. In -this figure,
In this calculation, we take-{r"(0)})0=i as the partition points the broken line showsb the rroac_,ia and S._iu.,teis cbtinatt It,]

{}7'so that edges of the support of f(.r) will coincide with of the spectrum when i.goes to 0 MnhJi does nut _uin.d -well
the partition points. In the calculation of ST(v), the finite dis- with the former two.
crete Fourier transform of {p(k))"~ (T = 1, 024 x 6) is used 3
instead of using (1). Onm the other hand, ST,m,(LI) is obtained by \-Procaccia-Schuster's
averaging mn = 200 discrete -Fourier -transforms of trajectories results
of length T. The- spectrum .§T(v.)=is -in-good- agreement with 24-.. Indirect method
ST,.(v) except for fluctuations in -the latter./

~ iet method

-20.00.

6.0 a=0;5, b=4.1 *0 0

Z=1.0- Z__1.9
-Q

UI) 12.00-

8 . 0 0 -2 5 A..

80--4 -3 -2 -1

r~ ~*o0 og(f)
A- 400 -Fig. 3 Comparison of power spectra calculated-by using three

different- methods; for intermit tent chaos in the example 2.

0.00 0.20 0.40 0.60 0.80 1.00x

Fig. 1 Invariant density f'(x) (by our indirect method) for R frne
periodic chaos of period 6 in the example 1. [1) S.Grossmann and S.Tliomae, Z. Naturforsch.. 32a, 13.53-

0 zl .0, a=0-5, b=44 (perdiodic chaos: p=6)36(17.

C;. ~[2] S.J.Cliang and JAWright, Plmys.Rev.A. 23, 1419-1-133
(1981).

(n'D f[3] Y.Oono and Y.Takahmashi, Progr.'rhco.Phiys., 63-5 84
00 * 0D 1807 (1980).

a[4] Y.Takamashi and Y.Oono, Progr.Thmeo.Phys.. 71-4, 851-
Mi~._________________ 

85,4 (1980).

'o 01 62 o'3 6 o:S 0 01 0. 0- 0-405 5] T.Kohda, and K.Miirao, Trans. IEICE, B73-6. 793-800
(1990).

o z=14, aoz0.b--..1(periodic chaos p= 3
.46 IG .Procaccia and 1I.Seluster, Ph sRev.. A. 28-2. 1*210.

1212 (1983).
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Fig. 2 Power spectra .j7(v) (by our indirect method) and
ST..(v) (by the direct method) for periodic chaos of period 6
in the example 1.
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Constructive Ioplicit Function Theorei and its Application

Shin'ichi OISHlI, Masahide KASHIWAGI, Mitsunori HAKINO and Kazuo HORIUCHI

School of Science and Engineering, Waseda University

Abstract neighborhood in which implicit function theores
In this paper, a-new algorithm of tracing is valid. Moreover, the theorem gives a numerical

solution curves for the homotopy method is algorithm to calculate the implicit function in that
presented. The algoritha-is based on the neighborhood based on the simplified Newton method.
predictor-corrector method and guaranteed that Moreover, using the theorem, we present an
tracing soluti-on curves always succeeds. improved Predictor-corrector algorithm of tracing

solution curves. By the new algorith3. tracing
-l.Introductio-n solution curves of (1.2) is guaranteed to succeed.

Recdnt-ly the study- of the homotopy method have
been maue a great stride foe solving nonlinear 2.Constructive implicit Function Theorem
equations globally"'( 21. In the homotopy method, In the following, when a Banach space X i-s
for solving a nonlinear equation dire- _m of a subspace X, and a subspace X2, we

f'(x)=O, f:-Rn-Rn, 0 .-1) wro e X, when x is a sum of xl-( X, and X7 (X2 ,
an auxiliary equation g(x)=0 is used, having a as G .Moreover, By B(c;c ;X) w., denote a ball
trivial solution xe-E R6. Changing the equation with center c and radius -E in X.
g(x)=0 into -f(*)0 gradually, a solution of f(x)=O The conventional implicit function theorem can
is obtained by tracing change of the solution of (I. be written as follows:
0-. For the purpose, we introduce a homotopy iTheore2 11(lmolicit Funcetion Theorem)
equation with parameter t Let X be a Banach space which is direct sum ofl

h(x.-t)=0. h:Rnx (0.11-Rn, (-1.2) subspaces X: and X2, Y a Banach space. Uc:X an
where open set, and g:U-Y a C' operator. Assuce that

h(x,0)=g(x), h(x,I)zf(x). (1.3) there exists a (p, ,p2)(EX such that the following
Typically, the -following homotopy h is used: crnditions hold:

h(x,t)=(l-t)g(x)+t-x). (1.4) (Dg(x%.x2)=0,
Then a solution x- of f(x)=0 can be obtained by Othe partial derivative of g at (pi,pJk with
tracing-an implicitly defined solution curve h '(0i respect to the second parameter is homeomorphism.
from (xoO) to (x,lI). Then for sufficiently small -> 0 and 6 >0. the

For tracing such a solution curve, a kind of following holds true: -

= predictor-corrector method is known to be effective. An equation
In this method, a point on the solution curve is g(x-.,Xj=0. xz B(pz:6;X-z)(2)
moved along the tangent vector of the curve can be solved uniquely for xz with fixed x
(predictor), and correct an deviatior, of the moved
point from the solution curve h-10) (corrector) by, A map which caps x- to xz is called an Implicit
for example, the Newton method. However, the function. In this theorem, one can not estimate the
Predictor-corrector methoa has a deficiency such largeness ol F_ and 4 . To est.cate Ltm, we asi.nme
that the method frequentry fails in tracing solution that the Frechet derivative of g. Dg, is a-
curves since the Newton iteration is used in the Lipschitz continuou. Then the implicit function
method. Although theoretically we can avoid the theore, can he extended as fellows;
fal-lure of tracing if we choose a step length rthenrem 2' rnntte. -1vo er.'j, iujnthn Th--- =orof 7 1

sufficiently small, it has been said that to Let X be a Sarach spiee whieh is direct su, -if
estimate such a step length is iMpossible'"' .subspaites X- tre XI , Y Banaczh spice. rflcl an

In this paper, under the assuzption that the open set, and g'j -Y a Cl nperatrr. Assnme ttlt
derivative of h is Lipschitz rontinuuus, we snall fr- :het derivztive of g. r.4. is .x_:prh'
Present "constructive" implicit function thearex. By riti rT~rs. Moreover. =%nes.: t~at a f; P- II
the theorem, we can estimate the radius of a an,' a br3-& lin,-ir c;,Tra'lr A:X-Y ar, ft-vcOn ac-
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that there ex st r,'.d 1 and d2 such that the where A is an approximate matrix of Dh(x,). Then Xt

following conditi)ns hold: is determined to be [q], a subspace which is

010(p,,pe)i11 5, (2.2) generated by q, and X2 is decided-to be (q]l, an

®II-Dg%,p,p2)- A;' K, (2.3) orthogonal complement of X,. Here we note that in

HitA(',O)1I 6d,, (2.4) such decision, d, in Theorem 2 Is estimated Lo be 0.

@There exists A(O,.)-':Y - X2 such that Then A(O,.)-' exists if A is maximal rank.

II A(0,.)"'II : lid 2. (2.1) We now present the algorithm for tracing

Then if _v>0 and 6>0 satisfy- solution curves.

(+a s2+(X+d,) fr)i/+a(e+6)+K-d 2 , (2.6) LAlorithm 1](Tracing. olution Curves)
a (s d} <d2, ° (2.7) Let X be a E n *I, Y a Ei, h:X-.Y a C' operator.
B(p,; 1 ;X, )XB(pas;6;X2)CU, (2.8) Assume that Dh is a-Lipschitz continuous. Then we

the following holds true: consider to trace solution curves of the equation

An equation h(x)=O. Let xeE-X be a starting point on a solution

g(x,,x2)20, x2E B(p2; 6;X2) (2.9) curve, and q-iE X a vector representing a prediction

can be solved uniquely for x2 with -fixed x, E direction.

B(pi;s ;Xi) by the simplified Newton algorithm.E ®Let i=O.

Here we note that r and K represent the erre-s )Calculate h(x,-) and r=lh(x,)II.

of (p,,p2) and A. If r1K=O, the situation is like (Calculate an approximate matrix of Dh(x,) A, and

that of theorem 1. To s6ve a space, we omit the an error estimation K such that IlDh(x,)-A,1 ii K.

proof of theorem 2. @Let q, be a solution of the equation such that

q, E N(A,), Il-o, 11 =l, q- *q,>0. (3.6)

3.AnAlgorithm of Tracing Solution Curves )Decide X, and 7 to be (q] and [q]T.

In thic section, we consider to use theorem OCalculate s >0 and 6 >0 such that Eq.(2.6) and

2 to improie the predictor-corrector method. An Eq.(2.7) is satisfied. Here let d,=O and

outline of -the idea Is as follows. In what follows d2=I/{IA,(O,')-'II.

we restrict ourselves to a problem of tVacing a ®Execute the iteration such that

solution curve of a equation h(x)=O, h:Rn"-RA. y02x1+6 q1,

Thus X=-R"', Y=Rn and g=h in theorem 2. Let us (3.7)

consider a situation in which using a point x, near until 1Ih(yk)11 becomes sufficiently small.

a solution curve, a new point x.., on the solution )Let xi.,=yi and- i=i+l. Go to (. U

curve is desired to be calculated. For the purpose,
we calculate an approximation of Dh(x,) -A:X- Y using 4.Concluding Remarks

-for example numerical differentiation. Then we In this paper, assuming that the derivative of

calculate the tangent vector of the solution curve h is a-Lip-hitz continuous, we have presented

and deciG, 1-dimensional subspace of X, X,, constructive implicit function theorem which can

containing the vector. Moreover we decide n estimat, the radius of the neighborhood in-which

dimensional subspace of X, X2, to be the jrthogonal implicit function theorem is valid. Using the

complement of Xi. Then we calculate e >0 and 6>0 theorem, based on the predictor-corrector method,

satisfying Eq.(2.6) and (2.7). If we choose a we have presented a net algorithm of tracing

-redictor q such that 1q11;5 , we can obtain a new solution curve without failure in the homotopy

point approximately on the solution curve by the method.

following it-ration in hyperplane (p,+q,.): This paper is partially supported by the Grant
ys~p2 , yr.,=yA-A(0,.)-lh(p,+q.y), (3.1) -in-Aid for the Hinistry of Education, Science

where (p,,p2)=xi and the new point x,., is given by Research and Culture.
(p,!q,yN), N is sufficiently large. Tracing solution

curve is executed by repeating above mentioned References

process. (1) C.B.Garcia and W.I.Zangwill: "Pathways to

In the following we shall describe the algorithm Solutions, Fixed Points and Equilibria

more concretely. Let X be a (n+l)-dimensional Prentice-Hall(1981).

Euclidian space E"-, ;troduced a Hilbcr. space (2) E.L.Allgower and K.Georg: "Numerical

by the canonical inner product. Then we determine X, Continuation Methods" , Springer-Verlag(1990).

and A2 concretely as fellows. Predictor qE X is

decided to satisfy

Aq=0, q#O, (3.2)
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A COMPARISON BETWEEN FINITE DIFFERENCE, FINIE ELEMENT, AND ALGEBRAIC HULTICONFIGURATION IIARTREE FOCK APPROACHES
FOR ATCHIC AND MOLECULAR CALCULATIONS

DAGE SUNDHOLM AND JEPPE OLSEN
Department of Chemistry, University of Holsinki Theoretical Chemistry, Chemical Centre, University of Lund
Et. Hesperiank. 4, SF-00100 Helsinki, Finland P.O. Box 124, S-22100 Lund. Sweden

Abstract: The finite-difference, finitu-olement, and the algebraic where 01 are the occupied orbitala, 'S02 in the kinetic energy

multiconfiguration Hartree-Fock methods are briefly compared, and operator, Z is the nuclear charge, r1 2 is the interelectronic

some advantages and disadvantages of the approaches axe discussed, distance, I 0? is the wave function, and t1j are the excitation

operators (15).

1. INTRODUCTION In the FMllF method both the expansion coefficients of the orbith.s

(occurring in hij and gjjkl) and the coefficients of the

In traditional quantum chemistry and physics, the molecular or configuration state functions (occurring in r j nd rijkl) ate

atomic orbitals (one-elecGtron functions) are expresas'd as linear optimized. In the Hartree Fock method the number of configurations

combinations of global basis functions of the Slater (exp( r)) or is restricted to one, and thu density matrices are thus fixed.

Gaussian (exp(-fr
2
)) type. The truncation of the expansion leads to

a basis-set-truncation error (BSTE), the exact magnitude of which is

difficult to establish. With recent advances in the-treatment of the 3. THE-FD--CHF APPROACH

electron correlation, the BSTE has become a serious bottleneck in ab

initio quantum chemistry. The BSTE can be systematically reduced to In the-finito-difference (FD) approach, the Euler (Fock) equations

negligible magnitude by using numerical rather than algebraic are obtained from the energy functional (2), and the Laplacian is

approximation. discretized using n-point formulae. In engineering sciences low-
order (n-2-3) polynomials are mostly used, while to achieve the high

in the ntc bcal opproxiaatiun the nuwr. f ,.iLiuu ubitals) ace accuracy noodod in quantum mechanical problems, one has to use high

expanded in piecewise differentiable local basis functions, while in order approximations n=5 9/dimension). For each orbital i, the

the algebraic approximation global functions are used. In discretized coupled systems of non-linear Pock equations

engineering sciences low-ordor polynomials can be used as local

basis functions, while to achieve the high accuracy needed in 2 occ occ

quantum mechanical problems polynomials of fourth to eight order are -vi - Z/ri + 2 I( - Vii- CIO I 'A " r ( i

used. The numerical approach can be divided into at least two -- V. -j) Oj (7)

different classes, the finite-difference (FD) and the finite-element JOL

(FE) methods.
are solved. The electron-electron interaction potentials, Vii, are

In this paper, the algebraic, the finite-difference, end the finite- obtained using the Poisson equation
element approaches in quantum mechanical problems will be compared,

and some of the advantages and disadvantages of these methods will *

be discussed. In order to concentrate on the differences between %he V2 Vii- - O 4s j (8)

three approaches, we will restrict the discussion to atomic systems.

For molecules, there are numerical methods for solving various

local-density functional (LDF) equations using FD method [1,21, FE The Lagrange multipliers of equation (7), cij, which ensure the

method (3.41. and splines in 2D [5) and in 3D (61 based on one orthonormlity of the orbitals, are calculated as expectatio.

centre expansions. Fully numerical approaches to Hartree Fock values. The equations (7) and (8) are solved until the residual

equations for diatomic molecules using FD method [Z,7,81, FE -ethod vanishes and the energy becomes stationary. For simplicity, we above

19,10), end partial wave expansions (11,121 have been developed, assumed the Hartreo-Fock approximation. In the MCHF method, the

Multiconfiguration Hartree Pock equations fox diatomic molecules configuration interaction (CI) coefficients are also optimized. This

have also been solved by using FD method (2,131 and partial wave is done by constructing the Hamilton matrix of the chosen

expansions (12, 14. configuration space and diagonalizing it. After the diagonalization,

the potentials which now Include the configuration interaction are
recalculated, and the orbitals are rooptimized. This cycle is

2. THE MCHF METHOD repeated until, the changes of the orbitals and those of the CI
coefficients are negligible. A more detailed description of the FD-

For atoms, the orbitals are expressed in spherical coordinates MIHF method is given in refs. (16,171.

(r,6,9), as products of a radial and an angular part

m(i1) 4. THE ALGEBRAIC ZH4IF (MCSCF) APPROACH

In the-algebraic approach, the orbitals of the energy functional (2)

m are expanded in global Sister or Gaussian functions. The energy

The angular parts -I are spherical harmonics, while the radial parts function obtained is optimized with repect to the orbital parameters

R(r) are expanded in local or glubal basis functions. Using the and the CI-coefficients, with imposed orthonormality constraints.
second-quantization formalism with normalized wave functions, the The orbital and the CI parameters appear in the integrals and the

multiconfiguration Hartree-Fock energy is given as density matrices, respectively. The main features of the I-JCSCF
optimization will be described here. For details, the reader Is

occ occ referred to the literature (15,181.

E - E hij rij + , ijkl (2)
i~j i~kfikl ikl The variation of the MC energy function is described by two unitary

operators oxp(8) and oxp(t) for orbital and configuration parameter

rotations, respectively. When the unitary operators are applied on

where hii and gi.kt are the one and two electron integrals, and ri3 a given state, the transformed wave function will remain normalized

and rijkl are the elements of the one- and two electron density ad the orbitals orthonormal. The 9 and t operators contain the
matrices, respectively. independent variational parameters of the MC energy function. The

Taylor series expansion of the energy function wilf' respect to the

parameters of the 9 and t can be constructed, and at the stationary

hij - I *i(r) ( - %S - Z/r 4j(r) dr (3) point the first-order term (gradient) vanishes. The common choices
for solving the optimization equations are the Nowton-Raphson

, . procedure or the Hessian update methods (quasi-Newton methods)

g "ikl - I i(r1) I I (r2) (liz) #j~r2, dr} i(rl) dr1  (4) (19,201. The CI coefficients are usually calculated by using direct
methods instead of explicit diegonalization of the Hamilton matrix.

rij - <01 9ij I 0> (5)

5. THE FE-MEHF APPROACH

rljkl - <0 I ii kL -
6
jk El1 0> (6) In the FE approach, the orbitals are expressed in local piecowise

differentiable functions. We use Lagrange interpolation polyncmials

as basis functions (101. Similarly to the algebraic approach an
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energy- unction can be constructed in the numerical basis. However, Table 1. A :omparison between FD, algebraic end:FE methods
it is not possible to construct a fully orthonormal basis. The
number of basis functions is huge. A basis where the occupied
orbitals are orthonormal and orthogonal to those in the unoccupied FD Algebraic FE
space, and the unoccupied orbitals are non-orthonormal. can be
constructed. A transformation that rotates the virtual space into
that of the occupied=orbitals with out changing the -6thonormality Variational No Yes Yes
properties can also be made (22). By using this generalized Symmetric matrices No Yes Yes
exponential mapping, It Is possible also in the numerical case to Sparce matrices Yes No Yes
parametrize the orbital rotations like in the algebraic approach. Automatic optimization control No Yes Yes
The exact gradient and the vector obtained by multiplying the Second-order convergence methods No Yes Yes

Hessian matrix on the update vector can be calculated. The Numbor of two-electron integrals a n
4  

N
4  

n
4

optimization equations can be solved using the Newton-Raphson or Integral transformation No Yes No
quasi-Newton methods. The configuration interaction parameters can Well defined convergence with
be optimized as in the algebraic approach using the direct CI increasing size of the basis Yes No Yes
technique [20,21]. The numerical methods are discussed in more Orthonormal basis No Yes No
detail in refs. (22-24).

The FE-lH4iF atomic structure package was used recently in the a) n is the number of occupied orbitals and N is the number of basis
calculation of the electron affinity of boron (24). In-the largest functions.
calculation (Is inactive and 4 electrons in the 5s5p4d3f valence
shulls), the number of configuration state functions (CSF) in Dah References:
symmetry was 105447. The electron affinity obtained was- 0.2668(30)

eV as compared to the experlmontal value of 0.277(10) eV (251. 1. L. Laaksonen, D. Sundholm, and P. Pyykk8, Intern. J. Quantum

Chem. 27 (1985) 601.
2. L. Leaksonen, P. Pyykkb, and D. Sundholm, Comp. Phys. Rep. 4

6. COHPARISON (1986) 313; and references therein.

3. D. loinemann, B. Fricke, and D. Kolb, Phys. Rev. A38 (1988)
The FE and algebraic methods are variational, while the FD method Is 4994.
not. In the FD method, the variational feature is used for deriving 4. D. Heinemann, A. Ros6n, and B. Fricke, Chem. Phys. Letters 166
the Fock equations which then are discretized, while In the FE and (1990) 627.

algebraic methods the energy functional is first discretized 5. A.D. Becke, J. Chem. Phys. 76 (1982) 6037.
(expanded in basis functions) and then varied. In general, the FD 6. A.D. Becke, J. Chem. Phys. 88 (1988) 2547.
matrix equations are unsymmetric, while the FE and the algebraic 7. L. Laaksonen, P. Pyykkd, and D. Sundholm, Chem. Phys. Letters 96

approaches result in symmetric matrix equations. The matrices-of the (1983) 1.
FD method are more sparse than those of the FE method. 8. K, Davstad, Ph.D Thesis, University of Stockholm, Sweden (1990).

9. D. lloinamann, -D. Kolb, and B. Fricke, Chem, Phys. Letters 137

The FE and the algebraic matrix problems can also -be seen as (1987) 180.
optimization problems, which easily can be controlled automatically. 10, D. Sundholm, J. Olsen, P.A. Malaqvist, and B.0. Roos, in
after each change of orbitals the energy should decrease, otherwise "Numerical Determination of the Electronic Structure of Atoms,
one has to go back to the previous point and try again. This is not Diatomic and Polyatomic Molecules", ads. H. Defrenceschl end J.
true for FD method. In that case, the orbitals are adjusted until DelhaLle, (Kluwer Dordrecht, 1989) p. 329.
equations (7) and (8) are satisfied, and the energy may go up or 11. E.A. McCullough Jr.. Chem, Phys. Letters 24 (1974) 55.
down after each change of the orbitals. Second-order convergence 12. E.A. McCullough Jr. Comp. Phys. Rep. 4 (1986)-265; and
methods (Vewton-Raphson) can easily be used In the FE and algebraic references therein.
methods, while it is not obvious how to Implement them-into the FD 13. L. Laksonon. D. Sundholm, and P. Pyykk5, Chem. Phys. Letters
method. 105 (1984) 573.

14. E.A. HcCulloijgh Jr., J. Phys. Chem. 86 (1982)-2178.
In th numerical PD andPE methods, only integrals of the occupied 15. Three~rcent review articles by B.O. Roos, R. Shepard, and 1.J.
space are needed. All integrals are recalculated after each change Werner can be--found in: "Ab initio Methods in Quantum Chemistry
of orbitals. By doing this the storage and the computation of the Part II; Adv. Chem. Phys. 69; ad K.P. Lawley, (Wiley,
two-electron Integrals of the unoccupied space and the time Chichester, U.K. 1987).
consuming integral transformation (c N

5 
operations, where N is the 16. C. Froese Fischer, "The flartreo-Fock Method for Atoms", (Wiley,

number of basis functions) are avoided. low York, 1977).
17. C, Froese Fischer, Comp. Phys. Rep 3 (1986) 273.

The basis of the fD and FE methods cannot be fully orthonormalizid 18. G..F. Diercksen and S. Wilson (ads.), "Methods in Computational
because the number of basis functions is huge, while the-equations Physics", (Reidel, Dordrecht, 1983).
In the algebraic approach are usually solved in an orthonormal 19. R. Fletcher, "Practical Methods of Optimization", (Wiley, New

basis. The main advantage of the FD and FE methods is the systematic York, 1980) Vol 1.
convergence towards the limit of the model with an increasing number 20. J. Olsen, D.L. Yeagor, and P. J~rgonsen, Adv. Chem. Phys. 54
of basis functions. (1983) 1.

21, J. Olsen, P. JOrgensen, and J. Simons, Chm, Phys. Letters 169
In the FE and algebraic-methods the error of the energy is quadratic (1990) 463.

In the error of the wave function, while in the FD method these 22. J. Olson and I.. Sundholm, (to be published).
errors are of the same order. Therefore it Is incorrect to claim 23. D. Sundhotm and J. Olsen, Phys. Rev. A42 (1990) 1160; Phys. Rev.
that the accuracy of the algebraic approach is comparable to or A42 (1990) 2614; Chem. Phys. Letters 177 (1991) 91.
better than the accuracy of the FD method (26,271 even though the 24. D. Sundholm and J. Olson. Chem. Phys. Letters 171 (1990) 53.

energy may have the-same accuracy. The accuracy of a given property, 25. H. Hotop and W.C. Lineberger, J. Phys. Chem. Rof. Data 14 (1985)
the operator of which does not commute with the Hamilton operator, 731.
has the same accuracy as the energy In the FD approximation but not 26. B,11. Wells and S. Wilson, J. Phys. B: At. Mol. Opt. Phys. 22
in the algebraic approach. We conclude that the algebraic approach (1989) 1285.
cannot compete with the:FE method as far as accuracy is concerned. 27. J.W. Thompson and S. Wilson, J. Phys. B: At. Mol. Opt. Phys. 23
The comparison is sumarized in table 1. (1990) 2215.
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AN ALGORITHM FOR THE-LOCATION OF FIRST-ORDER SADDLE-POINT
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I. INTRODUCTION where bi and Vi are the-eigenvalues and

According to Eyring and Polanyi []; a eigenvectors of the Hessian H. Gi is the component
chemical reaction coordinateican be seen as-a path of the gradient vector along the eigenvector V:.
going from an-energy-minimum reactant state via a If the Hessian matrix H is indefinite with
-transition state to an energy minimum product state. one negative eigenvalue, then thequasi-Newton
The transition state is characterized by a maximum- step is a good search direction. But, if the Hessian
-energy-along the reaction path. This-station."y does not have this-expected inertia, then-the Hessian
:point is-maximum along the reaction coordinate and matrix has to be perturbed in order to obtain a new
-minimum in all other orthogonal directions. Thus, step calibration which is ascendent in one direction
:this first-order- saddle-point on-the potential energy and descendent along all-the orthogonal-ones. The
surface [2]-is associated to an indefinite Hessian new-proposed algorithm gives rise to an augmented
matrix-with only one negative-eigenvalue. quasi-Newton step.

The purpose of this paper is to propose an
.augmented quasi-Newton algorithm-to locate a first-
order saddle-point. The algorithmis compared to B. Augmented quasi-Newton step
-the efficient-method ofBaker [3] in-the study of the
Zmethanolysis of protonated methyl-formic-ester. The quadratic approximation Q(D) is only

significant near-the current point. A scaling of-the
direction step is then done via a-restricted step

II. ALGORITHM method. The displacement vector is chosen inside a
A. Quasi-Newton step trust region,

The energy E(x), a function of n real 2 (4)_

variables, is, atleast,-twice continuously
differentiable. A quadratic approximation of the
energy function around the current point x can-be w .:' a trust-radius R. Inside this trust region, the
considered as, transition structure search step is calculated via a-

maximisation of the quadratic approximation along
E(x+D) -Q(D) = E + Gt + DtPD an eigenvector VI and a minimisation of the

2(1) approximation along the other eigenvectors.
The solution of this optimization problem

where E, G and H are the energy function, the generates the augmented quasi-Newton:step
gradient vector and the Hessian matrix evaluated at
the current point x, respectively. D is a n Vdisplacement-vector around the currentpoint. D(k) V - 2 i +  V ,

The stationary point of Q(D) is-the quasi- DQ - -X____

Newton step: = (5)

The positive parameter X, is chosen such that
(i) the search direction is inside the trust region 2,

This step can be written as, (ii)-the augmented Hessian matrix is indefinite with
one negative eigenvalue. Thus, the conditions

D=- 2 i b,-X <0 and bi+ >0,i=2,...,n (6)
-bi 863



have to be fulfilled.
-IftheHessian matrix has-the expected inertia

and-if the-quasi-Newton step is inside-the trust cregio-nthen thequasirNewton step is selected.
OtNeise,-testep is:chosen on the boundary of
the7trust reogin with aparameter X solution of H

-R (7)( )Dt)- '-R2.0 ()8) 0 -

I~, 0
1maxibl, -b2) (9)

O~H

-II1. APPLICATION Figure 2. Methanolysis of protonated methyl
formic-ester. First-order saddle-point located by

The algorithm is used-for the location of a the algorithm of Baker.
-transition state -arangement-of the methanolysis of
protonated methyl-formic-ester (figure 1). The Forcing the algorithm to retain the right Hessian
results -are compared to thosederived from the inertia, the calculation of D without any guide, as
-method ofBaker [3]. given by the-trust-region method, can converge to

saddle-point structures which are not related to the
H -expected chemical rearrangement

IV. CONCLUSION

0This paper deals with an algorithm involved
H -in a transition-state arrangement location on an

energy surface. This algorithm solves the problem
_H of step estimation as an augmented quasi-Newton

H- 0 displacement by adding a positive shift parameter.
The efficiency is well illustrated by-a 18-atom
system associated with a very low curvature
surface.

One important problem inherent to the matrix
Figure 1.-Methanolysis of protonated methyl- inertia requires further more investigations. Based

formic-ester. :First-order saddle-point located by on the Hessian inertia, the D step calculation
the augmented quasi-Newton algorithm. involves a second derivative update which, at

present time, has to be improved.
The energy surface associated to this protonated
system has a-low curvature. From-a starting point,
which is not 1taken within the quadratic region of the REFERENCE
so1ution,-the algorithm-converges to the-saddle point
-(figure 1) after 20 iterations. The eigenvector [1] H Eyring, M Polalyi, Z Phy., Chem B12,277
componentsassociated to the -0.00139-eigenvalue (1931)
Well explain-the-flip-flop of the water molecule from [2] JN Murrel, KJ Laidler, Trans faraday Soc 64,
the hydrated-methanol to the methoxy ester group. 371 (1968)
Afteri 116 iterations, the algorithm of-Baker [3] [3] JBaker, J Comp Chem 7, 385 (1986)
converges to-a saddle point in which only the
torsional-angles-of the methyl rotation are
-concerned. Therefore, this critical point looks like a
complex between-ester and the couple methanol-
water (figure2).
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MOMENTUM SPACE QUANTUM CHEMISTRY

CALCULATIONS. PROBLEMS AND PROMISES.

MIREILLE DEFRANCESCHI JOSEPH DELHALLE~and
DSM-DRECAM-SPAS, CEN-Saclay, Laboratoire de Chimie Thdorique Appliqude, Facit~s
F-91-191 Gif-sur-Yvette Cedex (France) Universitaires N.D. de la Paix, 61, rue de Bruxelles

B-5000 Nlamur (Belgium):

The model of amolecule-in which-the nuclei and electrons are equations give way to numerical approaches in which Coulombic

assumed-to-be non-relativistic point charges interacting through interactions become tractable even fc, j lyatomic molecules [3] In

electrostatic (Coulomb) forces has been found- to provide a momentum space,-eq(1) becomes,

-satisfactory -description of molecular-properties- [1]. Ab -initio 2 -,'"

-calculations in molecular quantum chemistry most often mean solving ew 5[ (S( 2W())(p-)-~ " 2 2 q

the time-independent-Schr6dinger equation HTi'= EPi where H is

the Hamiltonian of a molecule based on-that model, 'i is the i-th -jW..*(0(p-q)] =O;

-wavefunction and E the corresponding energy eigenvalue. Even i

when complexity is reduced by considering only the motkn of the where the molecular structure factor S(q) and the interaction terms

electrons in, a fixed nuclear framework (Born-Oppenheimer W1j(q) are:

approximation),-the- inherent -mathematical difficulties due-to the

-multicenter nature-of the electrostatic interactions are such that S(0=1 ¢ptiq.(R) (3a)

solutions are not obtainable in explicit form.

Finding suitable-but manageable approximate-solutions- to the

-electronic Schrbdinger equation has thus-been a major preoccupation Wi.(q) = fdr(r)9(r)e' q=J dPt'(P) -(p-0. (3b)

-of quantum chemists. Central to attempts-at solving such problems is Among other advantages, these equations do not require coordinate

the Hartree-Fock (Bf) theory [1]. The essence of this approximation systems -adapted to the geometry of-the molecules to remove

-is-to replace a complicated many-electron case by a one-electron Coulombic singularities which make the the position space

problem-in which the electron-electron interaction is treated in an formulation numerically untractable beyond diatumi systems. In

average way. eq(2) the only singular contribution comes from the q 2 factor.

-Position and momentum HF eq ations. Numerical Procedure and Problems.

Restricted to closed-shell systems ,ith n electrons, the n'2 doubly In both position and momentum spaces, iterative procedures are

occupied HF orbitals p, are obtained in position space as solutions of necessary- to solve the HF equations. Starting- from a trial orbital

an integro-differential equation, (F - E) ( = 0, where the HF Qi()(p), an approximate orbital 04'1k
1~(p) is constructed after k+ 1

operator F is a one-electron Hamiltonian. It includes a kinetic term iterations of eq(2) rewritten as [4]:

and an effective potential itself comprising the electron-nucleus 2 1(k*I) rp (k)" ! _ dqq _ 
' ' 'I -

attraction and a Coulombic potential approximating the real (p) -- - E("] 2 . ) ()

electron-electron interactions. In atomic units, the equation writes as: q

Azr 412 r 29*(')(1 wg*q tk(j
()=--o9rt -"Lt 9 t4Jd2., 9(r)

2 ,r-R J i I r- (r )

W 9j()9,(Y) Numerical and computational problems associated with the

-rE '.t ij 9 (r) implementation of the approach for routine use fall in two main
ji categories : (a) numerical integration, and (b) contiol of the

Explicit solutions to eq(l) cannot be obtained because of the terms orthogonality of the numerical orbitals during the iteration steps

lr-Ruj-' and jr-r'lj'. In position space,-numencal solutions-can be Different integration schemes have been considered To

constructed for diatomic molecules, but not for polyatomic systems. advantageously cancel the singular q-2 factor in eq(4) by the

In such cases approximate solutions are expressed-as truncated linear integration volume element, Navaza and Tsoucaris [3] have proposed

combinations of basis functions (LCAO expansion). In spite of its the use of spherical polar coordinates. However, because of the

successes, the LCAO approximation experiences various difficulties convolution integrals, interpolation schemes are needed in these

(truncation limits, nature of the basis functions, etc.) which are not coordinates since arguments (p -q) do not necessarily belong to the

entirely controllable [2]. Formulated in momentum space, the IIF grid points. Another point of view has been to focus on these
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convolution integrals and treat them via a miore economical fast 4. N :. Svartholm, Ark. Mat. Astron. Fys., 3,& n' 7 & 8
(1947).

Fourier-transform procedure, but at the expense of an approximate 5. S.A. Alexander, H.J. Monkhorst, Intern. J. Quantum Chem.
-treatment of the q-2 singular factor [5,6]. Variants (7,81 based on the 32 (1987)-361.
FPock transformation (10] have also been proposed to dcal with the 6 S A Alexander, R L Coldwell, H.J. Monkhorst, J. Comput.

Phys. 26 (1988) 263.
infinite limits of-integration. Computational tests [10] in the case of 7. W.-Rodriguez, Y. Ishikawa, Chem. Phys. Lett. JA , (1988)

t515.
the helium atom have shown the importance of accuracy and 8. Y. Ishikawa, IL. Aponte-Avellanet, S.A. Alexander, Int. J.
convergence of the integrals and, at present, none of the approaches Quanitum Chem. Symp. 22 (1989) 209.

9. V. Fock, Z. Phys. 98 (1935) 145.
so far attempted has been satisfactory enough to bring the momentum 10. J.Delhalle,_M. Defranceschi, Int. J. Quantum Chem. Symp.
quantum chemistry calculations beyond a stage of prematurity. 21 (1987) 425.

11. P.O.L6wdin, J. Chem. Phys 1a (1950)365.
Ortlonormalization also raises problems. At cach step, the new 12. L.-Dewindt J.G.-Fripiat, J. Delhalle, M. Defranceschi, J.

iterates 4 ck+O(p)s need to be renormalized and orthogonalized to Mol. Struct. (Theochem), in press.

-form true canonical 11F orbitals [ 1]. Great care must be exercised in 13 M-Defranceschi, M. Suard, G. Berthier, Cumptes Rendus
Acad. Sci. 296 (1983) 1301.

selecting orthogonalization procedures, for instance the so-called 14. M. Defranceschi, M. Suard, G. Berthier, Comptes Rendus
L~wdin's symmetric orthogonalization procedure [11], pervasively Acad. Sci.M (1985) 1405.

15. J.LDelhalle,_J.G. Fripiat, M. Defranceschi, Annales So-.
usedin quantum chemistry, mixes all the orbitals simultaneously, Scien . Brux., J.M. (1987) 9.

16 M -Defranceschi, J Delhalle, Eur. . Phys., .1 (1990) 172.
tends to contaminate the iterates, and impairs the convergence of 17. .. Fripiat, .Delhale, M. Defranceschi, in Numerical

iterative steps [12]. Schmidt orthogonalization does better but looses Determination of the Electromc Structure of Atoms, Diatomic
track of the symmetr of these orbitals. Reformulation of eq(4) inc a and Polyatomic Molecules, M. Defranceschi, J. Delhalle

(eds.)NATO-ASI, vol. C271, (Kluwer Academic Publishers,
form with symmetry and orthogonality constraints would be very Dordrecht, 1989), pp. 263-268.

valuable. 18. J. Delhalle, J.G. Fripiat, M. Defranceschi, Bull. Soc. Chim.
Belg. 92 (1990) 135.

Prnk es of the proach.

In spite of the above problems, increasing number of results have

been harvested with momentum space quantum chemistry

calculations.

Fully numerical HF orbitals for a triatomic molecule have been

obtained for the first time [13] with a procedure similar to that

originally proposed by Navaza and fsoucaris [3]. The qualitative and

quantitative advantages of using high quality numerical HF orbitals to

go beyong the HF level have also been pointed out [14].

With trial orbitals j(O)(p) expressed as linear combinations of

gaussian funclons, it is possible to work out the first iteration and

write the first iterates €?i )(p) in terms of transcendental functions

(e.g. Dawson function); the only numerical steps left being the

normalization and orthogonalization. An analysis [15] carried out on

the first iterates reveals that, by the virtue of its integral form, eq(4)

imparts the right asymptotic behaviour to the first iterates i(1)(p) at

large and small values of It'l. Recent investigations [12,16-18J on

atomic systems of increasing complexity (H, He, H', Be, B+, etc.)

indeed show significant improvements, qualitative and quantitative,

in energy and wavefunction properties. Thus, already with a first

step,j it is possible to correct for the deficiencies of orbitals expressed

as truncated linear combination of basis functions and produced by

standard quantum chemistry packages.
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DETERMINATION FROM EXPERIMENTAL MEASUREMENTS OF TRANSPORT

COEFFICIENTS AT THE DIFFUSION TIME SCALE IN A TOKAMAK
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Abtu the knowledge and understanding of the particle and 4 ;s the toroidal flux of the magnetic field B,
energy transport in a tokamak-are of crucial interest to-obtain Bo is the magnetic field at a fixed point r = Ro,
controlled fusion. In fact, the confinement and stability of the plasma ne is the electronic density,
cannot be ensured without a whole comprehension of these aV
phenomena. Our aim is then to determine numerically the transport V - '- where-V is the volume enclosed by -the magnetic surface p,
coefficients which govern the- equations of conservation -from-
extraneous -informations contained in experimental data. This is and <SI> is a source term.
achieved by a 1D1/2 representation of the resistive MHD equations In the -diagonal" model, the particle flux is
added to a least square formulatioh of the constraints. This optimal 2 ane
control problem is then-solved using the-linear quadratic sequential re =-D<V p> - -

method and finite elements for space discretization. ap
-Conservation of energy for electrons:

I. THE EOUILIBRIUM AND TRANSPORT MODEL 3 V +_5T31 /3Pe) +a(V'(Qe + 'kTeI~e))

At the diffusion time scale. the momentum conservation equation 2V'L/at" -

reduces and the equilibrium assumption holds at each time ( cf. Ref FeaPe

[1] for a complete biblidgiaphy ).In an axisymmetric configuration, = V'(- - a(Pe-Pi) + Sohm + <S2>) (3)

it leads to the following 2DGrad-Shafranov equation: where: ap
LT =jtV) (1) Pe = nekTe is the-electronic pressure,

where: "Te is the electronic temperature,

T is the poloidal flux of the magnetic field B, k is the Boltzmann constant,

=-( -- )---(--7") is an elliptic operator, Q K >
oar pror az iior DL Qe = iKe <V 2 p>  is the "diagonal" heat flux,

Jt is the toroidal plasma current density, and a(PePi) is the equipartition term,

IO is the magnetic permeability in air. Pi is the ionic pressure, Sohm is a source term due to the Joule
. . .. .. effect,

I -,." Sohm- . (C27) CV)
Soh =" " lVO V'C32 D)p ap (- p

Fie.1&.l Flux lines = D, il is the resistivity, C2 and C3 are geometric coefficients,

obtained from and <S2> is a source term.
IDENTD) for an Conservation of energy for ions;

t I * equilibrium at
JET tokamak. 2  V'5/3Pi) V'(Qi + kTiFi))

1 Ft Pi
r~app

( V'( + a(Pe-Pi) + <S3>) (4)
~where :

"- - Pi = nikTi is the ionic pressure,

Ti is the ionic temperature, ni is the ionic density;
for reason of neutrality, ne = Zni and Fe = Zri, where Z is the mean

The determination ofjt from experimental data and the numerical charge of ions;

resolution of equation (1) with appropriate boundary condition is QI =-K,<V-p>-- s the dagonal" heat flux for ins and <S3> s a

operated by the software-IDENTD (cf. Ref [1][2][3] ). This gives ap
source term.

the location of the nested magnetic surfaces where T is a constant as
shown in-Fig.l. To determine the resistivity -1, we use the resistive diffusion

The averaging of the conservation equations on each magnetic equation for the flux derivative,
surface leads to the following ID system (cf. Ref [1]): D.' a lip C2C37'.. 0(

Conservation of electrons: t 'a 2 =  (5)
at app 3 app--(V'ne) + (V're) = V'<S 1> (2) and the averaged Grad-Shafranov cquation:

at ap

where: -pC2') -lI0V 7 > (6)

p (4-)- l2 labels the magnetic surfaces,
RBO
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Boundaryconditions: (7) 4.-NIvIERICAL RFSUL_&

Dne 'DPe =p
o '(0,t)- 0 The validity of our tool-has been checked-by-the following

a)p -ap- ap
ne(Pmax,,0 Pe(pmax,t), Pt(pmax,t)'are given, and either the procedure : for given DKe, Ki, i1 and initial state, we-first integratetotal current Ip(t) or the tension by lap V(t) are known: the transport equations and then try to reconstruct the coefficients

from initial and final conditions. The behavior of the algorithm has
C2'I"(pmax~i) - 2 riolp(t) from (6); or been studied for both-exact and perturbated measurements. First

71P VC2C37' results are presently-olitiined during discharges of the European
-)%,( - .)(pm ax,t) =V(t) tokamak TORE SUPRA, seated in Cadarache (France).

5. CONCLUSION
2. THETNVERSE PROBLEM

Those preliminary results show that the method allows to identify
At each time, we can calculate the equilibrium and determine the transport coefficients in a way consistent with full 2D equihbnum

flux lines by the software IDENTD. The averaging technique gives and experimental data. Great improvements.-in understanding

the geometry-p_(I), V(p),-C2(p), C3(p) of the magnetic surfaces, transport phenomena are made possible and itremains to rely those

the profiles nem(p), Tem(p), Tim(p), obtained from experimental coefficients to a global physical theory.
data by Abel inversion on the geometry of the flux lines, the current Acknowiedgement the authors are grateful to J.Le Foil who is at

density <J!t> asa result of the identification procedure used n -the origin of this work for many helpful- discussions about this
-r -problem.

IDENTD, andthe profile Y'(p) by solving equation(6) with the REFERENCES
boundary condition T'(O,t) = 0. The idea is to solve the equilibrium
problem at times t l and t2 and then try to determine the transport [1] J. BLUM : Numerical Simulation and Optimal Control in
coefficients-D,-Ke, Ki and il for which the equations (2) to (7) lead- Plasma Physics, Wiley/Gauthiers-Villars, 1989.
from the initial state at time ti to the final state at time t2. [2] J. BLUM et al. .-Problems and methods of-self-consistent

reconstruction of tokamak equilibrium profiles from magnetic
Setting u =[D,Ke,Ki;q] and y = [ne,PePi,T'], the problem (P) is and polarimetric measurements, Nuclear Fision 30, 8, 1990.
then to minimiZeover (1i,y) solutions of equations (2) to (7) the [3] J. BLUM, Y. STEPHAN: Identification of the plasma current
following cost ftnction: density in a tokamak, 5th IFAC Symposium, Perpignan 1989.

J(u,y) - 2ne(.,t2)-nem(.,t2)12V [4] J. L. LIONS: Contrfle optimal de svstmes gouver s par-212- des (ttiations aukxd6rives partielles Dunod 1968,

2 VKT 2
r '(.,t2)-T'm (.,t2) 12

?Kia2Ki 2 2nE a12 (8)

rlp1 V2ITp2
where thellastvfour terms are due to a Tichonov regularization
technique, the K's and s's are- weighting factors, and V =
L200,PmaxD.

3. NUMERITCAL METHODS

The problem (P)-is an optimal control problem equivalent to the
determination of the saddle point of the following lagrangian (cf. Ref
[4]):

L(u,y,p) =-J(u,y) + <F(u,y),p> where-F(u,y) = 0 represents the
set of the state equations (2) to (5); the adjoint state p their Lagrange
multiplier, and-<q,p> the scalar product in L2 ]tl,t2[x]0,PmaxD).
The optimility conditions for (P) give:

-Lz = 0 for all z, (9)

or < p, z> = -> z which determines p, and the gradient

dJ a ,. DJ DF
T- +<Du u u '  (10)

After a linearization with respect to u and y of F, in the same way
the cost funetion J becomes quadratic, and we finally derive a
discrete formulation using the finite element method. The problem is
then solved by a conjugate gradient algorithm at each iteration of the
Newton procedure.
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STABILITY PROPERTIES AND ASYMPTOTIC STATES

OF A 2D TEARING-UNSTABLE PLASMA

B.SARAMITO and E.K.MASCHKE

Universit6 Clermont-Ferrand II Assoc. EURATOM-CEA FUSION
DNpartement-de Mathdmatiques D.R.F.C., C.E.N. Cadarache
F-63177 Aubibre, Cddex (France) F-13108 St-Paul-lez-Durance, Cddex

-Ahb.ra. - We-investigate numencally-the-nonhnearly -saturated- The velocity and-the magnetic ficld-are related to 4 and-i" as

single-hellcity tearing instability of a visco-resistive current-carrying follows:
plane plasma slab using a 2D spectral code. The ratio of-viscosity to V = V x ez , B = Vy x ez
resistivity is fixed kv,'r I - 0.2). The equilibnum stav. depends on the We choose periodic bouhdary conditions in the y direction

-coordnate only, perturbations are supposed to be periodi in the (sometimes imposing an additional symmetry) and take

y-direction (period-L) and independent of-the z-direction. The 4' = 44' = i 0 at x=:El.
-Lundquist number S is-chosen as-bifurcation parameter, and we For the-numerical calculations, X -is also-an unknown- of the
investigate solutions with different fixed values of the Period L by problem, with X = 0 at x = :t1.

varying S. As already proved [2], we can mathematically justify the existence
-Choosing a sufficiently low value of L (L = Lo), the first branch of of bifurcation, making use of compact operators.
the set of solutions -bifurcating from the given stait. equilibnum is The equilibnum magnetiLc field .orresponding to the-flux function
numencally-found to be stable up to high values of thebifurcation Vcq, given above, is parallel to the y-axis and changes sign at -x = 0.
parameter ( S = 106 ).-Passing to a new value L = 2L 0 , that same When-the instability sets in, a magnetic-island appears (see the

branch presents-a symmetry breaihg. For a period L =-4L o ,-that representations of curves y(x,y) = constant in the figure).

branch-becomes unstable but a lower- branch is found stable. For the problem of linear stability of the equilibrium we look for
Moreover, depending on-the choice of the-initial conditions, the solutions expanded in Fourier series.
evolution code may-yield spatially very complicated transient states. exp(cot + imky) with me IN (1)

k = 2nrL (or nr/L if we impose symmetries in the y-direction).

A pseudo-spectral code is used to solve our-equations, with
I. THE 2D TEARING INSTABILITY Fourier-Galerkin decomposition in y, and Chebyshev-tau

approximation in- x, together with implicit or semi-implicit

We bnefly recall here the physical and mathematual model [I],[2]. dist;retization s%.hemes in time. We also impose symmetries in the
Let Q = ]-/2 , +1f2[ x JO, L[ be an open set-in IB2 . The two directions x and y.

unknowns N, 4', co -obeythe following equations:

- (V.V + Vxd!5 /) = 0dx II. BRANCHES OF STATIONARY SOLUTIONS

-A( + S (a Aj") -dx a - d 3  y =0 II. 1. Structure of the stationarv solutions
x dWe consider three different values of the parameter k, namely:

where X A , and Vcq is agiven static equilibrium magnetic k = 2.5, k = 125, k = 0.625, corresponding respectively to

flux such that lengths L, 2L, 4L in the y-direction.

'Veq (x) = - (l/oc) log(ch(ccx)). To each number m of formula (1) we associate a value S(m) of
v and I are the (constant) viscosity and resistivity, respectively the parameter S , which corresponds to a bifurcation point where a

(v/r = 0.2), and S -is the Lundquist number (bifurcation branch of nonlinear stationary solutions (labelled as "branch m")
parameter). bifurcates from the equilibrium.
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Ourmain results-are represented in the figure-and may be

summarized as follows-:

For the=length Lo (k = 2.5), the branch 1 has been found to be
__A d

numerically stable. Taking into account the imposed symmetries,

our computation yields only a part of the magnetic island as shown Ve
schematically at the bottom of the figure (the lines inside each box

represent the separatrix of the magnetic field configuration). / " - I .625
The branch 2 for length 2Lo (obtained by symmetry in the y- ->s

direcio n from the branch 1 corresponding to length- Lo) is again

numerically stable, but it exhibits a symmetry breaking. the A
For length 4Lo ,-the-branch 3 (obtained by symmetry-from , 

branch 2 corresponding to length; 2Lo) is now found to be b--

numerically unstable, with solutions converging in time towards the k,- 125
(stable) solution of the branch 2- of length 4LA. I -

II. 2. Sensitivity to initial conditions 2L.
Choosing some initial conditions in the vicinity of a stationary stable AA

solution,we have sometimes observed periodic oscillations in time, Li "
with-a very slowly decreasing amplitude. Moreover, if we start / -"=2.5

away from a given stationary stable solution, the evolution of the /

system presents numerically certain-spatially very complicated - S
transient states. These phenomena will -be investigated in later

work.

I-- 'I | I 1 | •I

Reternces ' --- " "
I -------------...-.. J L---------

[1] E.K.Maschke and B.Saramito, Turbulence and transport

associated with saturated tearing-modes. In: "Turbulence and- -branch I branch 2 branch3
Anomalous Transport in Magnetize d'Plasmas",-J).CresilIon and . . . .

M.Dubois Eds., Editions de Physique,- Orsay (France), -1987.

[21 B.Saramito, Thase d'Etat, Universit6 Paris VI, 1987.
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HIERARCHIC FINITE ELEMENTS-FOR MINDLIN PLATES

LUCIA DELLA CROCE and TERENZIO SCAPOLLA
Dipartimento di Matematica Dipartimento di Matematica
Universit. di-Pavia Universit. di Pavia
1-27100 Pavia, Italia 1-27100 Pavia, Italia

Abstract
Ev

The Reissner-Mindlin model describes the deformation of a = v

plate-subiect to a transverse loading in terms of the normal (
B

displacement of the midplane and the r6tation of the fibers t 2(1 + v)

normal to the midplane. T e model is-widely used for plates The components of stress at a given point are linear and ho-
of small to moderate thickness. mogeneous functions of the components of strain at the same
It is well-known that the numerical approximation of the point and viceversa (see, e.g., [51). Denoting by u, v, w the com-
Reissner-Mindlin plate with standard low degree finite elements ponents of displacement we have the relations between strain
leads to solutions that are very-sensitive to the plate thickness, and displacement:
For small-thickness the numerical solution is very far-from the au
exact one. The phenomenon is referred to as locking. Several ezz -

non-standard finite element spaces and techniques- have been tV

devised to overcome such a difficulty. We recall, among oth- aIyOw
-ers,-reduced and selective integration, interpolation and projec- zz

tion techniques combined with-non-classical formulations like 1 (aw +av
mixed or hybrid approaches. As far as we know only low or- = -+ O)
der element, generally with degree 1 or 2, have ben tested for 1 (Lu +w)

Reissner-Mindlin plates, both-for standard and non-standard == z +  z)

formulations. 1 (LO + au)
In recent years high order finite elements,-known as p finite ele- y= 2k aO + Y
ments, have been introduced andsuccesfully applied in several In the Reissner-Mindlin theory two new fields 4,j and_4, are
-fields, e.g.,-for elasticity and Kirchhoff plate problern. High introduced. These fields represent the rotation of thecross-
order elements haveshowntobe robust and abletoabsorb sectional planes to which, respectively, the z-axis and y-axis is

locking phenomena-in the case of nearly incompressible mate- normal:

rials. In this note we present some numerical results obtained u = -zL(x, y)
with-a family of hierarchic finite elements with degree from 1 v = -z2(X,y)

to 4 for the solution of Reissner-Mindlin plates in the standard -

formulation. We show that the locking of the solution does not
appear when high order elements are used. Through the Reissner-Mindin hypotheses the total strain en-

ergy becomes:

1. Derivation of the Reissner-Mindlin model U(w, 01, 1)

Let us consider a thrce-dimensional body occupying a region L E13  f 2 )  ±I- 2ufS1 lzP 2 lv

V. We assume that the body under consideration is isotropic. -

The potential (or strain) energy per unit volume is given by + ( i 1g + 21x)2) dzdy

=A(ez + e,1 +-) + 2(1+ +k) . ((wI/ _ 0)2 + (W1. - 2)) dxdy(e2., + ' '+22 eo
+ S e z + + + .1 ) where k is the shear correction factor.

where eZSe..,eZ,el,eZ,efl/ are the components of strain Taking into account the external load p we get the follow-
and A and tp are the Lam6 coefficients, constant characte;iz- ng variational formulation for the Reissner-Mindlin model for
ing the elastic behaviour of the body. The coefficients can be plates:

expressed in terms of the modulus of elasticity E and the Poib.

son's ratio V:
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U(wi01g, 2; V)0,02) ible materials (see [4]). In this whay we present some numerical

results obtained with a family of hierarchic finite elements for

-12(1 /2 /. + 0 02/v- the Reissner-Mindlin plate in the standard formulation. Hier-

archy of-finite elements means that shape functions are added
+ (1/42/l, + 02/,,01/.) to increase the degree of approximation, leaving unchanged the

1 -~ previous functions. The functions used are based on the family

+ 2 (@l! + 42/=)(tP/ + tP2/=)) dxdy of legendre polynomials. This class presents good properties

Etk from the point of view of roundoff error accumulation whith
2(1+~:v) J 0 \

(0 - w/,)(tP - respect-to-the increase of the polynomial degree. The family

S(q2 -wD)( - v)) dzdy - f p dconsists-of finite elements of degree from I to 4.
Referring to the classification of the shape functions suggested

Setting = (OL, 02) the-previous problem can-be stated in the by Babu~ka [1] as nodal, side and internal functions, we give in

following~way: Table 1 the number of sha e functions of each type for general
value of the degree p.

SFind ( ,w)_E 0) x He' such that d. nodal f. side f. internal f. total # f.
V E tk I _- , 1: 2
12(1 )1+ v - 9110_ (p, V) 1 4- -

2- 4 4 - 8

[V( ,v), _(Ro) 2 x H -3 4 8 - 12
4 4 12 1 17

where 5 4 16 3 23
6 4 20 6 30

A+,) f ( ,//x + €/s /up4 4(p- 1) (p- 2)- 4p

(p - 3) + (p-2)(p-3)

+ 2 (1i/. + 0q/)(O/v, + 02)) dzdy. Tablel: Number of shape functions for different degrees

We have-written a code where shape functions with degree from
2. Numerical approximation 1 to 4 are used. The hierarchic structure of the functions allows

easy extensions to higher degrees.
One of the advantages of the Reissner-Mindlin approach is the We introduce two finite dimensional spaces -I, and V, resp-tc-
fact that the variational formulation allows-the use of contin- tively for the discrete rotations and displacement. The approx-
uos (C) finite elements, since only first derivatives appear. We imate problem can be stated in the folk wing way:
recall that in the.Kirchhoff model conforming- approximations
require C' finite elements. It is well known that the numeri- -Tind (?', Wh) E 4-x V such that

cal approximation-of the Reissner-Mindlin plate with standard [ EL3  -A(- h) + Ek " pvh
low degree finite elements leads to solutions that are very sen- 12(l - v)2 ) 2(1 + L,) - 0

sitive to the plate thickness. For small thickness the numeri- (
cal solution is very far from the exact one. The-phenomenon Vl h, E ' X V

is referred to as locking. Several non-standard finite element where
spaces and techniques have been devised to overcome such a f .
difficulty. We recall, among others, reduced and selective inte- = / /+

gration, interpolation and projection techniques combined with h/tfl aT'

non-classical formulations like mixed or hybrid approaches. As (0 1 02/V 02/,Y-1z)

far as we know only low order element, generally with degree + 1- h ,,h +
or 2, have ben tested for Reissner-Mindlin plates, both for 2 ( m , + 0"/ , drdy.

standard and non-standard formulations.
In recent, years high order finite elements, known as p finite
elements, have been introduced and succesfully applied in .sev-
eral fields, e.g., for elasticity and Kirchhoff plate problems (see
[1,2,3). High order elements have shown to be robust and able
to absorb locking phenomena in the :ase of nearly incompress-
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&Numferical -resultsQlt0
10 'Qctrc

A series-of numerical-experiments on several plates-with- differ- 9
ent-physical data-has-been per-forme-d.Due to the lack-of space

only a -fewvof them-are-presented. -Comparison are made with
70 - -

the-theoretical results computed by Timoshenko [6). 4
For each-jest, among others, displacement at the center C of -

the plate and the strain energy have been computed. Let w(C) 5
denote the exect-displacemei. at-the-center of the-plate and 1i -0 -

error)_-de fine element solution. The -relative- displacement -0

w(C) 
__

'The exact strain eaiergy- was not- available. Out of the discrete Fig. lb &nofrwdo-M

strain -energy art extrapolation has been made in order-to get
an-accurate value of the energy. Let-E denote such-a energy, ie

let Eh -e the discrete energy. The-relative energy norm- flCfl of 9\-- _

the erorc =w - wj, can-be-expressed-in the following wy o.\- -- _

-III .0 X 10.6

We consider-a square plate-with uniform- decomposition. On \-- J
the-boundary the plate is clamped. Due-to the simmetry we ~
have solved-the problem on a quarter of-plate. We have consid- 301

ered a-unit plate-with thickness-0.1 (thick plate), 0.01,-0.001, -- - - -- - '

0.0001. The last vala~e-is related to an ultrathin plate. We have IO{-

considered this valuc-:-. order -to assess the stabilit so o 78

tt -the locking is l~kr when small thicknesses are-taken intoFi.I

account.

In Fig.la-d we consider-a plate with thickness t = 0.01. The

freedom is shown. The results are givenfor values of the degree

p= -1, 2,3,4. so

1001

S- j1.

jFig. Id
The prvosrslsaerltdto a moderately thick rilatc.

873 itue ho ht o the rate of convergence is

0 50 too 1-40 Wi 40 cl sluton- xhiits stonglocking. For p =2,3,4 we note

i. aeVdmfta good behaviour. The respective displacement zzzlut.-ons ap-

degrees of freedom. As expected, the better co-avergence is
achieved for increasing values of p.



I-Fig.2a-d we consider a plate-with thickness 0.001. We show, Q 00

in- lag-log scale, -the -relative -energy norm error =vs. number 0...-

of-degrees of-freedom. The results-are given for values of the .

degreep 1, 2, 3,-4..

Q - t--o001I 10,

. ~00

1010I.1 100
. Fig. 2d dtocreuizztion step

In the previous pictures a thin plate is considered. The dis-

crete strain energy- is a good-global indicator since it takes -into
loll
10.2 104' 100 account a distributed solution. For p = 1 we observe no conver-

Fig. 2 distiation tep -gence. The behaviour is far worst than the case with thickness

t= 0.01.

102aO00 In Fig.3a-d -we consider, for a fixed- degree of approximation
p = 2, different values-of the thickness. We show, in-log-log

-scale, -the relative error for the displacement vs. number of

degrees of-freedom, freedom.

a -. .Q2. t.0O.l (thick plhte)
5 102

10,1

. . . .. ,10,t

102 101 100

Fig. 2b discretintion step
10.1

lotQ3-,.001 102
12t102 10' 100

4Fig. 3a Log(h)

Q2 --O0

lot 0 .

S100 .-. r
U . -,10'

10' ,

100

102 10' 10

Fig. 2c 6sCactiflniep

102'0
102 101 O

Fig. 3b tLog(h)
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Q2.tOOOI1 In Fig.4a-d we-consider,for a fixed degree of approximation
102.

p -- 4, different values of-the thickness. We show, in log-log

degrees of freedom. freedom.

lot _--

t 101

100

Fig. 3c Log9(h)
102~

QZ . toOOl -.0.,

1020

.......................]102 10' 100

................... .jFig. 4b Log(h)

- 10'

1210'1 100 100
Fig. Zd-Loj(h)

In th rvospictures we consider the numerical- approxima-

tio-.wth ixe dereep = 2 and we change the value of thick-

ne.Tesqec ffigures well shows that the convergence 101102 io0'. 100

slows down noticeably when the thickness is reduced. The log- Fig. 4c La(i)

lcg-scales; allow-to evaluate -the different-rates of convergence 10Q4- t=oo00

(note-the different scaleson the y-axis). In particular, -for -the

smaller thickness, the locking of the-numerical -solution is well .

exhibited.

Q4 -t. 1 (tIhick plte) .

100 .

1.02,'..- 0

..--- ,. 4 - 1210'1 100
102 - -- 3. Fig. 4d-Lgh

10~ We now consider a fixed degree p = 4 and we changethe thick-
ness. We observe that, with such an high order element, con-

10~ 1 vergence is achieved even for thc smaller value of thickness
10.2 101 100 t = 0.0001 This shows that the high order element is able to to

Fig. 4aabsorb the phenomenon of locking found for lower degrees (see

Fig.3a-d).
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VISUALIZATION OF ELASTIC WAVE

YAN ZHAO and ROSEMARY RENAUT
:Dept. of computer science Dept. of Mathematics
Arizona State University Arizona State University
Tempe, AZ-85287 Tempe, AZ 85287

Abstract A finte difference method is used to solve the system of 2-D elasuc Then (3) can be expressed as an explicit system
Wave equations. The solution is expressed as the displacement of a particle from its
original position. By means of computer graphics we describe the solution as a 3- u =
D wave surface, and describe its propogation by real time animation. In this way, Iani UIm + (r/P)[l m-"l.- m + gm l-I 2kf1 (nk)
we can observe the phenomena described by the system of equations more easily +1 - 1 m + I +

and in a much more obvious fashion than with conventional methods.-Here, we vim vn
1  (r/p)[g1 l i.1 + hi m+l- h, in-I + 2k f(nk)

use an explicit method to solve the equations in timc, this makes-real time v' An In 1 - M
calculation, modeling and rendering possible. The algorithm has been implemented += (e+2w)( - Un )-+ r % -
on an IrisAD personal graphics workstation. Ir Im + 1+1 m U-I + r e I m 1 I M-gn+1=l + %P _v + Un _& ]

gn,. +wr[1. i+1'n -lm +Um+l -

1. Introduction hn+l = hn'l +er(un -u.1)+(e+2w)(V.1  -0
Im Im Art 1- M i m+ I m m-rn (5)

Computer graphics provides an excellent means for exploring the elastic

waves visually. Here we shall give an experimental procedure for modeling and U ngl =OUn  w n+ + U -)

rendering the elastic wave and its propogation in real time. To make things easier Ulm= Im + 0.5k (Ulm +=~ vn  0.Sk + V
for demonstration we choose some typical parameters for the wave equation. That m Vn +0.5k ( (6)
will not have any influence on the method to express the solutions. Here we should observe that the suluUon points of all the functions V,

Mainly, we discuss solutions obtained from second order finite differences. V, u, v, 1, g, h are uncoupled in pac. domain, but using this n,ethod they an be
-fe suppose that at begining the wave surface looks like a plane, nothing happens divided into two coupled sets uf punts. This mcans that the soluton for each

until an external body force is applied. The external body force car act at any time. tuncuon has been separated into two independent groups along ch axis, the group

last any period and be at any place. The source function can be given in any form o even points and the group of odd points. -The value at one even point only

you want. We suppose two kinds of boundary conditions. -1 > a free boundary altects other even points. The value at one odd point only affects other odd points

condiuon,-2? • a fixed boundary condiuon. For the propagation of the wave, this phenomenon means that if an external body

force acts at an even point it will only propagate among the even points. Equation
2. 2-D elastic wave equations (5) and Diagram I can explain why this happens to u and v. The equations for u

The equation is written as a system of second order wave cquauuin fur and v gitcn by (5j in the x direction arc wnsidered here. We suppose that the u

the displacement vector Ukx,t) = .tUx,t), VtX,t)j, see Ill. Here U(x,t) describes the wave begins at ulm and the v wave begins at vIm, then they affect fl~l m . fl-I m

horizontal displacement, V(x.t) the vertical displacement, and x-(x, y) within the . g1+1 in - l-1 m, hl+l m, hl-I m at the next time step After two time steps

domain of interest the waves only propagate to ulm , ulI+2 m, ul-2 m and vim. VlI+2 m, -l- 2 m,
PUtt = t[(Ux + Vy) + 2wUxlx + [w(Uy + V x)ly + pfl nothing will be affected at u+I1 m. ul. m and vl+I m,vl.l . From equation (6).
PVItt= (w(U y + Vx))x + [e(U x + Vy) + 2 wVyly + pf2 ( ) e see that functions U and V are the ODE solutions of the function u and v in

The Lame parameters ec=kx) and w=-w~x) is well as the density p=pkx) t,mc, and thus this uncoupled property is also observed in U and V. However, we

can vary-in space. The external body lorces are denoted by-the soune iuntun.oun Gi t,ul .uc these kind of solutions to demonstrate our visualization technique by
fl(x,t) and f2(x,t). if we substitute taking only the even points or only the odd points, depending on where the

f" CJ(Ux+Vy) + 2wUx external body force acts. But observe thet because of this uncoupling, the Cottrant

g-= W(Uy+Vx) (2) Friedrichs Lewy condition is not satisfied and thus these solution are not truely

h = ec(Ux+Vy 3)+ 2wVy. physical (3]. We will discuss this in more detail in a later paper.

the equations can be ;itten as
Put = fX + gy +pfl 1n+ll+l m

Pvt=gx+y9 +pf 2  Ifn+llm - un+ 2 1m un+21+2 m, un+2 1 2 m

ft = (e+2 w)ux + Cvy (3) unlm - gn+ 1+1 im
gt=w(V u+u) vnlm gn+l 1 I

ht = cux + (e+2w)uy. hn+1 m i m v n+2jm v,1+2 m •vn1-2 m

In these equations, (uv) = (Ut,Vt) represents the velocity of the material particles. hn+l 1-1 I

Diagram I

3. Finite-difference inethod
Here we use the 2nd order approximauon for the first dervatjues. If a highc acl.ura . aulutiun ,s desired, an approximation for thc first

u'(x0 ) = [u(x0 fh) - u(x0 .h) I /2h (4) denvative oforder 4 can be used, see [2).The formula is given by

Let u'(xo)=[.(16)u(xo+2h)+(413)u(xoeh).(43)u(xo.h)+(116)u(xo-2h)l h (7)
unm= uI Ax, m Ay, r t) Ax=Ay h, At =k, r k/hm AThis will exhibit an.ost the same uncoupled properties as formula ().

0 < i <L, 0 < m <M, *>0. Initial values and boundary conditions can be chosen as desired. Here,
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initial-values are chosen as zero. Two kinds of boundary conditions are chosen
here. One is the free boundary condition, or zero Neumann boundary condition. The
other the fixed boundary condition, the usual zero Dirichict boundary A 0ton A
Initial values:

At 1=0 and tok: U=V=u=v-_f=g=h=0. (8) .

-Boundary conditions:
A. Free boundary: Fig. I Fit. 2

Un MYj Un _Un Vn V n The triangulated virface is then obtained byjo. -ng one pair of diagonalU-M I-- n0 -- ~i4 17] points for each square of the solution mesh. This-is shot' 'in iue2 hnin 0- m U0mU-' VLnLI m_' Om~ I M hIn -model is used for getting color at each vertxo \juinms n

Un Unn n -n unGouraud shading is used for each triangular-patch rendering on the sufficc. The
10 t, m- -I il m; doulebuffer is used for rendering, for a better results in continuous cl:

I ., NI I ~ M-1n Vnn %.,n Because we use an explicit method for the-time variable t he time

n pf ? spent for deating with the equations allows for real time animation.I M I IM-1' ?Lmii Li l mi' Onm InM'
,nN n~= 1  n -i~ '6. Example

Itnh tn hn hn n n n The area of interest chosen here is 0< x< -1,O0< y < 1, so that-Mh=-I M I-N-11 10 =11 ' LLn h L-I il I 0 m h I M Lh=-, and IA.Chose M =_20h 0.5k= 0. 8 X= =1Is .2

B. Fxedbou(9)y Fixed boundary conoition (10) and external bod y force function (11) are used.

_Un0= N = 0, V7 0= Vn ~,Pictures-I - 8 show the vertical displacement function-V(x, t) at the times for n
U0~~~~~~~~~ NJ loe letc0en rpgtstwad h pe ih onrmmm=O ~ ~ = 0.16. 48, 64. 80. 112. 160, 192, 256. Here we see-that-the wave begins from tht

n_ =U n n Ln
_U n Li nL in 0. loe t efimtonmean ofa coputr dries e iht iomrvitrreaino

nn n u n 0

4. Paam0 e s Lt o 7.nitConclusionoluio
Acualy we can 

have snypoawncr soac fun tio and arealiz ofsi 
a ep o og ih ra

iners that weerca wesshs to cbsane Ase some simple txmpes thew howietr areifeen o
seece asp 0~ = II M) 0wxy l. ho en bod fore is seece as .7ifrn xenlfre-feto h lsi ae n o ls ae

Actully Picur 3a Pictur 4n-prmtr 
ore uao- rao

F ro h te solto ofthve Aboe dimplcne eqationesye, e aget PitrerPctrc
theldectd points of they= wav) e u rfa l desc ri sled by as~h~k n

axs taeol th eve pont or oly th odd point to form eahsoltio Picture I Picture 8
Meh, = dee din on Y whte the tenalbod fore ac atx an even poin -or ant od

point.

S) A-RRethllandeFriinga h int ~fe'r~eMthdatraglro p tchae suioy of thaove disfseown eion sysur e cange P ctu f're nua 5qaun JonPiltue an6os
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MODELLING AND SIMULATION APPROACI TO STRUCTURAL
REARRANGEMENT OF DISTILLATION COLUMN

M.Atanasijevid, R.Karba, B.Zupan&d, F.Bremlak

Faculty of Electrical and Computer Engineering

Tr a ka 25, 61000 Ljubljana, Yugoslavia

ABSTRACT - The paper deals with mathematical component on j-th tray and y..(t) the vapor composition of
modelling of industrial continous distillation column for i -th component upon j th tray,'L .(t), L (t), V (t) and
separation of four - component mixture composed of furfural, V It are input and output hqudj and vapor flovv rate., on

methanol, acetic acid and water. The aim of the work is j-th tray with compositions x (t), x *(t), y (t) and
optimisation-of existing device-in the sence ofproduct quality y (t).

improvement and rminimisation of energy consumption. The A lot of methods can be used-to describe te relationship
model was examined by the aid of digital simulation language between liquid and vapor compositions of mixture at defined

SIMCOS. Presented results show that the best-solution lies in pressure and temperature. Especially in the absence-of reliable
construction change which have good influence especially to the vapor-liquid-equilibrium data the following equations are very
bottom:product and so to the energy consumption of the device, popular in chemical engineering:

y ii (t =, ..

1. Plant description i = 1 ..... 4
where K., is-distribution coefficient of -th component at j-th

Presently the input mixture is fed to the device at the tray-of t e col,.nn.

25 th tray and_ furfural is taken out at the 28th tray as a side The analysis of measured data and simulation results,

stream product. The second product is methanol which is which we obtained by the aid of digital simulation language

separated in the upper part of the column. As it is shown in SIMCOS, gave the following conclusions:

Figure-1, furfural mixture is kept in separating reservoir-leaving - Concentration of methanol in the flow rate DM i' higher than

the device with flow rate DA. Furfural is heterogeneous the prescribed value so the-G could be reduced.

azeotrope. In mentioned reservoir it separates to heavier - Concentration of furfural in the flow rate DA is inside the

component, which leaves the system with flow 0 and represents prescribed values.

one of:the final products while-lighter component is taken to the - Concentration of furfural in bottom flow B is too high thus

bottom reservoir where it mixes with the industry environment demanding the vapor flow rate G to be enlargd for 10 to 15%.
flow. The energy needed for the operation of the column is (Normal value: of furfural concentration in bottom product

supplied in the form of wa-er vapor flow G at the bottom of the were approximately 0.17%. Due te niore rigorous ecological

device. demands this values have to be reduced to 0.05 -0.1%.
Simulation results and experiments on the plant have shown

2.-Mathematical modclli.g and simu!ation of existing that for such improvement vapor flow rate G should be enlaiged

device for 10 to 15%.)

It is obvious that the most important variables of the

system are input and output flow rates and their compositions.

So we started- modelling procedure by writing component and-6

mass balances for each tray of-the column ( for the simplicity of

notation the condenser is numbered as the 4 4th plate):

d( x.P.j(t). .() t -L(~.()+
dC-

dt MY (J)i-

L (t)x (t) - L (t)x (t)+

$11] s i SI so ij I03V si )y $11pW - Vso~j(tQY 6,ji(t)

j = ... ' i = i ... ,4;

where L.(t) and V(t) denotes the liquid and vapor flow cate3 Fiaue . Sdecatk rcprecntation of discuzed distillation
from the j-th tray, x i(t) the liquid composition of i-th column.

879



These -conclusions indicate-that vapor-flow rate G should 3. Structural rearrangement of distillation column
be enlargedbecause of ecological demands meaning that energy
consumption wvill of course be also greater. Nothing really In the second step of modelling we decided to examine
effective -could-be therefore made-with- this column structure. some possibilities-in structural rearrangement of the device. The

best result -in- this -phase -was -given by-the solution in Figure-1.
Th le column is now fed back with the-lighter furfural -component

I~Wir~II mn c ivi~i r-~ ~i '.~ r~i ~from the separation reservoir on the 2 6 h tray. This of course

changed -mass -balances of 26 h tray aid-reservoir in which
is entering. The concequence is, that also-feed flow rate F-and
its concentration- is changed. The-steady state values of this
changes can-be evaluated from previous equations.

- The simulation was made for changed working conditios-of
the plant and-results are shown in-Figures 2 to 4 for input-and

Figurc 2. Input and output. fv fatC3 Vr OIL d:V1U. output-foiw rates, furfural and methanol. Fromn this we can-see
that the steady state- composition of all-trays-in the column are

M l- - r__ ______ n changed and that this rearrangement caused the lowering of
concentrations of furfural in the bodtom-flow B to the prescribed
values, leaving- the other- requirements fulfilled.

4. Conclusion

Experiments on the plant showed that the proposed
* - ~ ~ assumptions were justified. We also assume that the model

rigurC3.a. Cuncentration of furfural -a thei,, Gt and could benefit with--the introduction of nonconstant distribution

7t" ndy coefficients, what will be needed in later work for the
improvement of- the existinlg control loops. Digital simulation

T- M-M-7-language SICOS we used was very efficient tool for -solving
:: complex mathematical- models with-a large- number of -variables,

63. nonlinearities and measured data and saved- a lot of time and
6. work on-the real device.

Nh
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NONLINEAR FINITE-ELEHENT ANALYSIS OF
SLOW CRACX GROWTH

XIANGQIAO YAN, SHANYI DU and-DUO WANG
Harbin -Institute of Technology, Harbin, 150006, P.R.China

ABSTRACT-In this paper, a material-nonlinear finite rield expressions are -listed as follows[13]:
n lement program of the quasi-three-dimension problem u=e.x+U(y,i)
developed-by authors of this paper is described from vV(y,z) (2-1)
a few respects. Further, it is illustrated-how this w=W(y,z)
program-is-used to analyze-plane problems. Finally,
a finite element analysis-of the process-of slow where e. is uniform action strain in the direction
crack growth is made for a center-cracked specimen of x.
subjected' to monotonically increased- load vntil -the Strain-displacement relations are
point of fast fracture -is reached. Numerical results
and experimental results are-compared.Variation laws z==u,x , cy=v,y , ez=w.= (2-2)
of some-fracturemechanics parameters are given with y y=v.ztw.y, Y =w.= uzt'.z , 7 y.u.y+ v.Z
the-stable crack growth-.

-It can-be seen that the strains corresponding to
I . INTRODUCTION displacement expressions (2-1) can-be classfied into

two parts,one part not depending on the coordinates,
Inca cracked body with toughened materials or in the-other depending on the coordtnates, i.e.

the-plane-stress state, the crack will grow with mo-
noteni Ally and slowly increased load-before the Z I.= e. 0 0 0 0 01 (2-3)
fast-tracture is reached.Many scholars attracted [ ]I=[O cy c Z yZ Y-ZZ Y Xy]
their attention to it.They have done a lot for it € 1 .

and that total strains are
Experiments(8,91 showed that there is the stable
delamination crack growth in some stacking sequence 6[]o+ ( F3I
composite laminates. Hahishi[10] ever pointed-out
that while considerable progrcss has-been-made in A-ording to the displacement finite -element method,
understanding the delamination mechanisms in we have
composites incorporating brittle or quasi-brittle U= E NiUi (2-4)
matrix materialsthe problem of toughened polyer ma- V=Z NiVi
trix or metal matrix composite, in which large scale W= E Ngs
yielding -is associated with the-cracking, requires
special attention. where N1 are interpolation functions" 43 , Ui,V, and
In view of these, a material-nonlinear finite ele- Wi nodal displacements

ment program of the quasi-three dimension problem Introducing the symbols:
was recently developed by the-authors (111. Using
this~program, not only the nonlinear stress-analyses, )
the delamination onset and the stable delamination
crack growth for composite laminates bt -the nonli- then the following results can be obtained from for
near finite element analysis of stable crack growth mulas (2-2) and (2-4):
process for plane cracked body are made. Here, the

program is-described from-a few respects and a finite
element analysis for a-center-cracked specimen sub- [Z],= (B][6 1* (2-5)

jected to monotonically and slowly increased load
until the point of fracture is reached is take, for whero (6 ]* is the olement displacement vector, [B,
example to check it. Finally, the variation laws of for a triangle element, is the (5A9 ) strain matrix
some fracture mechanics parameters are given with- whose expression is deleted.
the stable crack growth.

B. MATERIAL-NONLINEAR FINITE ELEIENT EQUATIONS
I . DESCRIPTIONS OF PROGRA

Here, it is supposed thac the individaal lamina ma-
Here, a material nonlinear finite-element program terial in composite laminates ;Z homogeneous.

[II] of the quasi three dimension problem deeloped orthotropic and after yielding.follows Hill's ortho
by the authors will be described from a few tropic plasticity theory.referreJ to the Ref (12).
respects.

In a material coordinate system,incremental stress-
A. GEOMETRICAL DESCRIPTION strain relations can be written as (121:

The origin of the quasi-three dimension problem can [d o I=[C],[d c 1 (2-6)
refer to the Ref[131. Its schamatic illustration and
simplified model are shown in Fig.l.lts displacement By coordinate translation for (2 6A. incremental
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stress-straini -relations -expressed in the structural- (-6 n 2-? ta h rgnlsrse
coorinae-sytemcanbe otaied s folow: -depend-on-not only the-stress-state-before immediate

-Edal= (C],(d~ Z 1 (2-7)- loading -btthe str,%ins (dT_ I" due to Imeie
where loading. Thus,thr,-original stress-vector (1-trans-

-Ed a]= (TI*'(Edo-3J -lated by-origiral stresses- (d~i-] depends on-the-
- immediate strain increment Cdc]1. Thc following-

-[dId E (T3](de]- finite-element equations-can -be derived by-uslng
I ],[T[C II:stress-strain -relations (2-15) ,strain-displacement

a -- TT~s-te-tan~~t.OP- atrx woseexpesson-relationv1-2-5) and the variation- priciple:

is deletedp-o l'keieI~h(Roi[RA 1 (-8
:Introduingi the -followini-symbols: where the subscript-i expresses--the ith step loading

incriuit-;-d5 i=d~ - '= 5 (-8 (K the-elastic structural stiffness matrin, in

91 ," -which-an-element stiffness-matrix is

a series-cf derivations-are-made to-find II= r IB]rIU].Idv: (2-19)

-Ed8 ], -the displacement vector due to the -ith -step
(d~-]=1d5] 0 +I~ 3-loading increment;

=ItZ P !C1 C15 ECzdre.e+[7I1*Id 2I's -(2-9) IdR]- the load vector due to the ith step loading
in-which -increment;

(D~)0 C.. nu). (mn=I.2;~' 5) (2-10) WidR0  the original stress-vector translated by

and-deo ~ ~ ~ ~ ~ ~ ~ (t exrse h]icerp fe.EU1 in which an element c-iginal stress
and eo xpresesthe incemen ofe 0.vector is

It is noted-that. in a-mateziai coordinate system,

terns of the elastic-CIe] and-the plastic matrix

[IP, i.e.
-Becusetheoriginal stress vector IdR( a e )h

(C]~= CJ.(C] (211)depends on the immediate strain increment Id 3',
and- the immediate strain increment Ed UJ" is also

Similarlk,-in-a structural coordinate system,the cia- unknown, equations (2-18) must be solved by using an
stic-plastic matrix (IS), can-also be expressed in -iterative method[143. After finding the approximate
terzs-of -the elastic matrix Me) and the plasticId 'tecluainfr laoId(a)].s
matvix (Cip, -i.e.

(CO=(l-EP(2-12) -IdR(-A c )It*= I IBT~j'[~]zde ]dv (2-21)

[n which ICT( C. LOADING.AND UNLOADING CRITERIA

(C), IT~IC](T3Since the local unloading around the crack tip due
to stable crack growth occurs, loading and unloading

Introducing the-symbols: problem-are necessarily considered in simulating the
stable crack growth.

(Ti.). (.*ia.). m~n1,.*' S) (2-13) The yieclding equation for a homogenous, orthotropic
0D-p (C..i )p material can be expressed in terms of the effective

stress
then the-following results can be obtained from for-
mulas (2-10) and (2-12) 2

2g(o ih)-F4G4,j 2 h= (2-22)
- I~.,= U].-UI,(2-14)

By substituting (2-14) into (2-9). one can find where what individual symbols in (2-22) mean can
refer to the Ref (12).

Ed 5-2 dUI.(611 1(-5 Introducing the following symbols:

in which 3
[d a Io(--dl ].-E],(d C P (2-16) fe90-1h' g 1,u h) (2-23)

and in which
(dFI= EI-. i3 U14 U~ss CiO1.,de. (2-17)W

According to the formulas (2-15). we knotf, if the 2
ofe ar readda rgnl tesste h (04Go4.)-[dU1. re egaded s oigial treses~henthe3

materilal-nonlinear problem is translated into the
material-linear problem possessing the original then the yielding equation can he expressed as

stresses [d~l(14J. It can be seen from formulas
f(a 1j, h')=6'.h*20 (2-24)
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where the original value-of h'.h'., is a plane strain problem, are substituted by new

3 appropriate constants, these equations=will become
h'. 2(F.4G,+Ho) (2-25) the equilibrium equations-of a plane stress problem.

Thus, a quasi-three dimension finite element program

Thefollowing relations for a homogeneous isotropic can be used to analyze not only a quasi-three-dimen-

sion problem,if the appropriate -limitations to boun-

material exist:
dary displacement conditions of a quasi-three dimen-

3Fo= 3G.= 3Ho= Lo= o= No (2-26) sion problem-are made. but also a plane problem.

and
.F0= 1/(202 P1. NUHERICAL SINULATION-OF STABLE

PLANE CRACK GROWTH-

where a-y is the original yielding stress, and Here, the material-nonlinear finite element program

equation (2-25) can be translated into developed by the authors will be used to simulate

h'o= a Y (2-27) the stable crack growth process of a plane crack
A rectangular plate, made of 2024-T3 aluminum-alloy.

At this moment, the equation (2-24) is the original with a centered line crack.is subjected to monotoni-

yielding equation-for a-hemogeneous,isotropic cally and slowly increased loading up to the onset
material, of fast fracture. The geometric configuration-and

Generally, the-total strain increments are classi- the loading condition of the center-cracked specimen

fied into elastic strain increments and plastic is shown in Fig.2.

strain increments. i.e. The geometrical parameters. i.e.. length 21. width
2W,thickness B. initial crack size 2ao are listed as

[d ]= [dg ],+ [dZ )p (2-28) follows:

According to the equation (2-24). the-unloading cri- 2L=27in. 2W= 12in.. (3-1)

terion can be expressed-as B=0.062in.. 2a.=6in.

f(a-jj, h')<O or d&<0 (2-29) The material property parameters,i.e..Young's

modulus. poission's ratio. yield stress and linear

At this moment, we-have hardening modulus are

(di ]Z =[9]EdU1' (2-30) E= 10324Ksi, u =0.33. (3-2)
and ao = 54.20Ksi. H' 259.7.|Ksi

dE ]=0 (2-31)

in which The finite element mesh and two paths for the

Is]= [Devaluation of J-integral are referred to the-Ref(12.

And-the loading criterion-can be expressed as Here. the load-crack size curve measured by-experi-
ment. as shown in Fig.3(a). is taken as the input

f(a j, h')=0 or dZ )0 (2-32) data which is used the govening equation.The com-
parision of the experimental lcad-displacement curve

At this moment, elastic strain- increments [di ). pith the numerical load-displacement data. shown in

are still determined by (2-30).-while how plastic Eig.3(h) proved that the numerical results here are
correct.

strain increments [di ]v are determined can be
referred to the Ref [12). A. .-INTEGRAL

D.ON TREATHENT OF PLANE PROBLEMS Fig.4 showed that J-integral varied with crack size.

It can be seen that the values of 3-integral along
A material-nonlinear finite element program of the the two paths are almost the same with the maximum
quasi-three dimension problem developed by the Ru- difference being ;3.7%.This result was in agree
thors can be used to analyze plane problems. ment with that reported in (1.3). Refs [1.3] point-
Displacement expressions for a plane strain problem ed out that J-integral is still conseriatise in the
are condition of small amount of crack growth. Reftl)

u=O reported that 3-integral of far field for a compact
v=V(y,z) (2-33) tension specimen is in agreement with Jintegral of
W= (yz) near field in the condition of (a-*o)/(W-a.)<O.06.

ilere. (ac-a)/(W-a.)=O.03. Moreover. it can be
It can be seen that if the limitations U(y.z)0 and seen that J-integral is proportional tothe amount

eo=0to the displacement expressions (2-1) are made. of crack growth in the origin of the stable crack
then-displacement expressions (2-1) become the dis- growth. This result proved the two parameter charac
placement expressions (2-33). Further. that the terization of fracture toughness properties proposed
appropriate limitations to material constants, in- by Shih.et all].
cluding the elastic constants and strength constants.
of homogeneous, orthotropic continua, are made will B. CRACK OPENING ANGLE
cause these continua to become homogeneous.isotropic
continua. And it is noted that if the constants in The two definitions of crack opening angle are. one
equilibrium equations. expressed by displacements.of is the average crack opening angle. denoted by COA
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or -a, which is defined as the ratio of the crack Element Methods (Chinese). Science-Publishing
openin 'g displacement-at-the original crack tip to House, 1979.
the total amount of crack growth that has occurred,
while-the-other is the crack tip opening angle, de-
noted -by-CTOA- or a 1, which is defined as the ratio
-between crack-opening displacement at-a short and
fix ed distance A behind the current crack tip and A.Z
Inthis-work. A is taken-to be the spacing between
nodes located along the-path of crack growth. The I ---
results of COA and CTOA are plotted in Fig.5. It can
!m seen that COA-and-CTOA are both varied with the
sta-ble-crack growth, but the range of the variationZ
-of-CIOA is-smaller than that of CGA. from numerical
values, thedata-of COA snd CTOA reported here were
almost the same as those reported in-Ref [7.

t. CRACK-TIP FORCE

The technique o 'f releasing the crack tip forces is
often used in the numerical simulation of stable
crack growth. The result of crack tip force Fe is
shown in:Fig.6. It can be seen th~at Fc is basically (a)
constant with the stable crack growth. This result
proved the mixed criterion of cid and Fc proposed by
Kannunen, et~al[2].

R. CONCLUSIONZ

In this-paper, a material-nonlinear finite element .- cC OO

-program -of the quasi-three dimension problem deve- - ' 0,-atr
loped-by the-authors is-described -from a -few-respe- a,.d.-0

cts. Further~it is illustrated how this program is
used to analyze plane problems. Finally, a finite '' ,-
element -analysis of -the process of slow crack growth ~i'IUer
is made-for a-center-cracked specimen subjected to utUuY

monotonically increased load-until the point of-fast
fracture is reached. Numerical results and experi- Wb
rental results-are compared. Variation-laws of some
fracture-mechanics parameters-are given-with the
stable crack growth. Fig.1. Schematic illustration-of geometrical- configuration
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HAMRU'ON'S-PRINCIPLE AND THE QUATIONS OF MOTION OF AN ELASTIC SHELL
WITH AND WITHOUT FLUID LOADING I

Cleon E. Dean and-Michael F. Werby
Naval Oceanographic and Atmospheric Research Laboratory

CODE 221, Building 1100
Stennis Space Center, MS 39529-5004

Abstract-It ha- proven quite difficult to cmploy exact elastodynamic
theory to describe the behavior of elastic vibrations on aroitrary bounded
shells. In addition exact theories preclude-direct interpretation of particular
features observed due to the excitation o" elastic shell surfaces. A rather
inieresting approach to describe surface vibrations may be obtained by
constructing-a Hamiltonian in some approximate fonn that assumes some
correlation of motion of the outer and inner-shell surface. The class of
theories that allow- for this approach are referred to in applied mechanics e
as shell theories. The interesting feature of this Hamiltonian approach is o
that one can add various physical mechanisms to the Hamiltonian such as Y
extensional motion, rotary inertia, shear distortion, fluid loading, etc., and
thereby study the individual contributions to-resonance patterns while
adding physical-insight to the fundamental processes that occur on shell
surfaces. We develop shell theories in this manner and examine various
contributions via-Hamilton's principle. We believe that fluid loading has X
by and large not been treated adequately in the past, and we place particu-
lar emphasis on the treatment of that contribution to this work. Fig. 1. Spherical-shell showing coordinate systems used.

.. x. xdi, i,,' .(2,
I.-INTRODUCION ,=.1+a)U , ('2, b

a adO(ab
The usual assumptions in shell theory (due to -A. E. H. Love 2) are:

(i) The thickness of a-shell is small compared with -the smallest radius of There is no movement in the v-drection since the ensnifying field can be
curvature of the shell; (2) The displacement is small m comparison with e taken to be torsionless. By substitution, the kinetic energy becomes
shell thickness; (3)-The transverse normal stress acting on planes parallel to the 5  

2 5 3

shell middle suiface is negligible; (4) Fibers of the shell normal to the middle T = r ,,sin O[. h +ha )-2  h .-
surface remain so after defornation and are themselves not subject to elongation. 8a2 8a 2 + ).

We shall tse these assumptions in the development of a shell theory in the h 3 /1 3gi, z +
style of a Turoshenko-Mindlin type plate theory. +(- + -)(-) (- + ha2)Oi,']dO, (3)

80a 12. O 12
II. DERIVATION OF EQUATIONS OF MOTION or finally,

For spherical shells, membrane stresses (proportional to P) predominate over 4 2 V
flexural stresses (proportional to p32) where T = irpha2J0 [(l.8f 4 + 6#32+ 1)r2- (3.6 )

+(1.8fl4 +fl2)(O)2 +(fl2 +1), 2 ]sinedO. (4)

We differ from the standard derivation for the sphere (due to Junger and Feit3) which to order /32 is
by retaining all terms of order #32 in both the kinetic and potential energy pars
of the Lagrangian. We note that this level approximation will allow us to T f p ha2 o[(l + 6Ai2)'- 62 u w f
include the effects of rotary inertia and shear distortion in our shell theory, as T0 dO2

well as the usualextensional motion of the shell. The new derivation is as +(I+fl i,]sin OdO. (5)
follows: let a u, -v, w axis system be set up on a spherical shell of radius a
(measured to mid-shell) with thickness h, as shown in ig. 1.

Then the new-Lagrangian (which is equivalent to=a Timeshenko-Mindlin In a similar fashion the-potential energy is

theory as appliedto a spherical shell) is L = T - V + W, where the kinetic
energy is v , 26h)

eeyiV 2 + Il0)(x + a) sin OdxdOdo, (6a)

T= p,* f J E h12(k + vi2 )(a+x) sinOddOd(, 1 [ 2Mh/2 E I x2 + u x +w ]2
= oJo -1 - v (x + a) a a do ]

with the surface displacements assumed linear inTimosienko-Mindlin fashion: [ + x du x-dgw
+(cot O[(l + -)U --- ] + 1v)[(1 + +w)

a ado a)dO ao )
We wish to thank the Office of Naval Research, the Office of Naval (x + a)2 sin OdxdOdo. (6b)

Technology, and NOARL Management including Drs. Chin-Bing, Franchi,
and Moseley for support of this work. Dr. Dean is at NOARL on an ONT = ( VU + T + cot
Fellowship. This work was funded by NOARL Program Element 61153N, -V 2 JO 0) (W+ t

H. Morris, Program Manager. NOARL contribution PR91:068:221. w + dit+ucot0) + 2[(du 2
2 A. E, 11. Love, A-Treatise on the Mathematical Theory of Elasticity (New +2 v -)(w d O (To - -j-)
York: Dover, 1944), Ch. XXIV.

dw , dwv dut d2w
3 M. C. Junger and D. Feit, Sound, Structures, and Their Interaction, 2nd- +cot2 O(i-t--) +2vcot O(t-.-)( - - J)sii OdO, t6c)
ed. (Cambridge, MA: MIT Press, 1986), p. 228 ff. do dO do dO2
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where fihe nonVanishing strain components ame where tj =cos 0 and )P,(77) are the Legcndre polynomials of the first kind of
ordcrn. The ifferentialcquations of motion (12a,b) are sitisfiedif the expansion

U (u (du d;W) cfficnts-U. and-W. satisfy a homogeneous system of linear equations
8

e0 ~ ) a2  (7a whose determninant yields-a- frequency equation of the form

and 0=f+ 8  l(1+i)( f) + 2(l + V)+ P2K;j

Oftv) ~ +2(1 + V) + P'Kk](1+ P')&-tP2 K + (I+ v)]2)L, (14)

Coo (Co~u+ )+Lco It U(7b)- where K V+X -1land A,, = n(n+ 1). The fluid loading-is including bya a 2 0( TOthe term which uses the exact volume equation of a sphere to include the

-1be nonzero stress components are influence of the exterior spherical shell of fluid that-influences; the motion of
the vibrating spherical shell. This is done in a manner analogous to that for the

ae= E (6 + yeo), o## =T~-( +Ee 8ab fluid loaded plate: for a plate, fluid loaded on one side, of mass per-unit area
T-7j~2?O ' 1v ph,-the appropriate nonchmiensronal measure -of fluid=loading at any frequency

The orkdon bythe urrundng-luidon he ph iso is pcwphl. The surface pressure-for a sphere in terms of modal specific
The orkdon bythe unondig-fuid n te sher isacoustic impedances z., is

W = 2ra' "p wsin OdO. (9) ji(a,0,0)= Z 7_. P'co0cs0 (15)

Since-the integration along the polar angle-is intrinsic to the problem, the

solution must be found using a Lagrangian densry: where

L, -rphla 2 ( + 6P32)42 - 6/32LZ fl2 (dW)2  h,,(ka)

+(I -VP2)ii']sin 0 - . rEll ((W + it ) 2 + (W + U Cot O)2 Let-
-v2 do -o 1b

+2v(w+ du)(W+ucoto)+p2~ z,,d2 W 2-iN r. (1b
do 190a2  Then

+Ct2e( _AV2 dict0u V du d2wVi (a
+~~~r ct u--- +2coO(~ - -- ) si 0 ,= pcRei.Lc~ . (17a)-00 d o d02  JL.~-

+2 Yra2p~jsin 0, (10) Silay

with differential equations

OL, d dL, d dL1  n, cm'~) 1b
- = ,1 = 0,du- do du, dt du, The fluctuating pressure on the surface of the sphere constitutes the-radiation

and- loading. In Junger and Felt's denivation of-the-fluid loading,

dL, d OL, d-dL, 0 f =.'L_1
dw 7oda;, dtdw (I (lb) ph (18

By substitution we have but-we use

(I+p)rdU d 1 2 d'iv 3a'n
(1+P2 IT 2+ Cot 0 To .(V + cot"2 )U p,[a 3 - (a -)]' (19)

df2Co W+[I+V+ f 2 V t2 )j AV which has the advantage of an exact volume difference for the amount of fluid
02~oQ~~+(+v+Pvct a affecting the vibrating shell.

-- [(I + 6#2)ai3p2 _] =0, (12a) 1t1. CONCLUSIONS
C'2 do

We expect this new derivation of the equations of motion for a spherical
and shell to give new insight into the types of waves supported by a fluid loaded

spherical or spheroidal shell. From previous work4 we expect the effects of
p2 rJu* 2 d fluid loading to be more important for antisymmetric than for symmetric modes
fi + 2P co ri-- [(I+ v)I r p cot 0)]

dO3 dO do of vibration, and for our improved volume measure to be more significant for
d~w- d~w thicker shells. We also hope to see an improvement in ie asymptotic behavior

+cot 0[(2 - v2 co 2 012 (+v]uJ 2 7--f2 o of the resonances in the high size parameter limit for the antisymmetric case.
dO do That is, we expect the results to go to the Rayleigh velocity limit as the relative

+p2(1v~c 2~~~o02vct radius of the shell goes to infinity.

a1 2v 2)a2
-2(1+ v)w-T1(1p2)0=PC El (12b)

These differential equations have solutions of the form

2-/ dP 4~ C. E. Dean and M. F. Werby, "Comparison of backscattered echoes
u(fl)= ZU,,(l f)i2..,W(t1) =7XWP'(7), (I 3a,b) predicted from exact theory and from thin-shell theories," 1. Acoust. Soc.

-0 dl A-0 Suppl. 88, S IS, 1990.
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ASYMPTOTIC DERIVATION OF N EVOLUTION THERMOELASTIC MODEL FOR LINEAR RODS

-. M. viArqo AND L ALVARE7 VAZQUEZ
Departarno -nto do Matoin~tipa Aplicada Departamento do Matem~tica Aplicada-
Facultad de Matem~ticas ETSI Telecomunicaciones
Universidad dle Santiagdo dle Compostela Universidlad dle Vigo
15706 Santiago SPAIN 36280 -Vigo SPAIN

= Abstract., In -this paper, a--dynamic thermoetastic model- for linear
beams Is obtained-by- asymptotic- analysis. The model is obtained-as the i lsia a h xsec n nqeeso ouino h
weak -limit of a- rescated three-dimensional model after a change of l- lsia-a h xsec n nqeeso ouino h

variable to a fixed-domain. As well as, a compatibility condition In order three-dimensional problem (0)-(5) with the following regularity,
to obtain stMong convorgence is given. sotnd(61

L. SETTING OF THE PROBLEM U C0,T( 2 0)~ ~0T H(~)
U,~~ ~ 2 OT( 1- C (.;('O)

The-basic Ideas of-the asymptotic expansion method introduced by 0 C'(0,T;(L(0)
C 0 2 C 2BERMIUDEZ -VIAfR0 (2] and TRABUCHO - VIANO (8.9] are applied 0 C (0,T;H (0)) n C'(0,TL(0)

here in order -to obtain the justification of an evolution 11. WEAK CONVERGENCE

thermoelastic model for linearized rods. We-study the case of an
elastc bea Following the works by BLANCHARD - FRANCFORT [3), BERMIUDEZ

elasic eam0" w x (1) & mes~w).-lamed t bth nds - VIAR0 !21 and TRABUCHO - VIANO [8,91 we-study the-behavior of
r2= wcx (0.L) and kept at- them to an uniform reference

0 the three-dimensional model as the area of the c'-oss-section of the
tempratre o .he bea is-supose to e- ubmttedto ody beam tends to zero, In order to-make this possible we consider a

forces Fc( xC ) 1fl 0 c and-surface forces Gc (xc) on rc= aw" x (0,L)

and-to-Initial conditions In displacement, velocity and temperature vrainlfruaino h rbe.Tew pl h

~ ~,~ ) Weassme he-eam C mde f a istroic, following change of variable and scale, which allows us to work on
(-9',~th fixe domain 0h-ba 06 mad of anL istopc 1 e

homogeneous, elastic meterial~of Saint Venant - Kirchhoff, with thfiedoan0=wx0,)w=& w : I

Ypung's modulus E. Poisson's ratio v, thermal -dilation coefficient T16 x=(x p x21 X3i) C 0) - T'C(X) = Xc=(tX I -CX2 I X3 ) e (7)

ix, heat conductivity coefficient k and specific heat coefficient ~ u.(&) a U' onE~, u3(a) = U o nc ,.0(c) = 0'C o n

Independent of e. We-denote by pc the mass density and we assume a(C) =&- on 0TI, oa) =c' Z' 011, c(,) Z33 0

that &~= 2p with @ independent of & ((3 1,[7)). Then, the -dynamic f40 C- F' o ri f3(0 F' o r(' (8)

problem corresponding to the thermoelastic behavior of the beam g~(a) &- 61 0 o 11 g.(c) =c- G ;

0' during the time interval 10,TI is governed by the classical

evolutive system of equations posed as a function of the We denote-O (uc7W()~A)) the element obtained from (TJ,VCEtC)

displacement- field UV and the temperature increment field 06 ytetasomt~n()ae~v = - (avi + 8jvi ) for

TO ( (51) .ve(H I (oc)) 3

'U!-O Zc = F5 In c x (0,T) ()

I0 .=1 Ck6 0 ) ~ ekU n0x0T 2 Theorem .- We assume the-following weak convergences as & tends

TOa 1 -2\)e U' nO' 0T 2 to zero:
00

Ef n. G . kaO' n. =0 on rE x(0,T) , (4 7.C -0,C7e o c - -60

Uc()=0 U610) = V' 0  ( 0 )C 0- e VO e, e,, 3 ai 3

In (I)-() the Piola - Kirchhoff tensor Ec is given by the linear e33 ( 54a) -0 weakly in L2(0) ,(9)

-o a0 c 3f weakly-in H'(0,T; L2 (Ofl.thermoelastic-law-:1 '

eC(U' ) K OE I 0C V E( V tr(Zc) 1 (6) gft) - g? ,a3 g3(0) - a3 go weakly in H'(0,T; On(r
E E

Then, for the sequence (uOs) (0) and, at least, for a subsequence
whreeJ(U 2. (a1 J 0.U of (e~), VOW(a, e(u(e)) ),noted in the same way, we have
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u(c) -u u0  weak-* in L* (0.T; H )We also obtain a result of regularity for the limit-problem. Thus,

0. 2 0 under mild -assumptions on the- initial data and-the applied loads, we
-~ cc 3 c- 0 obtain-thatuo and (P satisfy:

3( 3 uo e C0(0,T:HO'(,L)) n C'(0,T;L 2(0,L))
e~(u~c)- ~ ~0 0 )) 0 C(TL 2(0L)

C-2 E Me) +Vo -- V Oro 6,oto-0, 6. , (10) m E-C (0,T;H-I L) (01 O(,L D

Ill. STRONG CONVERGENCE2(1+v) o
c e,, (u(E)) - - T_--oc, weak- in L- (0,T; Following the technique by RAOULT (71, based-on-the convergence

0(c) -00 weak-'- in L (0,T; L 2(0) ) and -weakly in LI (0.IT; W19 of the norms in the Hilbert space L2(0,T.L'(Q)),-we can prove that
C-Ii~c-vr ekyi 2 (0T 2 ()c _(e- r eal-icc(,; the convergences of (10) are-strong if and-only-if a compatibility

where: condition over initial data is satisfied ( ALVAREZ [ 1)
o 0 = 0 0 0 0(I) u is a Bernoulli-Navier field, u =( u1 _U2  x.3 83U.~ Finally, the-same method can-be applied, with slight modifications.

whose-components are determined by to study of-'the behavior of the beam tunder different boundary
o 2

a~u~el 0,TH0(0L))is~he niqu soutin~oftheprolemconditions (beam clamped only at one end, heat flux over the

Q -u El Ca3333 u(Jjf YJ Y.+8 (1 Y~ f3J x surface of-the beam ... ) and/or nonhomogeneous material.

o0 - -0 - ( )

0 0 This research was partially supported by European Project SCIENCE
b) 0 *-0 )E L~ (0,T; i-I (0,1)) x L (0,T; H' (0,1)) is the SCI'0473-C(EDB) and by Project PB87-0481 or D6ICYT of Spain.
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A NUMERICAL APPROACH FOR A CLASS OF AXIALLYSYMMETRIC
DEFORMATIONS IN NONLINEAR ELASTICITY

E.M. Croitoro and M.F. Pettigrew
Department of Applied-Mathematics
The University of Western Ontario

London, Canada, N6A 5B9

Abstract This-work is concerned with the deformation, the stress uniaxial loading and no previous large deformations occur, the
field and the stress concentration in a thick- plate with a cylindrical stress at the-edge of the hole is three times the-stress applied at
hole or-inclusion-that is subject-to a pressure-at the opening while inifinity - a:result obtained within the linear elasticity theory [5].
all other boundaries remain traction-free. The equations that model On the other hand, the body -would assume a certain stress field if
such a deformation are highly nonlinear and coupled. We seek:a only a large deformation took-place. Now, we consider -that the
numerical solution and develop an algorithm-based on-a Newton- uniaxial tension is applied on-the existing finite deformation. We
Kantorovich lineariz.tior. The equations are discretized with dealherewith nonlinearity and we know- that superposition doesn't
-fourth order compact finite differences over a variable grid. The hold. The stress concentration- at the hole could be magnified or
deformation, the stress--field and -the stress concentration are diminished. We have found a definite increase in stress
investigated throughout and are compared -with results of linear concentration, as a nonlinear effect. However, the-highly stressed
elasticity theory. region is -very localized near the hole and the stress field

approaches -very rapidly the value prescribed at infinity.
-A large class of elastomers, synthetics and some biological- The- analysis for :the three-dimensional- case is more

tissues -obey the-theory -of Finit. Elasticity. The set of partial involved. Firstly, we consider that the layer is subject to a pressure
differential equations that. models-such materials under stress are applied at-the opening, all the- other boundaries -remain -traction-
usuallyinonlinear and coupled and-few exactanalytical solutions free. The-deformation is axially symmetric and-is given by the
are known so-farn[ll,[2]. mapping

The problem-we are-concemed here belongs to a group of
boundary value -problems involving perturbations about large P = f(r,O), 0 =- 8, C = g(r,). (1)
deformations in thick plates weakened by holes or inclusions. The
-presence -of holes, notches -and inclusions results in- a stress While the differential equation that describes the
concentration around the opening and these types of problems are corresponding large deformation in the two-dimensic.ial case can
of significant- interest in design. easily be integrated regardless of the functional form of the strain-

We consider firstly that the plate undergoes a large energy function to obtain p- = (r - k2)', the set of partial
deformation due-to a pressure applied at the opening. The body is differential equations here are nonlinear and strongly coupled, and
further subject to some perturbative surface tractions, reaching a to find the analytical solution that satisfies completely and
final- state of -equilibrium. Two types -of problems arise: the rigorously- all the boundary conditions is a difficult task.
problem where -the -thickness of the plate is prevented from Some progress can be made by specifying the strain-energy
changing - this is-a two dimensional-plane-strain problem - and function. We 4ssume a Neo-Hookean matenal where W = C(11-3).
the problem where the thickness is allowed to change and we deal The equilibrium equations take the form
with athree-dimensional case.

We found'the general analytical solution- [3] for a class of
two-dimensional- boundary value -problems: it applies to I~ -a f 2 (zjg)zI Of f~ g agincompressible materials with strain-energy function of Mooney- 2C r ar r )2fl - - - i r a r o
-Rivlin type, although the method of solution is not restricted to this
particular form of the strain-energy. A typical point: located at 1 1r2+ __ _2 (of agOJO
(p,*, ) in the unstrained and unstressed state moves to (r,0z)-after r fag 121 Orz z
the large deformation takes place. The- body-is then subject to a r - - - : T,
certain perturbation which-is viewed as a perturbative displacement (2)
field of components cu(rO) and ev(r,0)- in the r- and0-direction
respectively. The small- parameter e<<1 has its own physicalsignificance in each specific p~roblem. We have foundall possible I_ ap a9 f2[_ +(g)211 ,+1 tf [(7)2 (+NE

combinations of displacement fields (cu,ev) that can be 2C T OrZ r 2  r Or
superimposed on the initial large deformation such that the .[2 Tr a2 r=o

equilibrium can- be maintained without body forces, by surface -f (_2f +  =0 a)
tractions alone. The solution for u(r,0) and v(r,0) is expressed in r3 - Or O r
terms of -Fourier series where the coefficients themselves are (3)
functions of r. The r-dependent functions, in turn, are solutions of
a fourth order ordinary differential equation and are expressible in where p(r,0) is the hydrostatic pressure.
series form with logarithmic contribution. The incompressibility condition requires that

The general solution is suitable for solving a large class of
boundary value problems [31,[4]. A special attention is devoted to
-the case of a perturbative uniaxial tension applied at great distances _ (f 29 (4)
-from the opening. The section passing through the axis of the hole r ar oz 8Oz r
and which is perpendicular to the line of stretch is the most
stressed one. If the body is subject solely to-the perturbative
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We have founid a solution in terms- of Bessel functions using a References
successive approximation method [6]; However, the -solution is
limited to mo-derately large eformations.

-In order to cast further light on the three-dimensional stress [1] R.W. Ogden, Nonlinear Elastic Deformations, Ellis

concentation, -we seek-a numencal solution based on an iterative Horwoot. Series in Mathematics and its ApplicLtions,

-procedure between f(rO), g(r,0) and-p(r,0). Haisted Press, 1984.

The formulation for f, g and p-involves two coupled second [2] A.E. Green and W. Zema, Theoretical Elaticity, 2nd ed,

order equations in f and g; it-turns out-that tie nonlinearity appears Oxford University Press, 1968.

in the -first order terms only. The computational aspects are [3] E.M. Croitoro, Perturbctions about Finite Elaslic Inflation,

considerably simplified by intrcducinp the following two International Journal of Engineering Sciences, Vol. 24,

transformations: 1986, No. 4, pp.6 11-6 29 .
- the first transformation [4]- E.M. Croitoro and K.A. Lindsay, Hoop stress calculation

for a nearly circular hole, Journal of Applied Mathematics
a (5) and Physics, -ZAMP, Vol. 35, 1984,-No. 6, pp. 865-882.

x - ' 1 [51 N.I. Muskhelshvili, Some Basic Problems of the

Mathematical Theory of Elasticity, 4th ed, Noordhoff,

where-a is the radius-of the cylinder and 21- is the-plate thickness Groningen, -1964.
in the-undeformed state, maps the section at infinity into x= 0, [6] A.P.S. Selvadurai and A.IM. Spencer, Second-order

--the second transformation given by elasticity w*ith axial symmretry: general theory, International
Journal of Engineering Science, 1972, Vol. 10, pp. 97-114.

[71 G. Birkoff and R.E. Lynch,(1984). Numerical Solution of

F(xy) = f(pO, G(xy) -g(pC), (6) Elliptic Problems, SIAM, Philadelphia 1989.
a- 1 8] J. Ortego and W. Rheinboldt, Nonlinear Equations in

Several Varicbles, Academic Press, New York, 1970.
removes the leading-asymptotic behaviour in F. [9] M.F. Pettigrew. On Compact Finite Difference Schemes

The domain of computation becomes with Applications to Moving Boundary Problems,
-Ph.D. thesis,-Applied Mathematics, University of Western
Ontario, London, Canada, 1989.

D-: { (xy) I 0.xs 1 , O:yl }. (7) [10] S. Pissanetsky, Sparse Matrix Technology, Academic Phess,
New York, 1984.

The resulting-set of nonlinear equations and the boundary
conditions involve the aspect-ratio y = a / I whichwe take as a
parameter.

Denote the 1: ' approximate solution by Vk M [Fk,Gk,Pk].
We-impose a rectangular grid over D with mesh refinement in the
vicinity of the opening to accomodate the localized stress
concentration. We apply a Newton-Kantorovitch linearization
[7],[8] and discretise the linearized- equations with variable grid
fourth order compact-finite differences [9]. The resulting linear
algebraic system of equations turns-out to be sparse. An iterative
sparse-matrix solver [10] allows us to obtain F(x,y) and G(x,y). As
some terms in the expression for P(xy) become singular at x=0, we
introduce a new function P(xy) such that

__ a (8)a a y ' y a r '

and hence VT" = 0-in D. From the computation of 'P(x,y) new
values of the hydrostatic pressure and its gradient-are obtained.
This completes the iteration taking Vk into V . The deformation,
the stress field and the stress concentration around the opening is
investigated in detail. The computational results -are presented
graphically and nonlinear effects are highlighted.
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ORTHOGONAL WTTH--NON-INTEGRABLE WEIGHT FUNCTION JACOBI PO'NOMIAL.S
AND-THEIR APPLICATION TO SINGULAR INTEGRAL EQUATIONS

IN ELASTICITY AND HEAT CONDUCTION PROBLEMS

Igor PODLUBNY
Department of Control Engineering

Faculty of Mining, Technical-University
B.Nemcovej 3, 04200 Kosice, Czechoalovakia

Abstract- Two new regularization formulaes Lemma 2. If f(x)eCI[-ii], a<i, 1<1, then

for evaluating the Vinite part of the
integ .als with non-integrable Jacobi weight d
function and netv spectral relationships for r _d
orthogonal, with non-integrable weight Jacobi J
polynomials are obtained. A-new approach ror - (i-t>)- (I+t)
solving singular integral equations with
Cauchy's kernel, based on the obtained i
spectral relationships abd regularization I - a-3-<C4+P t
formulaef., is proposed. Such approach can be - - J f'(t)dt +
used for the characteristic singular 4c3 fi-t)C(±+t)3

equation as well as for the complete one. -i

i

I. INTRODUCTION: THE SHORTEST HISTORY (Ca+)(a+13- ) Ctf(t)dt

OF THE PROBLEM

1) The definition of the -finite part of a
divergent .,ntegral was given by Hadamard Some particular cases of Lemma 2 are listed
El, when he was considering the integral below:

b

1(X> f f(x)a)%dx frxdx f xf'(x)dx

a (l-x 2 ) 3 / 2  (i-x 2)
1 / 2

2 i/
for X<-i. He obtained and used first
regularizatlon formulaes for the divergent 1 A
integtals with the non-integrable weight r f(x)dy ± r f'(x)dx
function.J - -a a--a
2) The authors of the Bateman's project [23 <1i-x)-+Ci+x) 2a (i-x) Cex)-

noticed that the majority of the -1 -i

relationships for Jacobi-polynomials P*P1 (x) 1 1

can be used even when a(- or 0<-i or both I fxx _i _2__--x)f'__dx

a(-+ i and 14-. J 2-aJCl-)aCi+x) -

3) First application of such Jacobi 4i-x) t)i(x> 4a(i-a)

-olynomials was found by -Popov and Onishchuk
(32. They reduced a problem for a plate with (O<a<i)
a rigid inclusion to the integral equation
with so called smooth kernel, for which
Jacobi polynomials P n-3'-3/2C(x),as they I-II.SPECTRAL RELATIONSHIPS

proved, are the qigenfunctions. It allowed Lemma 3. If a is not integer, then
them to obtain the solution of the integral 1
equation in the form of -Fourier-Jacobi I qm+-, k-a (T>d qm+a, k-a(t>
series. + n

II.REULARIZATION FORMULAES 03

Lemma 1. If f(x)ECli-1,1i, a<i, 1<i, then <-I)m Pn+m+k (l-2t)

rtP - -tdt 1 f'ct)P n- (t)dt waer q)

-in f±~)~ Cit)-i(-t)> (1 11 - n-n
n=O--c ; k=Oco ; m+n+kO.

(n = i,O)

892



Le .a . If ct is not i teger, hen A = 1-f 0 - - ,+ 2- -

I- -et+k -ct+m- -c(+k- 264p

-i j C i-T) dT t Ci-t) j
+ -A4= - + - _r + - f

n T - t tg(aC)- 4 2 0 8 1 256p3

C-1)>k+p-k,a (1-2t>  b) Fo- the solution unbounded at the left
m+k P end and bounded at the right end of (-i,i)

-sin(ctrr) we obtain:

where m+k2O . AI=0, A2 cf 0 +2f1 +f 2
) / 4,

(f 2-r0'/2 ,  A4= C-3fO2f +f 2)/4
iV. THE SOLUTION OF THE CHARACiERISTIC

SINGULAR INTEGRAL EQUATION r the solution bounded at both ends
A! =<f0 A=F+f0),21 A =( f -rO>/2 ,

The use- of the previous results .J 2 1 A4  1 0
illustrated on the example of the ±
characteristic singular integral equation of f x)x kdx
the first kind: J 2 __3/2 <k012

-J = fJx), X EC-i,) Ci> <i We ca find also the solution of the
r tx -ior. -;) i,: some untraditional classes.

-1 ,x, exam le, for the solution wit.h the
Using (43, we look for the solution in t!.e -boanded at both ends derivative we receive
following form:

4 A -=A 2=A =A 4=0,
A, Aw t,)+C-t 2 ) 3 " 2  

3/2"3'2 " ~-
-L.__ A L n. .- ; --if the exist.nce conditions are ful^illed

S-n=O- ( 53:
(2) kO -- ,1_-i/2 3/2 f =0, k -0,1,2.

v1 (t)= -w3 C-t)C±(-ft (i+t> k

w , C-t=(it)1i/2<1+) 3/2. v; CONCLUSIVE REMARKS

Thi constants n Cn=0,o> independently on The proposed opproach can be used

the class c'f solutions are given by the also for, solving c.haracteristic singular
following expressons: - equations of the secoud kind and for solving

-3/2,-3/2 c-mplete singular equa..-,ns of the first andf n3x)Pn- -- X the second kin)ds with Cauchy's kernel. r.
_Pn+3 +- n+

=
the comparison wLth the famous methods the

8-r r-, 2X > proposed one has -some advantages ithich are

stipulated by the common form of the
solution <2)

F -3/2,-3/2a 2 2 3 Finally, if fcx~eC E-i,i3, Wien -the
On+3 n+3 C)j I-x)-dx series (2> uniiformly converges on

-3/2-i -I+c,<i1e), 0<e<l, and p-=On >, n -0.

2r Ck +2 RERRENCES:

(n=OO) 113 Hadamard J. Lectures on Cauchy's ppoblem
in linear partial. differential equations,

4C2k+3)k!Ck+3)! (3) Yale Univ. Press,1923

(23 Higher transce::dential functions,v.2,
The constants A1 i =i-, 0 are dependent on McGraw-Hill Book Company, Ncw York, i9 4

the class of solutions: E33 Onishchuk O.V.,Popov G.Ja. Izvestiya
a) ror the unbounded at the ends of <-i,i>- Akademii Nauk SSSR, Mekhanika tverdogo
Solution u:sder the condition tela, 4Ci980>,!4i-150 (in Russian>

± (43 Podlubny 1. On the behaviour of the
Cauchy's type ihtegral when the denstty

-- J Ipt)dt = i CS) function vanishes at the ends of the
f contour of integration, Odessa, 1989,

-i deposited in the All-Union Institute of
Scientific and Technical Information

Garantine the unique solution we obtal.,: 22.12.1989, reg.number 7603-V89,(in
1 7 3f 3  Russian).

A,= - - + +- r -r2' - E53 FarshaJt P.O. The olution 'f" the
2 S+ 4 128P3  boundary value p.Abn. for the

S3f biharmonic equation with linear defects
f 0+ - - -3  presenting in a domain, doctoral thecis,A2=-- + - r+ -- Odessa,Odessa State Univ., 1989 (in4 Sp Russian)
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FINITE DIFFERENCE-SIMULATION OF TIME-DEPENDENT FLOW AROUND A
LONGITUDINALLY OSCILLATING CYLINDER

PAPOLU MANIKYALARAO ND KUNIO KUWAIIARA
Prof.M. Kawahara Labordory,Department of Civil-Engg, AD The Institute of Space and Astronautical Science
CHUO UniversityKasiigaI~unkyo-ku,TokyoJapan. Sagamiliara-Shi,Kaniagawva,229,Japan

ABITLACI- A finite differez~e solution -is -obtained- for the where h is gri, scale.The Poisson equation -for the -press ure is
t1InL-dependenit viscjus incomprit-be -2-dirniensawiaIlopata solved-iterativel) uyemlo.w .df SRmt.Ttth
longitirdindly oscillating cir'ular cylinder.1- Naviei-Stutkes equa- mar-rrgN~e tks ~utotesm impii scheme whiich
tion of finite U.fferene form -ssolved by moving grid nystemn,based iseporl.ientoteulr..kad hcj suedoingae
on a-time-demaident coordinate transform -atior.The snlution de- -eprly
scribes the d-. .lopment-of tb vortex-streket deveioptd ,enind In tlui6 paper,the follvwi, r, ' x..,ate transformations, which
the cylinder when cylintder remainis- sationary.The-time -depen- include-- the time variable are-intrcdLc--d
dent lift and'drag coefficients are obtained.'rhe poiver-spectra
of the drag,lift and disp!.acement is also reported.The- computer C= C(X, Y,t) , 17 = 7jX Y - = rj ,j t)-, (4)

results prcdict the lock-in phenomenon which- occurs -when OS- here x and y are the Cartesian co-i ..rnates -and -tis zthv -time- in
cillation frequency is around double the natural- vortex slF Ading tepyia oan n ~aetesaec-riae n h
frequency. time in the computational domain.

INTROODUCTION The transformation of '*re cooi'rliate derivatives are-given -by

'I'lhe uinderstanding of the characteristics of vib-ations-induced rx ,~ 5
by vortex shedding is of grea, importance ir the design ofLoi [ I a.J
strucures-such as-heat exchangers,offshore platforms,power ca-9,
bles,etc.The determination vf the forces acting on a cylinder where subscriptb denote, the; partia1 l lkxativeb.Thte tiwiz variale
undergoing harmnonic in-line oscillations-is of speciAl interest in is treated as
aeroelasticity as well ?s for a basic understanding of the fluid me- - = t , if = 1,~ = 0 (6)
chanics. Informatior~ abouL the in-line oscillations of a-c-lindler Substituting equation(6) into equation(S),one can obtain
Mnuniform flow has not 4ef studied extensively.1lowever,only a

* few studies have been made-for- a, circular cylinder oscillating in [ 1 - a r l
auiform flow[I-41. J ex = a I111(7
Tile numerical simulation of sweady flow past a circular cylinder Xi ] L -;fxr YfrXY _O

underguing in-line and/or transverse oscillations through the use
of two-dimensional unsteady Xavier-Stokes equations, was-talten ohere (.,,~ denotes thle lelu.-itj, u~e~ f a-grid point and
by (5] for relatively smnall amplittueb.iAeeently,nunieercal.solutionsb J is the Jacobian far thle spd-1 oWldt, Lan,rsinatun. Thc
of unsteady -flow about stationary and vscillati' .linder %,s ,,nw-_tirc terms in the Na%'iie . eqUtioz wIllb rse
been obtained[6-91. as;

THE GOVERNING EQUATIONS iiND NUMERICAL8,+rO+ =a.+f({u- (-

The non diinensonal governing Navier Stokes equations. writ- th-rnfrain{gve by -h (atin8 - zp)ydO l (8)
ten in non conservative form and expressed in the dimensionalless tetasomtosgvnb ~eeuto()i~le l '

quantities,pre inoving, boundaries in Lte physical domain become statioi

divV = 0 (1) the computational domain.

)V+(V-VI gradp + IAV (2) RESULTS AND DISCUSSION

where V = i.,v) is tbe velocityaiid p the pressure. Re do- The entire computation were run on a FujiLu FACOM V'P200
notes the Reynolds-number based on the velo'uity of tl-mtl Super Computer f.Ar the Reynolds, number,Rc= !000. 'the re-
flov, U, and the diameter. di, of the circular ic refer- suilts of Lte stationary circular cylIinder are presented first 1v al-
e.:ceseales for non-dimensionalization- %ere d, U,a/U;, p&' for thle low omparison %vith the. experimental %tsualizativii.rhc-resul.s5
l%:itgth,ve19ciyjtimc and prezsure,reslpectively. of the unsteady flow for a cylinder oscillates in thle longitudinal

The numerical- techniques iadopted here are based on thle w*ell- direction are then 1,reentcd. Figut, 1(a) mjrcsents thei de~el
known Marker and CelI(N[Atqjmehod,wicli was 4eveloped by oPment of Lte flow pattern comrpute-d for a swaionaiy cylindci
[1I.The Poisson-equation for the pressure,derived by taking the aIt time t= 100.The de,. Jomno the lortex s' ;-dding is clearly
divergence of (2). All the spatial- derivatives except those of the AeccnTwr, scondary vurtices are fvrnicd,f.olowd_. a smaller sinl
convection terms are approximated by sceond-order central dif- gle down stream of the sep-ttaton p.-int.As th, oi-i.:,ebro sy sr
ferencing scheme.The non-linear terms are represented by means nl'etricall),tre Shear layer j,,!in.ng th, sepatativi. jLt. 11 Jn

hrd re pidshm(-i the vortices begins to develop instabilities and is drawn across thc
of wak inrsponse to the b.s pesure reduced-by th :ction of

(U = f~,-2. + Of. - 10f,-I + 2f._j_)/6h (U. > 0) the vortex growing across tile uak.-iTlie strateiing~diffimiin,and
t~~z UJ-2 f,+ 0f+ - Of, + 2f,_1 - f,-2 )/6h (U. :5 0) dissipation o! vorticity break tip Lte defurm-ig turbukii Sliest

(3) and thereby the further suIply of circulation to thle vortr,-- wlif.-!e
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rate-of growth has-aalreadybeen reduced-to its xninimum.The var-(a
tex-across-the- wake still continues-to grow and-entrains part of
the-oppositely signed -vorticity.The shedding process for- the sec-
ond~vortex does not comxmence until the cruaini t ed

wake during a given-period-undergo successive interactions among

themselves-This configuration agrees with the experimental and ~_________
numerical- results.The unsteady -lift coefficient-oscillates -periodi-
cally-The -perodic- properties of the flow are clearly shown by the (ai)0
time-dependent evolution-of. the lift coefficient-as shown-in figure (krk (v

Tenumerical- solutions -of longitudinal oscillations-of circu- ~~
hlar cylinder was -performed.These results are for the case of___________
the-reduced velocity Vr =3.O,5.0;5.25,7.2:llere, -Vr is defiL d as ()1 F
V, = U/fsi, U =-Um where Urn is the-maximtum velocity 6i he___
oscillating cylinderj the-cylinder frequency. The amplitude-o !4p,:
oscillation-was set to be A(x/d) = (6.14,0.17,0.2,O.26.,where x I_________
refers to the displacementin x-direction.Figure 1(c) explains the F-gume.. Fat a sta..om.y t.yhradc. (A)%ortlaty contour, (b'Tirnt &crdent lift
flow visulization of the wake tf oscillating cylinder rzveals differ- III dA=OM A=VOtiut s. -o anoA=0i~ yn.26%

ent patterns than -the usual alternate -Karmnan -vortex street.-n (v)-A=O.2, V,=s0.t; A=O V,=7,2.

the lock-in range -the influence of the -flow oscillation is very
strong.During one period-of the-flow oscillation,the vortex re-
mains close to the cylinder as it forms and grows,even close in fact
than before Ia:ing-on.The interesting feature of the p~renomenon
is -the cylinder moves down stream from its -mid _pa,--.tiont,tlie rel-
ative velocity about the cylinder increases from-zeiu, -.oU.AA voke *rI~auI
cylinder reverses -its- direction,the relative velocity in l A~ n
reaches-a-value ofL2U at- the mid~position of oscillati ii;the vor- h =tl'lUii
tices move away -from the -cylinder under the -influe~ice of the Q.
uniform fiow,symmatrically at-first and then becoming gradu-
ally asymmetrical. The resulting pattern -is -very -complex .The W
streamwise interval-of the vortices becomes-large.Accordingly the gniII1, VAV
value of lift is changing temporally and becomes-complicated with far~
including disturbances-and different from the simple sinusoidal
curve-and are shown in figure 1(b)and 2.The mean inline force IijJULjA , A 1  : A,-
and -its amplitude of oscillation -were found to -increase with in- li k, "\r/
ci asing amplitude.The power spectra-of the-drag,lift and dis -______

plac-ement-is illustrated in-figure 3. Synchronization can be seen 44
when the driving frequency approaches in a range around double ~ ~ ~ ~ ti.~.
the Strouhial frequency. a.*;. cyI G) A- 14,
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CONVECTIVE HEAT TRANSFER DUE TO A -ROTATI NG_ DISK SUBJECTED
TO A MIXED-THERMAL BOUNDARY CONDITION

G. ZAMANAIlI and V. I(UNAIZAN
Dean of Sci-nce-and Humanities Department of Mathematics
Anna Urn%-_rsity Anna University
Madras-.R0 025-INDIA Madras-600 0251NDIA

-Abstfnct -The paper-dcals with flow and-heat transfer induced by a The symbols yg,0,c and Pr denote tnc kinematic viscosity,
rotating circular disk when it is subjected to a mixed therml gravitatiossal .iccleration, coefficient of thermal expansion. specilfic.
bounfdary condition. By similarity analysis the governingcq uat ions are hecat and Prandtl number respectively, a., a, a 0, a2 a I) arc
reduced to a system of ordinary differential equations. A prescribed constants.
transformation group -has been found under which the reduced Let us introducc the similarity transformation
governing equations-and the homogeneous- boundary conditions are
invariant. Thc thermial- boundary condition is characterized by a q ziL, u- V r P(q), u-ET G(/7) 2 -
nonneigative paramtetr m; m=0,1,00 correspond to-the cases of L2  ),Fq (9
prescribed temperature, prescribed heat- flux and prescribed heat(9
transfer coefficient (radiation boundary condition) respectively. If one --P p-l 2 H(q), T T_ r2 007)
wants to-find solutions-for different values of m, there is no-need to- AL
computc solution for each value of mn. If we-know the solution-for any
particular value-of m. then this solution- can be used to find the
solution for any value uf mn by at simple-methud m~th tht, tid-ut the %-hcrc A = g6,'y'and L is uf dim;.n.iun Lngih tu h dutritmcd from
transformation group- the-thermal boundary condition (8) in the maner as, explained-a little

later. The equations (1) to (S) become
1. INTROI)UCrION

The free convection and mixed convection on heated F" + 2F-F F2 + G2 + 2H = 0 (10)
horizontal plates has received a great deal-of attention (1-61. These G" + 2 (rG'-FG) =-0 (11)
studies-assume that the temperature at-the plate is prescribed or-the H' +-0 =0 (12)
beat flux-across the plate is prescribed. The study of con'vection 0"' + 2Pi (F0O.'0) + Pr E (G'2+F7")0 (13)
problem when the plate is subjected to a mixed thermal boundary r()=FO=.GO )(4
co -ndition-[7] has not received sufficient- attention. The axisymmectric (-) (-) (-) ) = 0 (14)
forced- convection due-to-a rotating disk-was studied first by Von Fo)=Go) Ho) 0o)=0(5
Karman [8) antd-later Cochran 191 improved- the numerical solution. (I-m) DQ)) - m0'(0) = 1 (16)
In- this paper we present an analysis of the convection -problcm
induced by-a rotating disk Which is subjected to a mixed thermal wherc the primes denot~. Jiff..ntatimn %%al. rue~t1 toP 1.

boundary condition. 0 = wL 2lyis the rotation parameter (17)
E = ALV2Ic is the Eckert number (18)

11. ANALYSIS L is the positive root of the equation,
The convection over a rotating horizontal disk subjected to a a2AL6 - a*L - a, = 0 (19)

mixed thermal boundary condition is governed by the boundary layer and m = a,I(a,+Lao).
equations, Th equation (19) has a unique positive root by Descartes rule of sign

a (v) - a (rw) - 0 (1) for -i, Z: 0- a2 ;- 0. The solution of the boundary value problem
8z(10).(16) can beobtained by shooting method. for any value of in 2:

0. It is interesting to note that thesolutions corresponding to different
values of mn are dependent as stdin -the following properties:

&u +W 2- U 2 1 Op a2 u
8 U7 p. (2) Property I : The equations (10)-(I5) arc invarienit under the

32 UF~q-QE7 F~iq.,E)!A. G'(q%0.E7) =G~fi,0.iA (20)
--),WaU U y (3) I i.E) H(i7.0.E)A'. 0*(iq.(1.E7) =0(0.0.E)!At

7 7 =3Z hercA isanypositive real number.

Property 2 : If FQ..1) GQ7.fl.E). H(ql.Q.E) and O~q.0,E) is the
1 ap g Tsolution of the boundary-value problem (10)-(16) for any particular

g - (T T) (4) valtue-of m, say in., then the solution for any value of rn is giveni by
P 8 eqns. (20) provided A is the positive root of-the equation.

A'. (I-in) A 0(0..1- + in O*(0.0.E3) = ( (21)

a 8 T y 3T ,y f 2 1 2a 12 Property 3: If the solution or the boundary vailue prohlem (10).(16)
u - [ i is same for any two distinct values of m. then the solution is same for

r Tz Pr -3 c6 8z J TZ j all values ofmi.
LU 1ll. DI1SCUSSION ANI) CONCLUSION

"ith he bunday conitios. IliTh study of convction over a horizontal rotating disk
wit 0he bonrw cnitionst, = subjected-to at mixed thermal boundary condition his been reducedIf_=,v~r. s=O a z 0(6) to solving the boundary value problem (10).(16). The boundary

i 0, 0 p -p.. T -T. is z - co (7) condition (10) include.- the followving as special cases:
a, (~T)- a 8T a2 r atz 0(8) (I) Prescribed temperature (PT)
a*(T-T -a aT a r 2at Z-0 (8) Here a. > .a, 0. a. >-OIHeZ 2 lnce-L (Ja).i 0adeqain(6 eoe

0(11) = 1 (161)
wherettyt and it'are the velocity components in the radial,.aimiutbal (2) Prescribed heait flux (PliF)
and axial directions respectively. T is; the temperature. p is the Here a. 0. a I > 0. it, > 0
pressure, p-,. T_. p- -are the ambient pressure, temnperaturc and HenoL L =a~ " inl and equation (16) becomes
density respectively. w is the angular velocity orf[the rotating disk. 0'(0) =-1 (161)
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(3)-Prcscribed-lheat-transfer coefficient (PHTC) Tible 11
Hec. < 0, a, > 0, a,-= 0. Values oUf*( -p" GI and 11( fr arou values orMIE and Mn
Hence-L ni-=*d, i nd -._juaiun(1,bum.-
O(0y+-0'(0) - 0 l-16 ums (I 6c) -~E in m P(0) _G -'(0) 11(0)
The local Nusselt number Nu. defined by

1'u r 3-T IObcms0 1.0966- 0 0.9933
NU eoe 0.0 0.5 I1.1778 0 1.0927

Tr- .- 'F7 1 1.2603 0 1-1958
i0.0 - 0 2.5273 0 - 3.02-41

-u _- r 0'(0) 0 1.1023 0 0.9976
'EW0.1 0.5 1.1898 0 1.1046

, 'I,1 1.2795 -0 1.2171
- 1Aa2~o1 r [-O0)] for PT 00 2.6611 0 3.2329

- (Aoafa1)"' r19(O) for PHFI 0 1.09912 0.0378S 0.9929
00 0.5 1.1803 0.0899 1.0921

a0I io fr IJC1 1.2625 0.0919 1.1951
a.c Irafo HCC 2.5280 0.1 159 3.0216

The numerical results- for different values of the parameters 0 1.1051 0.0880 0.9973
(),E~m and PrO.72, arecgiven in-Tabics- land 11. All (he quantities of 01 0.5 1.1924 0.0903 1.1043
interest increase with- m. The -temperature Proflcs arc shown in 01 1 1.2821 0.0925 1.2168

uigcs 1~a)-1~c). It is found that in the absence of disiain 0___________ 2.6626 018 3.2317
increase in rotation (Q)_decreases thc temperature, whercas increase
in-dissipation-(E) increases the temperature_ near-the disk and it is rable HLl
morc-pronouniced with M. Increase in-m-increases the-temperature Values of A for Transition- ______

largcly, and decreases the thermal boundary layer thickness. Table II11111T
gives-the values of Aneeded fortransition from one case to the other Ijj 1 IT
with--he aid-of equation (20). The following example illustrates the ______

transition. PT I .. 00E)1 *~0.0-E)

For PT with 0==1, E = 0.1 IPHF j6(0,Q.E))Id 1 lIO(0 E)
0'(0) = -0.7451, F-(0) - 1.3722 LPHTC fO0EI", (60,0E)JM
G'(0) = -0.9284, H(0) = 0.9738
which gives Table IV

S~Critical Values of 1Pr for E = 0
A = 0.952141= 1.1031. F_ = 0.1050 I
0(0) = 1.2779, F-(0) = 1.5S97 for PH-F (1 17(0) *G'(0) 11(0) 1Pr
G'(0) = -1.0755, H(Q)- .1848 II 0.0 0.6570 I 0.0"0 0.7100 1.4372

-7.',,- .... 1 0.1 0.6616 I 0.0669 0.7101 2.4215
A = 0.7451, 1.801.ISI = 0J.1342L 0.5 0.7653 I 0.3552 0.7138 2-1213
0(0) 4.3544. F"(0) = 3.3172 for PHTC 10 1.0481 n O.00 0.7252 167
G'(0) =--2.2444, H(O~) = 3.1595 1.

It is interesting to know that the solution is independent of i for
certain values of Pr, 0 and EF Table IV-shows the values-of Pr for
E=0,- for which the solution is independent of mn n. W ' M.) cc)

ACKNONLEIIGENMENT One of the authors (V.Kumiran) is -sEst E:1
thankful to Cou ncil o[-Scientif ic and Industrial Research. New Delhi.
India for the fina ncial -assistance. 06 c:0 Ezo

Table 1 04e - ' 0
Valuecs of 0(0), -ff (0),_-ff (0)!0( 0) for varions values of 0,13 and in E* % N

-!n E -mn 6(0) -0'(0) *0ITM1(0) 2
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0 LOW00 0.7575 0.7575 1L Stewartson. K., ZAMP. 9. 276.281 (1958).

oo 0-5 1.1263 0.8737 0.7757 2. Gill. WV.N., Zeh. D.W.. Case1 E.D.. ZANIP.16. 539.541-(1965).
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TIME AND -SPACE SELF-ADAPTIVE NUMERICAL METHODS

FOR-CHEMICALLY REACTING FLOWS

B. Rogg

University of Cambridge, 'Department of Engineering,

Trumpington Street. Cambridge 0132 1PZ, UK

Abstract Self adaptive-numerical bulutivi, Hcthods-forcoxn strained m~ixing Waxer. Thirdi), wve comrrbinec the seperately de-

bustion problems -arc- developed and results are presented for 6 clvped in1gredicnts foi->the simiulativin ,f tinie-dcpn~n n

physically idealized siLtiatius. First, the treatment of- the spatial effeCts, arid cons1ider tU11y tIMi-depenIdent-cumbustion

time-depcndencc-is discussed separately, a-, is-the duvciupxn ent iii twvo space dirucrisiox.b. Fvr the latter "ase, hot-sput-li-ke self-

and implementation-of spatial adaptile-gridding techniques, ig ta iking pla-e ian vriginally cold, reactive inxturc

representative -numericali-results based-these twu znajor-ingre- provides the physical-basis for a numerical exampie.

dients of any numerical- technique for the simulation of ignition2.FR'IATO
problems are presented. Secondly, time-dependence and-spa- 2 FRMLTO

tially two-dimensional variations are treated simultaneously; 21 Diffiercntial equations
as -a -representative example self-ignition-in a premixedreac- The general class of differential equations to be considered
tive-mixture is numerically simulated.

herein can be written in the form

1. INTRODUCTION = -,f(xT, y,,u t , u, u 11u,) for (z,y) G Q, t-> 0,

In combustion and related areas numerical techniques are need- rYy t ~ , 02 4,uz(:, Y, 0), u,(-, Y, t)0) = 0

ed which are-able to-produce high-spatial and temporal reso- for (x, y) E nU 0Q, t >0,
lution of flame structures and evolutions: only such ability will u(X, y,0) v(z, y) for (x, y) E flU ifl,
provide enhanced insight-into the many modes and ingredients(1
of-combustion processes. The use of adaptive methods, iLe.,-of- where u, f, r and v- are N-vectors, x and y are the carte-
methods-that "automati -cally" adapt the computational mecsh sian space coordinates and t the time; S1 denotes a-rcctangu-
in some "optimal" way to-the-specific problem-under consid- lar domain of integration and Oil its boundary. Equation (1)
eration, is the desirable-numerical-approach to all engineering represents a nonlinear- parabolic mixed initial boundary value
problems; it is a must, however, for the computation of re- problem for the N dependent variables represented by u.
active flows. The-physical- reason for this is the -heat--reease 99 Dfenceqais
associated with any combustion process. As a consequence of 2. ifrnc qain

the heat release,-profiles of quantities involved-in combustion The integration of system (1) with respect to time is performed
processes typically exhibit steep gradients and strong-curvua- in steps starting writh-specified profiles- I which, in ireneral,
ture, thus necessitating-the use of adaptive methods in order should satisfy -the governing equations Iat time level ni = 0

to control-both the temnporal arid spatial discretization errors. %Ith t t 0. Solutions to (1' are sought at-the subsequent

For time-independent steady problems in combustion, adap- time levels (n 1, 1 t'), (n 2, t eand so on, wvith

tive methods have proven useful and are being used, see e.g. 0 to < 01 
< P

2 < - -- < t" <~ - - , where here and belowv

/1 3/. Apart- from notable exceptions5 ,4.Z;, little- attention the superscript n is used to- idenitify quantities at timlee

has been given to-time dependent, two-dimensional comrbus- TA, U 0, 1, 2, . The integration of (1) is considered comn-

= tion problems. Therefore, Ark the presezit paper wve outline pos- picte if either a speciied level 0 mzor a specified time t,,,- is

sible approaches to fulfly implicit adaptive -algorithms.suitable reacied. With respec to the space ,.ariabics, zr and y, system

for successfully tackling the numerial simulation of- unsteady, ki is disectized on a mesh XM" of grid points,

spatially two-dimensional reactive flows.
Firstly, we consider briefly techniques suitable for tackling .- (2

the -time-dependence of combustion phenomena, and present(2

two spatially one-dimensional examples, viz., a pulsating flame
and a self ignition process taking place in a~ nuit premiixed flo%. 'sote that the mesh ma, or may- not be asinipie tensor -product

Secondly, we consider spatially twvo dnmcn--lui,all, -steady prub- grid. In fact, fox the simulation of combustion problems it

lems focusing attention on the dc.cipnerit of self adaptive regular grids are desirable w'hich locally and instantaneousl
meshing procedures. As a representive cxarinple. numnerical concentrate grid points where they are needed, namely in re-

results are presented for a laminar flamc propagating in a gions or spats of high -patial and temporal activity. A suit-
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able -adaptive-meshing strategy-is outlined below. If the spa- grid-p,ints where the,. -amrerded ;, i zdez L, ~ u

tial- domnain-of integration is-infinitely large -with -respect to bpa,.C dibserCtiat1on CLrol. III gus1Za1 iu f jrlediiVWMUU oiL

one or both coordinate directions for ex-anple extending from !i11C% dr' VuI fu h dpti oipitto f nd n

x -oo toz- -t-oo, then -a and -a, are conas positie denialobutx rolmfvi-un, fixed timec lev.el r,
andI sufficiently large to ensure that the conditions at either we equidistribute the mesh M" vii inter'.aL-A14, I"7 with re
boundary can asymptotically be satisfied j-Gi, an-infinite du- spect to a non ncgatz'eii ht It'~ " wnd a- consalt
main-of integration withxecspctvto 9- is -treated similarly. C". Here the intervals in the t atid .9 direction, 1A" and L, -are

of lengths characteristic of the local and instantaneous spacing

3. NUERICL MEHODSof mesh points in-the vicinity of _point-(x'1, yf. For instance,
3. NMERCALMETODSfor the x direction -i" is selected such -that

Subsequently the symbols U-and F will be used-to denote
the m x N-vectors which result from -the spatial discretiza- IV = C',
tion-of the NV-vectors u-and f,-respectively. For the solution
of time-dependent problems at-each time step, or steady-state ci-shoe
problems (not considered-herein), Newton's method can be ap- where m = i". SjecicalLy, the weight-function IV' scoe

plied-to thersystem of nonlinear equations, F(U), which results asIV = max 11, (Ga)
from-the discretization of the-governing equations. 'Note that
both- U and F depend on the particular time level -n under
consideration. Thus, the-linear system where

j~uk)(u~mT xUka -mil 1S k < X (61)

is-solved-where Uk denotes the solution after k Ncwtonit- WT,. emx8kO W-mnO1 IxI
erations, and wk and J(Uk) arc the damping-paramecter and -mxakx)-inEax'

the-Jacobian matrix, respectively, based on Ut. The damping 1:51k5<X., (64c
strategy /78/ allows the Jacobian, which is generated numer-
icalLy. to be re-evaluated. only periodically /8,. and

Upon discretising the governing equations only witre VJ =d" (64d
spect to space, one is left w ith a large systemns of DAEs (difieren. nEs 6b n Gc _mead"nesadfrtemn
tial-algebraic: equations). in recent years; various algorithms IEq. dGb maiuand e ( inc *mm" atn "a sand f o the-
have -been developed for the solution of such systems as well repctvum tiy and xmu value in ahe n tev a in acorth
as-complete software packaiges. Examples for the latter ar epcieqatte n 'ade r ostv c'gfcos
DASSL /9/- and LIMEX /10,11/ developed at-the Sandia Na- their numerical values are less than unityF if in Eq. (5) C', 1

tional Labs.. USA. and at-the Univermitv of-IHeidelberg, West is employed. In Eq. (6Gd), d" is a positive constant which rep,-

Germany, respectively. DASSL uses- backward-diffierentiation resents the maximum size of any.T interval hi. To prevent the

formulas, LIMEX a ncwlY developed extrapolation method size of adjacent mesh intervals from varying too ravAly, uc

particularly designecd to deal with stiff systems. Since, in a require thart at any time-level ns the mes-h be localy bounded

sense, software packaiges are multi-purpose codes, they are not %3, -1<h(7
optim-sed with regard to a specific problem under considera- -' Ihji.. ? 7
tion. Therefore, we have developed a new code particularly where ft is a constant greater than on,_. The cquidistribution
designed for the solution of systems of DAEs-that arise iii one- prceur with repect to the y direction1 is perfRnmed analo-
dimensional combustion-problecnis which, h0-r.'.,veZ uses some gouLy. The adaptive ridding procedure to be carried out at
of -the basic elements of LIMEK caclr time level n essentially consists of 7 steps which. because

Regardless whether Xcwtor.*s method oz the method ofI -space Ds resrite i tep it %ulwuci. "W4 !A jprczcutcd n'
lins i emloyd, the solution of syte (1) at time level ri in thc full-length rerson, of the paper.

depends on the solution at level n- I taken at the grid points
of mesh NM". Since in general the grids at leveTls n- - I and 'n 5 E.XAM.PLES. RESULTS AND DISCUSSION
arc-not the same, the solution obtained at level n-i1 on grid
,\In must be interpolated rnt grdM hc.rgrls s a first example we consider a pmro .m the so-called test

of -the interpolation procedure. irfroduces an additional spa- problem A. proposed for a GANMM? Work&hop at Technical Vmi-

tial discretization error into the algorithm. 'We use pie-cewise estAah.WstemnytiLa ntaiypraa-
monooni-cuic ermte ntepoltio / 21.ing plame w-ith one-step cmistry anld Lewis nurnber different
monooni-cubc Hrmie inerplatin /21.from nity /131. The gnvrnung equations are

aYT ZT
4. ADAPTIVE SELECTION OF GRID POINTS W. -. XT

Tile procedures and criteria for the adaptive slcino i-L :

grid, points are of critical importance to the efficiency Of the werTmdYdni oml-- eprt~ n rls
algorithms that are used for the solution of eombustion p h ran e'4 i-4zdtmprth" n1ms
lems. In particular. stratrgie arm reuiredl that plw- ace ~ fatn epciey rdwi
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tial andboundary conditions, and the physical background ref.
R- = -' Yexp(- /(1- T)" (10) /14/ should be consulted.

2Le 1)As:a-representative result,-Fig. 2-shows temperature pro-

Time t and space-variable x are suitably nondimensionalized. files during the ignition process. It-is-seen that a continuous

In the rate expression (10), a and /3 denote a-nondimensional transition takes place from inert-mixing at initial time t =- 0 to

heat-release parameter and a nondimensional activation en- a steadily burning diffusion flame. The steadily burning state

ergy, respectively. The initial conditions are given by is-reached after roughly 10 microseconds.

T = exp(x), x < 0, (n.a)
Y = I - exp(.re ), x _< , ( 1.b)8 02500

and
K

T =1, x > 0, (1..c)

Y =0, x > 0, (11.d) 1500

the boundary conditions by

T = Y - 1 =0 as x - -o , (11.e) 500

OT/Ox = oY/ox = 0 as x -* +oo. (ll.f)

-1 0 I- y/mam-..2
In all calculations-a = 0.8 is-adopted; P3 and-Le are taken as
variable parameters. Figre 2: Temperature profiles during a truly time-dependent

As one example, shown in Fig. 1 is the computed propaga- auto-ignition process. Data: a = 53.7 s- , p = 40
tion velocity vp of the flame as a function of time for Le = 1.45 bars, steady-state ignition point at a=68 7s -  The
and /3 = 32. It is-seen that after a short initial period a con- frozen initial profiles pertain-to t=0, the other pro-

tinuous limiting cycle results. To accurately resolve the spatial files to
structure of this-pulsating flame the adaptive -meshing proce- t=1.01 10-9s, 3.82 10- 9 s, 6.87 10-s, 1-57 10-

dure outlined above requires 80 to 100 grid-points; to obtain s, 3.43 10-1s, 7.66 10-1-s, 1.71 10-s, 3.86 10 - 7 s,
comparable resolution with an equidistant-grid as many as 800 9.01 10-S, 2.25 10- 6 s, 6.25 10's.
to 1000 gridpoints would be required.w

As a second-example we consider auto-ignition in a nun- As a third example we cunsider a flame prupagating in
premixed flow generated by directing a hot air stream (T = a strained mixing layer Such fimes can be generated, for
800K) and a cold fuel-stream (T = 300K) towards each other. instance, in a Tsuji like cuuiterflow-geonuietry. The governing

equations for this problem were derived by Liiidn /12/, viz.,

0 -F P OYF = 2YF + 2 YF _ p/2y 0oe8(T-Tl )

DZ oZ 02 Z 02 Z

Tj-T 0
T 0-T = 1 - YF - YO, (3

- .sYF +1 (14)

with-the boundary conditions

y -0o: YP = Z = 0,

- ~ ~ ~ ~ ~ +0- YF = Z0~ 4... y- = 1,

Xo. + 1 -00:erfc(y/,/2), (15)

Figure 1: Oscillating flame velocity Vp as a function of time t.
- +oo : zero x gradients for all:dependent variables.

The unknowns in this problem are the (constant) burning-rate

The governing equations are the conservation equatiovis of over eigenvalue UF, the temperature T, and the mass flactions of
all mass, species mass, momentum and- energy, space limita- fuel and oxidiser, Yk and EU, respectively. The Dark6liler
tions do not allow to present these equations here. Clicin- number 6 and the nondimensional activation encrgy d are var-
istry is assumed to occur via the overall one-step reaction able parameters to be specified, fur thc results presented herein
F + V02 - P. For a detailed discussion-of appropriate ini- we have-selected 6 = 0.5 and/3 = 5.
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Shown ifn Fig. 3 is thc computational mesh on which the REFERENCES

final solution has been obtained for the above-problem. It is
1. Dixon-Lewis, G.: Computer Modeling of Combustion-Re-

actions in Flowing Systems with Transport, in W. C. Gar-
diner, Jr. (Ed.), Combustion Chemistry, pp. 21-125, Springq

New York (1984).
Y -2. Giovangigli, V., Smooke, M.D. Adaptive Continuation Al-

gorithms-with Application to Combustion Problems, Re-

port ME-102-87, Yale University, 1987.

3. Rogg, B.: Response and Flamelet Structure of Stretched

Premixed Methane-Air Flames, Combust. Flame 73, 45-

65(1988).

x 4. Benkhaldoun, F., Larrouturou, B.: Explicit Adaptive Cal-
culations of Wrinkled Flame Propagation, Int. J. for Nu-

merical Methods in Fluids 7, 1147-1158 (1987).

5. Maas, U., Warnatz, J.: Numerical Simulation of Ignition
Processes, Proc. Joint Meeting-of the British and French

Sections of-the Combustion.Institute, Rouen (France), 17-

Figure 3: Adaptively generated, converged computational mesh 21 April 1989, 133-137 (1989).

for-Example 3. 6. Rogg, B: On Numerical Analysis of Two-Dimensional,_Ax-

isymmetriciLaminar Jet Diffusion Flames; in: Mathemat-

ical Modeling in Combustion and Related Topics, C.-M.

Brauner and C. Schmidt-Lain (Eds.), Martinus Nijhoff

Publishers, 551-560-(1988).

7. Deuflhard, P.: A Modified fewton Method for the So-
lution of Ill-Conditioned Systems of Nonlinear Equations

withApplication to Multiple Shooting,Numer. Math. 22,

pp. 289, 1974.

8. Smooke, M.D.: An Error-Estimate for the Modified New-

ton Method with Application to the Solution of lonlinear

Two-Point Boundary Value Problems, J.-Opt. Theory and

Appl. 39, pp. 489 , 1983.
9. Petzold, L.R.: A Description of DASSL: A Differential

Algebraic System Solver, Sandia National Labs., Albu-

querque, New Mexico, Report SAND82-8637, 1982.

10. Dcuflhard, P., Nowak, U.: Extrapolation Integrators for

Quasilinear Implicit ODEs,Universkit Heidelberg, Sonder-

forschungsbereich 123, Preprint No. 332, 1985.

Fp 11. Deuflhard, P., Hairer, B., Zugck, J,: One-Step and- Ex-

figure 4,-Surface Plot of temperature for-Example 3. trapolation Methods for Differential-Algebraic Systems, Uni
versitit Heidelberg, Sonderforschungsbereich 123, Preprint

seen that the mesh has a:tree-like structure due to the gener- No. 318, 1985.

ation of individual mesh-elements at successive levels t of the 12. Fritsch, F.N., Carlson, J. Monotone Piccewise Cubic In-

adaptive meshing procedure. As one example, shown-in Fig. terpolation, SIAM J. Numer. Anal 17, pp 238-246, 1980

t4is a surface plot of temperature. Notice that mesh points are 13. Peters, N.. Discussion of-Test Problem A, in Numerical

concentrated in regions where the temperature exhibits steep Methods in Laminar Flamc Propagation, N. Peters und

gradients, and where the surfaces of both temperature and fuel J. Warnatz (Eds.), Virweg, Braunschweig/Wiesbaden, 1-

mass fraction have strong curvature. 14 (1982).
14. Brud, P, Rogg, B., Bray, K.N.C..: On Auto-Ignition in

6. CONCLUSIONS Non-Premixed Laminar and Turbulent Systems, 23nd Symp

(Int.) on Comb., The Combustion Institute, Pittsburgh,

We have developed and discussed numerical approaches in press (1990).

having all the ingredients neccessary for successfully tackling 15. Lvidn, A.. Private communication (1989).

problems typically arising in combustion. Specifically, empha-

sis has been laid on self-adaptive gridding procedures appli-

cable to time-dependent two-dimensional reactive flows. As

examples pulsating flame propagation, auto-ignition in a non-

premixed flow, flame propagation in a strained mixing layer

and-hot-spot-like self-ignition have been considered.

901
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SPAIN

ABSTRACT - An adaptive, block-bidiagonal finite difference p!(l) V(O)p(0)
method is used to study the response of annular liquid jets-to the m,(t) (8)
injection of mass into the volume enclosed by the annular jet. It is

*) m!(t*)shown-that the annular jet's -response is characterized by damped-os- m.(t) = = 1 + at, 0 t Kth k9)
cillations in both the convergence length and-the pressure of the gases m! = a0h
enclosed-by the jet, and that the amplitude and number of these oscil- m,(t) = 1 + atiri, t > t,ni (10)
lations:increase as the initial pressure ratio across the annular jet and Substitution of Eq. (8) into Eq. (6) yields
the pressure of the gases surrounding the jet are increased.

I INTRODUCTION c,, = ) V(0)p(0) 1  (11)

Annular liquid jetsmay form enclosed volumes if the pressure where
difference between the gases enclosed by and surrounding them Cp.. -_ p:I2, V() t) R2(
is overcome by surface -tension, and can-be used to measure the J (t z) dz (12)
dynamic surface tension-of liquids and burn toxic wastes-in the
volume-enclosed by the annular jet [1]. V = V*/.rl 3, and L(t) is the axial distance at which the annular

The -equations which--govern the fluid dynamics of inviscid, jet's inner interface radius is zero, i.e.,
isothermal, annular liquid jets were derived in Reference [2]. P(t,)(t)) = 0 (13)
These-equations are asymptotic to terms proportional to-the an-
nular jet's thickness-to-radius ratio at the-nozzle exit and are valid and
forstady and unsteady jets. In this paper, an adaptive block- m b(
bidiagonal finite difference technique is used to study the dynamic b =t ' R. R -b/2 (14)
response of annular liquid jets to the-injection of mass into the
volume-enclosed by the annular jet as a- function of the initial b
pressure-difference between the gases enclosed by and surround-
ing the jet, and pressure of the gases surrounding the annular
jet.

II FLUID DYNAMICS EQUATIONS

The nondimensional equations governing the fluid dynamics of
inviscid, isothermal, annular liquid jets can be written as [1]

aU OFOU (1)

where Figure 1. Schematic of an annular-liquid jet.

U = [m,mR,mu,m-i] T , F [mu,mRu,muu,mu, T] (2)
r m 1 (OJ O_ 1(, __ ,

[0,mU, W OZ( OZ - N  III DOMAIN-ADAPTIVE TECHNIQUE

(3) The annular liquid jet geometry is curvilinear and tir _ -dependent
and has an unknown, time-dependent, downstream boundary, i.e.,

U(-,0) = [1,1,1, tan 0o]T (4) the convergence point. This geometry can be transformed into a

unit interval by means of the mapping
o uo2/g N?, We = m;u 2/2u R; (5)

C -. C.W , C, = (p! -p:)B 2 /rn, 2  (6) (t, z) -- (,), r" = t, 7/= ,/L (15)SCI( The Jacobian of this mapping is L(t) which is a function of time.
J=R + 1+ 2" (7) Substitution of Eq. (15) into Eq. (1) yields

If the gases enclosed by the annular liquid jet are ideal and U + HU = G, )F dL
isothermal, the liquid does not absorb the gases that it encloses, Or Oi L G, -

and mass is injected-into the volume enclosed by the jet at a rate where-I is the unit matrix. Equation (16) can be discretized in an
a and during a time t,,j, then equally spaced grid such that 7, = 0 and ill = 1 where I denotes
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-the number of~grid points, by means-of backward-differences for 1.6
the advection term, and central differences for G, and the result- r

ing O(Ar, A)-accurate finite difference equation- can be written
as

L

-t ' _,. c% +)(I + C )U' =-ArG +' +U (17) 0.8

where i = 2, 3,..., 1--, and Fig. 2

C =-H ArA7 (18)

Since-both-H and C-depend on dL/dT and L, an equation must
be obtained for the convergence length. Such an equation can be Cpn
obtained as-follows. At the convergence point (cf. Eqs. (13)-and 0
(14)) i.

-R(tz = L(t)) =-O, b(t,z = L(1)) = 2R(t,z =L(t)) (19) 1.

Therefore, the following algebraic equation -must be satisfied at
the convergence -point (cf. Eq.(14))

21eCt, z = L(t)) = b;mt(, z-= L(t))/R&. (20)

Differentiationof Eq. (20) with-respect to t, and-use of Eqs. (1)
and (15) yield Fp

OR b pn

dL dL 4R(u -VL)- -- (mu) Fig. 3
. .d R; - at ,=1 (21) 0.

-dt -T4 - ; Om 1.6 m

which is an-ordinary -differential equation for L and which can be
discretized,in an equally-spaced grid, as L

R R1 -R 1 1 --b(mu)J - (mu)j..i
dL 4 (u - - r .- ( 0.

Tr 4R 1 R, R-1 J -.. bol m, - m 1 (2)Fg 4

- A71  R;3 A ,

The values of u,/1, U and m at i = I can be calculated-by linear
extrapolation as Cpn

U1 =-2U 1 _1 -'Ot- 2  (23) 0

IV PRESENTATION OF RESULTS 0 10 20 30 t 50

Figures 2 and 3 illustrate the effects of the initial pressure ra- been-analyzed by means of an adaptive- finite difference method
tio across the annular liquid membrane on both the convergence that transforms the unknown, time-dependent, curvilinear geom-
length and-the pressure coefficient. These figures correspond to etry of the annular jet into a unit interval, and that yields a
nonpressurized and overpressurized annular membranes, respec- differential equation for the convergence length, i.e., for the axial
tively, and indicate that-the initial pressure ratio across the mem- distance at which the annular jet merges-on the symmetry axis-to
brane has a great effect on -its dynamic response. In particular, form a solid jet. A block-bidiagonal technique-has been- used to

Figures 2 and 3 clearly indicate that the time required to reach determine the annular jet mean radius, mass per unit length, and
asymptotic, steady state after the end of mass loading increases axial and radial velocity components of the liquid in an iterative
as the initial pressure ratio across the membrane is increased, manner.
and that overpressurized membranes exhibit damped oscillations It has been shown that-the pressure coefficient and the pressure
analogous to those of a mass-spring-dashpot system. of the gases enclosed by the annular liquid jet respond instanta-

Figures 2 and 4 illustrate the effects of Cmx on the response neously to the mass injection, whereas there is a lag in the ro-
of annular membranes subject to mass loading, and indicates sponse of the convergence length. This lag is-due to the inertia of
that the maximum values of-both the pressure coefficient and the the jet and the assumption that the gases enclosed by the jet are
convergence length, and the-time required to reach asymptotic, isothermal, and decreases as the injection duration is increased.
steady state after the end of mass -injection increase as Cpm.. is
increased. Figure 4 also shows that the critical pressure coef- REFERENCES

ficient of unity determined from the solution of the steady state 11] R. M. Roidt and Z. M. Shapiro, "Liquid curtain reactor", Re-
governing equations [21 can be exceeded without affecting the sta- port No. 85M981, Wcstinghousec R&D Center, Pittsburgh,
bility of the annular membrane, and that the initial response of Pennsylvania, 1985.
the pressure coefficient is nearly linear.

V ONCLUSIONST [2] J. I. Ramos, "Annular liquid jets: Formulation and steady
state analysis", Z. angew. Alath. Mfech. (ZAM), in press

The dynamic response of annular liquid jets to mass loading has (1991).
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DIFFUSION CURRENT IN mm-WAVE DDRs

S.P. PATI AND G.N. DASH
Department of Physics, Sambalpur University,Jyoti Vihar, 5ambalpur-768019(Orissa) INDIA

ABSTRACT: simplification one can obtain the following fourth

Diffusion of charge carrriers would become a order differential equation,
prominent physical phenomena in case of short mm-wave DAD4

DDRs due to narrow depletion zone and high carrier A D  1 +)'D
concentration gradient. An economical numerical simu- zrk) a 2k - k
-lation method to compute the diffusion current and Where the smo he ua men [1) (
the magnitude of diode negative resistance of Si DDRs Where the symbols have usual meaning [1.
due to diffusion current density is presented which Equ (5) is linearized to get the small signal device
provides a realistic picture of the effect of carrier equation on the device impedence Zas
diffusion in IMPATT devices for mm-wave operation. .0+ -(l +.T)k -4. )-)+ (G_ p

INTRODUCTION: +±2rk)D + 2zk-k2 + ( -4))( 2 /i e)
Ultrathin depletion layer and high mobile space -/a) 2 EIZ -(; /:5e)(2.-k) ( )

charge concentration in IMPAfT diodes operating in mm- We t
wave and short mm-wave regions would push the carrier here the primes denote the field dervatives of the
diffusion current to comparable limit of drift curre- corresponding quantities. The boundary conditions are
-nt and both drift and difusion currents would contr- obtained be assuming the electron and hole concentra-
-ibute to microwave negative resistance generated in -tions to be neglgible respectvels at the p-side and

the device. The inclusion of diffusion current to the n-side boundaries of the diode. These are given by
mathematical analysis of the device physics is often + c) - 2-=O o X C c.R (7)
neglected due to complexities that may be involved in - --- 0

the analysis. The authors have devised a comparative-
-ly low cost numerical simulation method to solve at the n-side boundary . and, O

IMPATT device equations under high frequency small E (--- ' - -00
signal conditions by considering both drift and drift D t9 ) V
currents. Our analysis also can give the microwave at the p-side boundary.

resistance contributed by diffusion current only whi- Assuming that the diffusion current is a small
-ch in turn-can indicate a clear picture as regards perturbation on the drift component, Equ (6) can be

role of diffusion current in the device performance. written as (L + L') Z F (9)
Tlhe method has been applied to several mm-wave DDRs
designed to operate upto 220 GHZ. The deteriorating Where 1' contains all the terms involving Dnip  on the

effect of carrier diffusion is marked at frequencies on the L.H.S. of Equ (6) and F is the R.H.S. of Equ(6).
beyond 10O GHL. Expressing Z as the sum of the unperturbed solution Z

and various orders of pertubation corrections 
Z(i=1,

DEVICE ANALYSIS: 2,3.... ) one can write Equ (9) as
Inclusion of diffusion current into the analysis -2

of framing the device equations of semiconductor devi- (L+ A L!) ( Zo + ).z, +? z 2 ± .. ) -F
-ces, can be realised in a simple way by defining the Equating coefficients of various powers of 7 a series

operators for the effective velo ities of electron and of differential equation is obtained as
n,phole in the form, V ^= (-1+-- ( ) _ ) and sum velo- LZo  F (10)

cRY V1. (-,+i') ( L( 4'5 p and LZ -LZ 1, 2, 3 ..... (11)

After separating into real and imaginary parts,Equ(10)
where n,p are the drift velocities and Dn p  are the is first solved and then Equ (11) are solved progress-
diffusion coefficients of electrons and holes respect- -ively for i = 1, Z, 3 ...... etc. using the numerical
-ively and-D=-2/,). The electron and hole current den- technique described as follows.
-sities 3n and J now, take the usual form J =OMUTVER ETOn pnip -- 1t) COMPUTER METIHOD:
Where c is the electronic charge and n and p are res-
-pectively the electron and hole concentrations. The Equ (10) is solved by a modified Runge-Kutta algo-
velocity operators have their corresponding inverses. -rithm following an iterative procedure.1he iterations

over tne initial values of resistance Ro ( ReZo ) and
The basic equations for an IMPATT diode are the

combined carrier continuity equation reactance X° (IrZ0) at one edge or the diode are per-

X( +n)= X(T ) + ((VnM n t ) () -formed till the boundary conditions at the other edge
and the Poisson's equation (for mouile space charge) are satisfied. A four fold logic is framed in perfor-
(p-n) -mng the iterations. The initial values of Ro and X

ax-- may be varied in the four possible ways i.e. R0 RotA
Where 4n,p are respectively the ionisation coefficients and X X ±AX . The logic in which the initial valu-
of electrons and holes.The total current density,which o u 0
is the sum of conduction current and displacement curr- es of R and X is to be varied to obtain the required
-ent, is constant and is given by boundary condizions at the other edge depends on the

- C ( structure of the diock. as well as on the frequency of
Jz n + if) operation. The programme software has been designed in

such a way that the variations in the initial values
J and 3n can be eliminated using Equs (1),(3) and (4) of R and X° automatically switch over to the converg-

to obtain expressions for p and n (1].These expressions -ing +rack very swiftly.lhe software is thus free from
for p and n can be substituted into Equs and on numerical instability. The accuracy limit is set at

904



C I1001

0

01 V-bond DDR

(bO-bond DDR 0

(@Y-bond DDR " 1

-0. -0.30o.0 0.3 -0.
O Dstance,,urm

n-side P -side

Fig.- t/icrowove diode resistance-contributed by diffusion current in
Silicon DORs.

0.02% . After the solution of Lqu (10) the quantities frequency V-band to high frequency Y-band. The distri-
on R.H.S. of the Equ (11)for i=1 are obtained from the -butui of resistance, contributed by diffusion curr-
knowledge of Ro and X at each space point. The third -eni, in the tMpletion layers of different diodes are

and fourth order derivatives of R and X are obtained shown in Fig.1 . The curves show that the diffusion
contribution to diode resistance becomes positive for

numerically following Sterling's -formula. Then Equ(t1) G and Y band diodes giving rise to decrease in the
is solved for i=1 following the same Runge-Kutta app- device negative resistance for high frequency mm-wave
-roach to get the first order diffusion correction.The bdnds leading to fall in the power output and effici-
different order of diffusion corrections may be obtai- -ency of IMPATT devices for short mm-wave operation.
-ned by progressively solving Equ (11) for i=2, 3, 4..
etc. which gives the diffusion contribution to the ne- Table-1
-gative resistance of the diode.

Band Optimum D nD 0

RvS,'rS: frequency - n=DR-G, Dn np -ZRP

Flat profile Si DDRs For operation in V, , D, G GHz 6 1/M2 X10- M7
and Y bands with centre frequencies respectively at 60 X10 s/m, ×10-9"¢ m X10

94, 140, 170 and 220 GHz are designed following a sta-
-tic analysis [(2. The small signal mm-wave properties V 60 7.8 7.6 8.1 8.3
like diode negative conductance (G) and diode negative F F 105 38.1 6.4 37.2 7.6
resistance ZR, which are determined following our me-

-thod are presented in Table-1 for the cases (i) when D 130 56.8 2.3 54.4 3.1

diffusion is neglected and (ii) when diffusion is con-
-sidered. It is seen that the effect of carrier diffu- G 170 99.1 1.4 85.6 1.3

-sion on the device characteristics remains marginal
for diodes with frequency of operation below 100 GHZ  f 220 192 1.0 42.0 0.3

further it is observed that diffusion current enhances
the device negative resistance for diodes designed to REFERENCES:
operate below 150 GHz. The degrading effect of carrier
diffusio.i starts with diodes designed to operate above 1. G*N. Dash and S.P. Pati - Sem inductor Science and
150 Gilz and it substantially reduces the device nega- Technology, lOP Publishing Ltd., England (To be

0 z apublished).

-tive resistance for Y-band operation. The device neg-
-ative conductance also records a progressive deterio- 2. D.N. Datta, S.P. Pati et ai, iEE, ED-Z9, pp 1813-
-ration due to carrier diffusion as one goes from low 1816(1982).
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EQUATIONS AND NUMERICAL -METHODS FOR UINEAR
WAVE PROPAGATION IN ANELASTIC HEDIA -

JOSE ii. CARCIONE AND ALFRED BEIILE
Osservatorio Geofisico Speiimentale, Geophysical Institute, !amburg University.

P. 0. Box 2011 Bundenstrasse 55, 2000 Hamburg 13, GERHANY.
34016 Trieste, ITALY.

and
Geophysical Tsti-tu'Le, lamburg Universi ty.
Bundesstrasse 55, 2000 Hamburg 13, GERHANY.

Abstract The equations governing linear wave In (1) and elsewhere, time difierentiation is
propagation in viscoelastic media, ei tler indicated ith the dot convention. The
single-phase or multipihase, can be written as differential- equation (1) correctly describes
a sing-le first-order matricial different.al the anelastic effects in wave propagation
equation in time. The formal solution is the -w.thin the frameuork of linear -response theory.
evolution operator cOt acting on the initial Tlhe solution of Ul) subject to the
condition vector, where H is a linear operator initial condition
matrix -containing the spatial derivatives and (2)
medium properties, and -t is the time variable. iU(t)U(

The problem is solved numerically approximating is formally given by
the evolution operator by an optima] polynomial
expansion depending -on tile location of -the M d
eigenvalues of -H in the complex -frequency U(t) - e t HU 0 +J e H l((t d. ()
plane. -The eigenvalue analysis is carried- out
for the anisotropio-viscoelastic and porous In equation (3), e t l l is called tIle evolution
viscoacoustic constitutive relations and operator of the system. Solving (3) requires
respective limiting rheologics. For each case a suitable approximation for tile spatial
an opt-imal expansion -of the evolution operator derivatives, h-ich is achieved by the Fourier
is identified, whiclt provides lighly accurate pseudospectral -meritod L7] . Titus, equations
solutions and fast convergence compared to- (), (2) and (3) should be replaced by the
Taylor expansion or- temporal differencing. - iseretized equivalent equations.

Tire numerical solution is obtained by an
I. INTRODUCTION optimal expansion of -tile evolution operator as

polynomials, whose region of convergence
Linear viscoelastici-ty provides a general depends on the- spatial matr-ix H, particularly
framenork for describing the anelastic effects on the location of its eigenvalues in the
in wave propagation, i.e., the conversion of complex frequency plane. Tite form of it depenids
part of the energy into heat- and tile on the rheology and the unknown variables.
dispersion of the Rave field Fourier components Let a plane Lve solution to equation (1)

mith increasing -time. -A dissipation model Which be of the form
is consistent uith real materials is tie
general standard linear solid uhich is based U=Uoei(aCt-ksx),
on a spectrum of relaxation mechanisms.
tiowever-, implementation of this rheology in the -where x is tile pusition variable, wC is the
time domain- is not straightforward- due to the complex frequency, and k is tile real waveiumber
presence of convolutional kernels (Bolztmann's vector. Substituting (4) into (1), and
superposition princ.iple). To avoid the time considering constant material properties and
convolutions, it is necessary to introduce into zero body forces, yields an eigenvalue equation
tie formulation additional variables, called for tihe eigenvalues .t iw C . Tie determinant
memory -variables in virtue of their nature of the system-must be zero in order for UO to
[1)- [5] . The Rave equation of tie medium call iave a non-zero value. 'the.efore,
be rittein as a first-order di fferential
equation in time as detcH - All -0, (5)

U - U+F. (1) where 1 is the spatial Fourier transform of H

where U is a vector -mhose components are tIhe , and I is the identity matrix. Hereafter, the

unknown variables, H is al operator matrix complex plane of the eigenvalues is cafled the
containing -the spatial derivatives and material z -plane. Equation (5) determines tIle

properLies, and F in the body force vector. elgenvalues of M in tihe Fourier method

approximation. Actually, tile discretized
This Rork was supported inn part by tine equation should be used, but (5) represents a

Commission of tire European Communities under relative]/ good approximation.
project HOS I (Exploration Oriented Seismic Tie cigonvalues are analyzed in Section
Modelling and inversion), Con tracl N. 2 for tie following rheologies:
JOUF-0033, part of the GEOSCIENCIH project

-i t-hin -thc framework of -tli JOUL.E R F 1) - ANISOTROI'IC-VISCOJr.ASTIC
Programme (Section 3.I.1.b). - Isotropio-viscoelastic
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- Anisotropic-elastic to -the LV mechanisms whi ih dcs cri b -the
- Isotropic-elastic anejastic character ist ics of thle
-POROUS -ISOTROPId-VTSC'OACOUSTIC quasi- -llatational mode Cv= 1). and quasi-shear

Diot-acoust~iodes v= ); and Aj and Aya are funct ions of

iTh ivle ditiinfnste mediu~m. F ial Ii'. Hu, = [I - F, (I - T j)/rT~] mhere
domain where 1116 evolution operator j!'T r-2,v are material relaxation times.
Iaproximated by a sui table Crapidly covrgn) MP'Icjit summation- over -repeated inidices is
polynomial- -expansion. For -each case, a- brief- assumed-.
review- of the -numerical integration tchlniques H)t-mmr aibeeutos
-is given -in Section- 3. The methods are the )thmorvaibeeuin:
fol-lowing:

41- = Sa, 1 e~4"I 1 =1. .-.LVI(8
- Taylor expansion

- CleyhvSpectral methtod where 0,) .- '4tTi.
-Rapid expansion method

- Polynomial interpolation Equations (6). (7) and (a) are the basis
tltrouglt0confoX1mal mapping- for the n~umerical solution algorithim. For

--Polynomial interpolation- simpl icit>, a -two-dimensional
by residum min imization transversely-isotropic medium with symmetry

axis parallel to -te z-axis -is considered.

-1-. HAVE EQUATIONS AND EIGENVALUES OF Then, c 1 1 . o33 , c1 .S and-c!5 5 define the elastic
characteristics- of Ate medium. Choosing one

Anisotromi-viscoelastic rleojo2Y relaxation -mechanItism for each mode
In rde toimpemet Ioltmnu's rinipl ~ CL 1 =L 2 =1). the unknown variable vector is

thle generalized Ilooke's lax, +-Ho relaxation gvnb
functions based-on the standard linear solid UT = (1_ uX, II' x' 1' (?-, C2, 03 1, (9)
rlu6olIosy are considered. Ore relaxati -on
function-describes the anela.!,t., properties of where e] e-CYT+ eYI, 02 =O -e 0 e. and-
the quasi -di-latati onal mode, Aa theo other -iIs e3 = e~l, j in terms ol the memory var- imblIes. The
related to the -quasi-shear mrode. This can be spatial- operator is
done by forcing -the mean stress to depend on -

the first relaxation f unc ti on, and -thle 0 0 3. 0 0 0- 0
-devialoric components on the senond (in -this 0 -0 0 1 0 0 0-
case, at least for some coordinate system,- and 11311132 0 0 H3!5113611H31
usut-ally along- symmetry axes of the material). M M4, H, 42 0 O-H45, 1146 H1,57j (0
Moreover, the result-ing rheological -relation 115115;2 0 0N!;!; 0 0
gives Il1ooke's law in -the anisotropic-elastic 1161-1162 0 0 0 1166 0
l-imit, -and thte isotropic-viscoelastic rhteology 11711172 0 0- 0 0 H7
in the isotropic-anelastic lim 1-t (3], [5]. The
equation of motion of a two-dimensional- with
anisotropic-viscoelastic medium is formed wi lit
thle following equations [13- 01H31 = 0/Ox [(0 1 1 - D)) + (D - c!!)HI -~c 5 1 1 ]0O

i-) The equation of momentlum coniservation: 13/Ox (0 5511 12) 11J137,

VInT= pii+f , (6) PH32 =0/O7x [(C] 3 + 20!;! - D) + (D - Gc55 )1113  0 5 5 1111 %]
where TT = [TI, T2 , Ta. Ti,. T.-, T6j nla 0/Ox o 0/ (0551%2R) 0/O'x.
[Cxx. 47yy. azz, oyz. aXz' axy] is the s tress
vector, wi th aij.i~ iJ = 1,.....3 the stress PH 355 =/0x (1)-c 5 01 P113 6 =O/Ox 05 5 , I11137'
components. Defining -the posi tion vector by
x -(x, Y . ), u(x, t) and f (x, -L) denote the /?C,
displacement and- body force vectors,
respectively; p(x) -is the density. and V uis a PH.j -- /ax C(01 ,3 4 205 5 - D) f (D c5 5)Nu11  c!,.112l?
divergence operator defined by

"/Ox + 0/lx (c5 ;5111 2 ) 0/.lz,

V,.- alr0x 0 0 0 a/Ox Ohiy 01142 ( 7/xz [(03 3 - 1D) + (D0- css!)1lii -1 osst1up] '11/1Ox

L0 0 il/Ox Olilye0/Ox 0 j1 0/Ox (c55 "u1 2) 0/O(x.

H-) The stress-strain relations- PHI45 = 0/Ox (1) - c!;!-), jI1H,, /x

LV 014..7 = r/0x 055

T1E~jA13~~4j ~Ze1 (7) H,.

where I.J =1. . -6, and -1, 2. (.01)
ST= [81 , S2, 33, , 6. z 5 a61i ilOX, H16 2 =412 0/O. 1166
Crxx, cyy, Czz, 2cyzp 2rxz, 2txy) is Lte n tra it
vector. with rij , i j = 1, -.3 tile sLtai 111H71 02 NJlx, 117:,~ n /Ox, 1v ir1 1

components; 09yj are memory variables related a7
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Shere D=(c 1  + o3 3 )/2• Tite subindex I denoting
r, .plsical mechanism -has been omi tted forh1,200
Ceimplicity. In the anisotropic-elastic limit, isolropic-elastid
ie. •, ,en Rhaw Tv) . and the memory variables
vanisl, equation (2.2) become looke's law. In z-plane (az)
the isotropic-viscoolastic l imit, on I o

c 3 4-2+2p , c1 3 - ,! and 05 -with A and p
tile Lame -constants, and (7) becomes the - , -0
isotropic-viscoelastic rheology £5). -500

The eigenvalues of -11 are obtained -from
equation (5), where tile following substi-tution: • P-wove
O/ax ) ikx, and O/Oz - ik z . with kx and kz

the-wavenumber components, gives H from -. to-w-1.200

or-'irpic-vice osicJ -1,200 Fig. 1. -igenvalue distributian of the spatial

matrix --in tile complex frequeney plane for ihe
z-plone-(Hz) different -rheologies -of- a single-phase solid.

The eigenvalue distribution- for the differeit
-500 -rhoologies -is displayed- in Fig. -l . The jaterial

is a hclayshaIe Iaving
r qP-,wovc 0 - 4.) = 2)= 0-00s---, )--0•-002gs- 1 ied-

--iSove i2) .0•002 s1, hich give highest dissipa Lion
qS-, arountd f = s0o lg 1I. Tihe -cigenvalues
Siolic nodes corresponds to k=k 016'm- 1 . The legni-ive

M real part of the propagating -modes is- a1-20O consequence of -te anel stici ty, stronger for

the shear modes. The static modes arise from
the fact that- the formulation was -done in tie

time domain;- ttey are- grouped approximately
around -J/41) and-- Jr2)• Tihe di-fferences are

r__ni _lr _celic -,20mainly due to anelastici-ty which -introduces theAnisolropic-e c static modes, since anisotropy only -produces a

shift of the wave m-ode aigenvalues in the
z-plane (Hz) vertical direction. Section 3 analyV.ds tile

appropriate methods Tor each rheology.

_--0
-500 Porous isotropie-viscoacoustic rlTeol oqy

Invoking the correspondence principle, Diet
formal-ly obtained- a viscoelastic equation of

9 qP-wove motion which includes all possible dissipation
0-- mechanisms. The approach- involves the presellCe

qS-Woe-2 of convolutional interals which arise from tile
.2 00  replacement of tile elastic coefficient; by time

operators. wihen- standard linear solid kernels
are considered for tile time operators, the
equation of mo ti on of thu
1sotroPic-viscoacoustic porous medium is given-

tlsolropic-viscoeiaslic U1.200 by the following equations [2]:

z-lone (11z) i) Biot equations-

-5 1 00 .0 here p and p1 are 'tle pressure fields of -tile-500
matrix-fluid system and fluid, respectively; 11

e P-wove is the displacement of -tie solid; u is a vector

-0 Srepresenting tile flo of tie fluid relative to
Swoe 1  the solid, and s and sf are body force vectors.
Sloic fds Tihe material properties are: p , the composite

L-1.200 density; ps" the solid density; pf , (ite flitid
density; m, the -tor tuosi ty; )1, [Ih- fluid
viscosity; and K-, the global permeability.
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:i) Tie s+res-strain relations: nith A=0 2 Ox? and y--p -pm . iiot poroplastic
equati ons are obLai ned by tak i ig

f 2[G- Je I]+ 0 1]021]1 ( 1 r) r-=1,3-. Then, the memory varitables
PJ - V3 C r ovanishi and the unknoun vector becomes

T, 1 , 0 i 2 1 ]} (12) 1T Tile equatioi for a
-ulere oand C rethedi-attiol fels o -tle v iscoacoustic singl~e-phase solid is obtained

seoli-a x and fludi-latation fields of- the 1it p1=0 and 162=03=0; only one set of
Smatrix,axation times remains, correspondin tothe

respectively; and ell, 021, C21, and (31 are solid phase -i.). rite unknown vector in this
memory variables. : Pj =-(A.+R+2Q), 0% -(Q+R)fl cafe is uT-[c, 6. el.
and 03 = Rift2. where A, R, MAd Q are the
classical Biot elastic coef-ficients, and /I is
tile porosity-.

iii) The memory variable equations: [Porou-s-viscoacousici 500

VLJ - i0 1i Lo4J a i, 7  t3j (13a) z-plone (KHz)
r°lI_ 3 [°] "- j *Jr°'l ,o' .

Lral 1- 21" (13b) xx 0

.u rosi P-wove
for l = 1...,L, witere n

Or L - 4)j4j))jx4 71), r = 1,3. .it, 4t r * s!ow P-wave
and Aj) relaxation - i es. X Sloic nodes
In -tie one-dimensional case Irith L=I, the ,-500
unknown vector U ias nine components,

UT=Ee, 4, 6. ,, -'f, e- 4S, 2,2]. (op.a23

Tile spatial matrix i -for constant material -S00properties is given- by JMOio-acouslic

o 0 0 13 0 ~z-plune (K1-tz)

0 l 0 0 0 0- 0 0 0 0

O 10 0 0 0 01 0 0

M31 H32- 0 0 1135 M36 H3S7 M18 H39  0 , .
M41 M42 0 0 N s H4¢6 H47 H 8 7;.-,g -100

11 H S I. M52 0 0 Hss 156 H57 S8 Hs9 -

1181_ 0 0 0 0; 06 0 If 0 rOt-ae0 1192 0 0 0 0 H77 a- 0-Mai 0 0 0 0- a 0 -H8 J fr' u rosl P-woveI
0~~~ ~ M91; o HCV, a lwPwve

F.-500

-(eq. i(-IS), here

' Y 3 1 =m- 1 + P0¢ 2 3 A, Y H32 = [m - pf,13 ] A,

S113S = (PfIJl) 8Iax,

S1136= m A, y H137=- pf A, v 138 -f A, IIso l r opic-visco° c ousic-

Y 139 im A, z-pliole (C'ilz)

y 1141 = [PfA'1 + P ' 2 3 A, Y 1.[2 = -[Of I'] A

7 114s = (P,?lK) alx, -i00 X--0

Y If', Of jA y11 7 -P A, Y 1 4 8 =-p A. Y Hr# 9 OfA,

y 11S1 =TPftr1 + P 2 1(7jax, Y 1152 = P-f'2 P3 11111x, __________

Y 11s = PWllK, x Stalic node
y-500

Y 1156 = Pf alx, y11 57 =-p alx, y 5 8 p ,

Y s59 = P f ajx,
Fig. 2. Eig nvaltip distributioa of I ill [ha

() "  .'l) complex frequency plane for a porotsM6iL - Opi , HGG - 1/r~ ' H72- 03 , -17 LI~a~viscoacoust-i medium and imiLinJ y ri oilogle;.

"8 ' 2' 1188 (2)92~2'19
1,92-. -02,.99 - Jir.
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Substitution of OJ1fx by ik gives Lte -Rapid expansion method InI thle elastic case
trnsome ati I. i. hos-te where no first time derivatives of thle

displacements and memory variables are present,elgenivalue distribution. one of -them is zero- tile wave equat ion of thle system can -be(nlot -Plotted) since -the fourth and -fi-f-th- rows epesda

of H1 are l-inearly dependent. The slow modes 2(2
present a quA te diffusive behaviour due to Lte i L 2u + f. 22
-Biot mechanism. They are not present -in -thle -where it is the displacement vector, f is the
Sinlgle-phiase medium, whose attenu11ation boyfrevcoand -

2 is a Iinear matrix
characteristics are viscoelastic. operator similar to H1 [9]. For zero body forces

the formal solution to (22) is
111. NUIIERICAL INTEGRATION IIETIIOIIS

u(t) = cos Lt u(0) +1 A±Ii(O) - (23)
To illustrate thle different techniques, a zero
source term is considered for simplici-ty ii- Adding solutions (23) for times t and -t, -the
equation (1). A detailed formulation wi-th displacement time derivative can be eliminated,
source canl be found in the respect-ive and the displacement at time t ibecomes
references. The -formal solution- La the System u(t=-(t)+2c(t)uO.()
is then given by

Tile method uses tlie following expa: sion:
11(t)e U0 , (16) K/2
Thle numerical sol ti onl for general -cos Lt C2kJ2k(tR)Q~k[J.]. (25)
inliomogeneous media requires a pol ynom ial k=-0
representationi of Iiae evolution operator. Tile
di-fferent methods are: Thils expansion represents an improvement over

-Lte Chebychev spectral method since it contains
Taylor expansion A Taylor expansion of- -Lte only even order functions Q2k' 11hwver, It Can
evolution operator up to the second order is be used only for elastic problems [8J.

0 -1t+-2L2 (17) -polynomial interpolation throngicnfra
mapping AS Shown in tlie previous section, iii a

Replacing (17-) into (16), and substracting single-phase anelastic solid, Lte cigenvalues
= U(-i) f-rom U(t) gives of Hi lie on a T-shaped domain D which inicludes

11(t = ( -f 4.2 t U0.-the negative real axis and thle imaginary axis.
U~h(t+t10  1) This approach is based onl a Polynomial

This formula basically gives tile equations for interpolation of Lte exponential function in
second-order temporal -differencing valid for the complex domain D, oii a set of points whicht
small t [7]. Although thea region of convergence is known to-have maximal properties. This set.
of- the Taylor expansion is tile whole z-pllane. known as Feler -points, is found through a
in order toF have high accuracy, the time Step conformal mapping -between the uni-t disc. and the
should be very small; more precisely, domain of thle eigenvalues D. InI this way, thle
At =O(N- 2 ), us ing Ifiite-order expI IcitL schemes, interpolating polynomial is "al ImostL best"
where N is thea number of grid Points. [10).

Getting tile Fejer polits -is as follows: Lect
Cliebychev spectral method Tis technique Makes X(u) be a conformal mapping from the it-plane to
use of -thle following expansion of o7 ill]: z-space, whtich maps the complement of a disc

of radius JS to tile complement, of D. where AS is
K thei logarithmic capaci ty of D, given by the1

ez F kk~R)k 7,(19J limit 6S= I~eI, tile Prime denoiting derivative
k=0 wi th -respect -to the argument. The analy-tic

expression -for X(u) corresponding -to -Lte dlomain
where Ii Z - tRt, and z lies close to thle D canl be found inl [10]. Tile same function X(uS)
imaginary axis. C0 .1 and Ck -2 for k a 1_ ik maps thle complement of Lte uni t disc to Lite
is -tile Bessel function of order k , and Qft are complement of the domain D.
modi-fied Chebychov polynomials which Satisfy Then, the1 Fejer po int11 are
thea reculrrenice relation Zj =X(uj). J , = 0.,m -1 where uj are the m

Qk+15) 2sk~s +-y (-0) roots of the equation 11m = , iith m the degree~k1() 2~ks i ~~1~Q 0 Q., - S- (. of -the polynomial. Tile set
Substi-tuting lii fol' Z ill (19), equal tion (16) [zfl, I = , .. .,.m I has maximal Proper ties of
biecomtes convergence. Then, tIlia sequience o1 polynomials

Pm(z) of degree-m found liy interpolation to tit
K arbi-trary function f(z), anialytic oil D at the

U(t)~ Z kJk(tR)Qk-Lj]U0, (71) points z1 . converge maximally to f(z) oin D. The
k=-1 initerpolating polynomial !in Newton form is

The series has a rapid coinverence for K.- tit, Pm,(z) = a 0l 4 aj(Z - O a 2>(Z -Z 0 )(V, z1 ) ..
wi tht K 0 (H) . The valu te of R shoul d lie chosen
larger thtan tlce range of tile eigenivaluer of + aM(Z -) ..(z - zm 1)' (26)
tH- Sinlce -tills expans i on coilverye!; for the whr
imaginary axis of tie z--plane, it , wher aj - f[z0 , -. zj] 0. m --.I . are

appopratefortil elstc cse 7j.Ancaslc thle divided di-fferences. The appr .ximatilly
Prolmsrae for thed lati ae3 efficiencc Polynomial is given by l'M(Ht) Hiti1 f(Zj CZ.

using a sl ight modi fication fro].
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ON THE SOLUTION OF SOME HEAT TRANSFER PROBLEMS WITH JUMPS IN FLUXES
ARISING FROM BUILDING PHYSICS

J. KACUR R. VAN KEER
Institute Numerical Analysis Seminar Mathematical Analysis
Comenius University State University Gent

84 215 Bratislava, CSR 9000 Gent, BELGIUM

Abstract - This paper deals-with a new method for some - the incoming air is mixed very quickly with the air

heat transfer problems through a system of walls and in the cave

caves In buildings, the caves being ventilated and - the mass of the incoming air equals to the mass of

heated. From an energy balance argument In the caves, the outgoing air at every time

these problems may be reduced to heat transfer pro- - the temperature and convective transfer are uniform

blems through multicomponent media with jumps In both over the wall surfaces x = tI and x = 2.
the fluxes and the temperatures at the interfaces of
the subregions. The ventilation and heating lead to 2. MATIMATICAL MODEL
non standard transition conditions involving Volterra
operators, acting on the traces of the temperature Under standard assumptions the mathematical problem of
from both sides of the interfaces, the heat transfer through the cavity structure is ;

Crucial in the analysis is a non standard variatio- determine u(x,t). x e 0 , t > b, 1 s I s 2, or
nal formulation of the problem, taking Into account
the non perfect thermal contact conditions In an either T(t), t > 0, which obey the respective heat

appropriate way. By the method of discretization in equations, with w= kI/K ,

time, see e.g. [l], the existence of a unique, stable

weak solution may be shown. The resulting recurrent w I(xt). au a (k (x,t)-) u l = 0, X C S1 t > 0,
system of elliptic problems at each subsequent time 6t ax ax
point is approximated by a FEM. Both the convergence (2.1)
and the error estimates for the semi-discrete and ful- together with the boundary conditions
ly discrete approximation scheme are stated. In a au1 (Ot) =au 2(L' t= t>0 (2.2)
simple case the numerical: results show a gcod agree- ax- O O x "
ment between the-exact and the approximate solution.

as well as with the transition conditions

1. INTRODUCTION. 1 .au(a t) = 1,2 (
k -- - I h h -(u'(tt) - T(t))

To avoid distracting technicalities, we confine our- 12 1  u2

selves to a ID-model problem-with practical relevance + (u1RIt) - u2't)), t > 0 (2.3)
viz. the simple cavity structure of Fig. I., see e.g.
4wall cave wall 2 kz au .t) = h2' 1-(u2 U ,t) - Tt)

k 2 u( 2t ~)
u (xt) T(t) u 2x,t) + H2 '(u 2 (R. t) - uI (Lt)). t > 0 (2.4)

T -T 3 x and the initial conditions

1 2 uI(x,O) = UoI(x) x e n " t >-0 (2.5)
0

k,K c k2 ,K Herc, expressing the heat energy balance in the cave,
P the toperature T(t) of the inside air is readily seen

to evolve from the initial value T(O) according to

Fig. I. Cross section of a simple 
cavity structure

dT(t) = I,2 u

The air space, assumed to be homogeneously at tempera- P = g
"  - T(t))

ture T(t), Is contained between two walls (with con- + h?'*-(u 2 (. ,t) - T(t))] - K-iT(t) - O(t)J

ductivities k and diffusivities K ), being at tempera-

tures u * i = 1,2. At x = f and x = t heat Is trans- 2 p 02.6)

ferred by convection between the wall surfaces and the where
a t e tn C= thermal capacity of the air In the volume V

air, with respective transmission coefficientz h1  P between two cross sections of the cave

and h2'. The radiative heat transfer between these g = S/V, where S Is the area of the wall surfaces

surfaces is linearized, with coefficients H' 1P. between these two cross sections

The walls consist of two parallel Isotropic slabs, g = S I, where S is the area of a cross section of
assumed to conduct heat only In one direction, ortho- Z 2 2

gonal to the surfaces. As we focus on the contact pro- the cave.
blem. we take the surfaces x = 0 and x = fs to be in- Consequently,

sulated, for simplicity In the formulation. However T - (t) .e(t).it
Inhomogeneous Neumann and Dirichlet or Robin condi- T(t) = -T(O) +_- - es)
tions can be covered as well by the present approach. p 0

The cave is heated homogeneously at a rate q(t). {g'.[ht'2 -u(t s) + h2 " u2(t's)
Finally the cave Is ventilated, both directly by In- 1 2

coming air with velocity v(t) and temperature T(t), + K-O(s) + g-c p-V(s)-T (s) + q(s)}'ds

and indirectly by a change of air with rate K per unit 1 2
time interval per unit temperature difference, the a G(u .u )(t) (2.7)

outdoor air temperature being 0(t). In modelling the where

ventilation we assume that
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t From the smoothness of the data and the required regu-
ec(t) = J[(g-/c )'(h' 2 +-h 2 ") + g 'v + K/c ]-ds. larity of u, all Integrpls in (3.2) exist.

0 The relation (3.2) is obtained from (2.1)-(2.4) by
Substituting this expression in the transition con-

ditions (2.3,-(2.4) and translating the interval first dealing with the problems for uI and u 2 In the
(t ,) to (t .L), with L = I+ Ii- 12  we arrive at a usual way and by next adding the resulting variational

parabolic problem for the functions UI(x.t). X eequations, taking into account the notations (3.1).
l pThe formal equivalence of the classical and the weak

t > O, I = 1,2. of the type mentioned above. This is a variational problem can-readily be proved.
problem in a two-component medium with a jump both in
the flux and In the temperature at the interface x = t 4. DISCRETIZATION IN TIME
of the 2 subregions.

Remark 2. 1. In practice, when T(t) varies slowly In Consider n C W, a time step At = T/n and time pointsRe~r 2.I. n prctie, hen ~t)vares sowl in tj = J-At, 0 -S J S n. We define uj e V. intended-to be
time, the left hand side of (2.6) may be neglected, c P j i

being small (in popular-models, even c = 0. [41). Then an approximation of u(x t ) 1 s 3 S n. by the linear
p recurrent system

T(t) - G(ui,um )(t) takes-a particular simple form.

The analysis may easily be extended to a structure b(tj; ZujV) + a(tj: u3 ,9)

with-H parallel walls and H-i enclosed caves (H > 2). 2 [u( ) - G(u 2 1,u. )J-(t
+ h J j t I ujI -i'j M j )I1,

3. VARIATIONAL FO.MULATION h2 ,1 2 - 1 u2 2
+ j UI) G(u 3 . . 1  M jt)I'- ()

3.1. Notations and assumptions + H"I' L-[u I U u ( ) )1(' (t I - U1 0

Let H'(l ) be the usual first order Sobolev space on 1 _ 2 1 ]

f? with norm .11. 1 s 1 s 2. We set Vw e V. I sj- Zn (4.1)
where

V = (u = (u ,u )I e I (n I - I S 2) u| = (u - u )/At . = h ft I etc.

and we identify u e V with the scalar function u : 17 4 u for t C (trtr), 1 r :5 J-I

R for which u| =u on flu, I S s 2. Similarly we U. (t) = r - r

deal with the product space H = L () x L (M ).Denote
2 1By the Lax-Milgram lemma it can be shown that the

2 2 (elliptic) problem (4.1) for u C V has a unique sod-(u~v)HZ l"u-v|dx ; b(t;u,v) = .f" -u-v'-dx3

I=: fil Iz n Iition in terms of u .... uj. Is j :s n.

IUIH (u,u) 2/ Vu,v e H (3.1) Definition 4.1. The Rothe function u ( n  I V. In-
2 1 2 tended to be an approximation of u, is introduced by

I au dv 1 21f2 ()a(t;uv) = k - dX . IE I a U t= u 3 + Suj-(t - tj _), t S t S t I, 1-9 j -n.
1=1 jai (4.2,

Vuv C V From here on C > 0 Is a generic constant neither
depending on At nor (in § 5) On A.

Let T > 0 be a given number and set I = (O.T). We eeding o oe en s as in ( 3

use the standard functional spaces C(I,X). e t(I,X), e ty proye
L21X) We may prove

L (I,X), etc., where X 's a Banach space.
THEORM, 4. 1. There exists a function u C C(I,H) n

Throughout we make the assumptions L (IV). with atu E L (I.H) (u is differentiable a.e.

w k e Lip(I.L( 0)); w ,k ; p > 0 In iI x I in I) such that u ( n) - u in CUM n L(IV) and

(p constant). I S I S 2 at u tn)- atu In L (1,11) for n 4 =. Moreover

II. I" and H"' C?"e Lip(I,*) Eu - u aC(IH) + u - U L(I.V) s C-i/Ar (4.3)

v(U, 0(t), T (t). q(t) g Lip(I,R) Finally u is the solution in the sense of Defin. 1.1.

Uo Hi (0) 2. Remark 4. 1. When the Inital function uo re V satisfies

3.2. Variational problem a 'compatibility condition', viz. when there exists
3.2 Vaitoa problemtepeeda 5 o  uc ht 41

Definition 3.1. A function u : I -H, with u C L (IV) o C e. to be Interpreted as Suo. such that (4.1)
n sholds for j = 0 too. then the estimate (C.3" can bet L 2 (2.1- Improved to 0(0/n). Moreover, then u C LIP (IV) and

(2.5), (2.7), In the time Interval I, Iff a u c L (IV n L (1.11).

b(t; atu(t).9') + a(t; u(t),9) t c

+ h 1 '2 [uI (1 t) - G(u'.u2 )(t)I -V(f) S. FULL DISFIZTIGN

+ hI [Lu (1t .t) _ G(u1.u 2)(t)1.9~ 2(s 5.. Abstract error estimate

2 Consider a family (V x. of (finite element) sub-
Hs' 2 -[u~l (. t)- u (1,.tfl-[9'1U1) -

2(1)R -- 0 A "A-O
a V ae. in (3.2) of V. Introduce uC V . the Galerkin approxi-

u(O) = u0  (3.3) mation of uj. S j I n, by a similar recurrent systrit
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to (4.1), where now ep e-V I and where-u 0 Is replaced by respectively, as well as with the T;C.'s at x I
a utbychoosen approximation u~ 7V -Z VaUI= 5-(U -u 2) +5, 2-a u2 5(u-_UI) ,

sutal (a Vx x
Put cc =(At,-A). The discrete Rothe function u is adteIC'

defined by a similar relation-to (4.2). To obtain the adteIC'
counterpart of Theorem 4.1, we assuae u I (x,0) =cos(91*x),

A 2u 0 - uo InV if A 40 (5.1) u (x,0) = (-1/r2).sin(I )/sing I1r)-cs((SIM)-(-)

FrayzeL2 2 hreeit A H.IY suh Iere 13 = 1.590724 Is the first positive toot of
that z IN-)z In L (I,V) if X 4 0 (5.2) og3+(1Vctgj/2 =gI

For finite b*lement choices-of VAX c V .(5.2) Is Implied c t ge me ho of (l/V e).c t io~ of va i bl s th/na y
by an Inequality of the type (5.5) below. Byca sthe n meth dfseprto fvralsteaay

THEOREM 5. 1. Under the additional assumptions (5. 1-)- 1 2 1 t 2.t 2

(5.2) the convergences, mentioned -in Theorem 4.1, are u (x,t) =e9I. u-(X), u-2(x,t) =e-91 u. () + x
valid~ fo- a fa- .Mroe.U 

-0-

vali fo u f c .* . MreoerAs in §5.2 we use a linear FEM-with -nodes

flu (C- uIflf) 1i~c 2 1 1~+A ~~X~~ s

S C. [At + 1u - uAI1 2 + flu - W~l 1 I + flu -WI12  As error characteristics we use discrete -L t- and L -o
2 2 norms 2 1 /A
V- L2 (IV tAe (t) = E Iu(xtt) - u (xt 't)I.X-

Remark 5.1. This estimate can be Improved, viz. At may 1.1t=

be replaced by (At)2, when u A satisfies a 'compatibi- 2 1/A I
0o 1 (0 0- () I u (4t) I A

lity relation' . More precisely z 0 e V X, defined by a 1=2 .

similar relation to (4.1) with j = 0 , Ve V Aand u ~)=mxmxl~ lt (cc ) 1
replaced by u A, has to obey Iz AI H < C I A .0 Mt ~ ~xI et u (tI

The table below shows accurate results, even for a
5.2. Rate-of converg~enco In the mesh parameter coarse mesh.

Let (,r) be a regular family of partitions of S2,A A40o- t 0.1 10.2 0.3 10.4 10.5
1 1 I 5 2, with global mesh parameter A. Introduce

1 1 0 - 1 2 1 0.04 0.09 0.14 0.19 0.2X I v G C (9)1v e P(K) Vk e T 1 -e}
A {v( 1 , 2 Iv'1K i X}- (5.4) If 0.002 10.0038 0.0049 0.005 0.006

Fo th Larag fiieelmn pae eknw1 e (t0% 1 6.9 19 40 70 112
Fo h arnefnt lmn pcsXA wekowI1 0.449 0.993 1.65 2.45 3.43

v + A-,,I 1 11 SC? 2 -111?vvI ~CA I lI H (Ql 2 1 0.09 0. 15 .18 0.2 0.2
Vv I r H 2 (Q 1 (5.5) 10.II) 1 0.001 0. 000003 0-.003410.0036

1 I 1 l- 0 - I
where v. = UA v and nA~ CW1U2, XA is the standard Tal.Cs-~A ~2 A 14

Lagrange interpolator or It's Clement's generalization Case 11 At = 10, A =1/32.
to L (M(I ), I s i -2.

Moeoer tain u 1 = I1 2 2

Moevr taiin u A = 0u , 17 uo), we~get Using a Crank-Nicholson modification of the semi-
AA dicrete scheme of § 4, the results may be improved by

1u 0- u oI If: C-A- Iiu0II1. about 30 %. This and other generalizations, e.g. to 3D
0 problems Including non-linear phenomena, are- investi-

Combining these estimates with Theorem 5.1, we have gated In a forthcoming paper.

THEOREM 5.2. Assume that u I e L 2(1,H1 (0 )), 1 :s I s 2.

Take V c V and uA %E V as Indicated above, then REFERENCESA o A

iiu (cc) - uIIC(2 H (00 - ull 2IV =(At + A 2 [1) Kadur J., Method of Rothe In Evolution equations,
CIH+ U L2 A Teubner, Leipzig (1985).

If the compatibility condition on u 0, mentioned In [21 Kadur J., Application of Rot he's method to
Remark 5.1, Is satisfied, then this estimate Is Impro- Integro-differentlal equations, J. Reine Angew.

ved to 0((At) 2 + AL2) Math., 23_, 73-105 (1988).
13] Ka6ur J., Van Keer R., On a Rothe-Galerkin finite

6. NUMERICAL EXAMPLE element method for a parabolic problem with a
Volterra operator In -the boundary condition, in:

We consider a simple test problem, cfr. Remark 2. 1, Whiteman J.R. , The Mathematics of Finite Elements
the exact solution of which is known :and its applications, Academic Press, London,

Determine u Iin (0,1) and u 2In (1,Z), t > 0, obeying (1991)(to appear).
I= 1, k2 = 2, W1 = W2= [. 41 Pratt A.W. , Heat Transmission In Buildings, J.the D.E.'s (2.1), where k Wiley, Chichester (1981).

together with the B.C.'s (2.2) at x = 0 and x = 2
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FORCED SURFACE WAVES IN THE PRESENCE

OF FINITE CYLINDRICAL POROUS WALLS

AND

M.A.GORGUI M..S.FALTAS
University Of Alexandria,Faculty Of Science University Of Bahroin,Mathematics Department

Mathematics Department,Mohareem Bay Isa Town,P.O.Box 32038
Alexandria,EGYPT State Of BAHRAIN

Abstract-A linearised cylindrical wave motion 42*C H0 ()r)ocash K(-h-y) as r (2.7)
-is considered for a fluid of finite depth in qhere K is the real positive root of
the presence of an impermeable cylindrical wall k sinh kh - K cosh kh =0.
and coaxial porous wall immersed vertically in 3.Solution of the problem
the fluid. The motion is generated once by the Using the method of separation of variables,
impermeable wall and next by the porous wall, solutions of (2.1) satisfying (2.2),(2.6),(2.7)
A wave trapping phenomenon is investigated, can be written in the form

1.Introduction 4il==(An Io(knr)+Bn Ko(knr)) cos kn(h-y)

The classical problem of forced two-dimension- (l)
al wave motion with outgoing wave at infinity + J (o(r) + H 01(Kr)) cosh K(h-y) (3.1)

generated by a harmonically oscillating vertic- K(knr) cos k (hy) +
61 wavemaker immersed in water was solved by =2 9=3lCn n n
Havelock (l)iBiesel & Suquet (2) and Ursell, (l)
Dean & Tu (3). In th~se works,the wavemaker + 0 H(Kr) cosh K(h-y). (3.2)O0

was represented by a vertical impermeable plate From (2.4-),(2.5) and (2.3),we get
ChWang (4),Chwang and Li [5),Chwang and Dong
6),Gorgui and Faltas(7] treated wave motion
problems in the presence of porous plates. - K
In the present paper we investigate the effect G A(K) cash (h-y) in which

of porosity on axisymmetric wave motion in flu- (1) 2 (1)
id of finite depth. The wave trapping phenomen- A(k)=G H1  (ka)+.kb H( kb)[Jl(kb) -21(ka)x
on is discussed.

2-.Waves generated by the impermeable wall H(')(kb)).
We are concerned with the irrotational motion S)nce the egenfunctions cash K(h-y) and

= of fluid with free surface which is assumed to cos k (h-y) are orthogonal over (O,h) we have
be incompressible and inviscid, flow under the n 8Ga cos k nh 4mGa cosh Kh
action of gravity. The motion is inducd by an Cn - - where
impermeable vertical cylindrical wall of circu- n (ik n ) -

lar cross-section of radius a. The wall assumed so 2Kh + sinh 2Kh n t 2knh + sin 2knh
to perform radial harmonic oscillations normal n
to its axis, let its velocity at time t be h
U(y) exp(-iwt),where U(y) is a complex valued, a = - U(y) cosh K(h-y) dy
and suitably limited. A coaxial cylindrical po- 0

rous wall of circular cross-section of radius b 0
(>a) is fixed in the fluid. The resulting moti a U~y) cos k (h-y) dy
on is therefore axisymmetric and time harmonic n ircos knh I n
with the same angular frequency w as that of 0
the porous wall. Consequently
Let (-r,y) be cylindrical polar coordinates a cos kn 2

with the origin 0 in the undisturbed free surf- 4!=-8i= (k)[ bK1(knb)Io(knb)-{iG-knbx
ace such that Oy pointing down into the fluid n n
cinciding with the axis of the porous wall. 4a ocash Kh
We consider the case when the fluid is of fin- I (k nb)K (k nb))Ko(knr)]cos kn(h-y)- 66( x
ite depth. Let j(r, y;t)=Re([j(r,y) exp(-i;rt)], 1 n 1 n o ( ) 0

be the velocity potentials where the subscripts [ 4Kb(H I (Kb))Jo0 (Kr)-{G+hrK bH I (Kb)J 1 (Kb)}
j=1,2 refere to the regions a < r < b , r > b (1)
and the functions 4j satisfy xH0  (Kr) cash r(h-y), (3.3)

[32 + " + 1 2) j
= 0 , y>O (2.1) ¢2 =- 8 M=1 6 n A(ikn) Ko(knr) cos kn (h-y)

ar r ar y =-lsn 6(kn
K .+ -O on y =O, K@w 2/g (2.2) 4 vta cash Kh

j + yj' + 0 H(1)(Kr) cash K(h-y) . (3.4)

2y 1 U(y), on r=a (2.3) 6 o0 (K) a

The last term on the right hand side of equat-
ar = L2 , on r=b (2.4) ion (3.4) represents the outgoing wave transmi-
We sall assume that the porous wall is made of tted through the porous wall.
merial wisueth at ver e pors Thu s adn o When the porous wall is completely permeable,material with very fine pores. Thus according the velocity potential in the region r > a is

to Larcy's low [5,8), we have a cos k h
a -b iG(l - on rb, Gpwb/p ,(2.5) 4r n n K (k r) cos k (h-y)

T- aG 2 ), on1 6~b n:w~ ~ K1 (77 0 n nl
) is the dynamic v-iscosity,p is the density and Oa cosh Kh
b is a coefficient which has the dimension of + 0H(I(Kr) cos r(h-y).
length 60 H(1)(,a) 0

y j For an impermeable wall (G=O),(3.3),(3.4)
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reouce to and
a ncos knh K (knb)I 0(kn r)- (knb)Ko(kn r) 2 (AC)

(1)(Kr) cosh K(h-y) as r= (5.8)

I:=I 41 1 n ll(knb)K' (kna)-II(kna)Kl (knb) Since the present problem is linear, lt 2 can

be obtained by suitable superposition of the
a cash Kh results (3.3),(3.4) and (4.3),(4.4) respective-x cos kn(h-y) - 4ii ly. enc

n60 x ly. Hence
Yr(Kb)J (Kr)-J-(Kb)Yo(Kr) I 2CG nl-Ka)Jo(Kr) - JI(Ka)Ho,1 (Kr))x

1-( 0b) Yl( _ K Yx( b0 ca sh K (h-y ) , a K7 h -y
S(bYIKa (,a )) H)(Kb) cash K(h-y)

=0, as expected. This solution is valid only 2 (K) (1)

when the quantity 31(Kb)Yl(Ka-)-Jl(Ka)y1 (Kb) is (2)

diffrent from zero.However-,it indicates that C H 0(Kr) cosh K(h-y)

when this quantity vanishes,resonance occurs where A'(K-) =GH 2)(ja)+ K'bH 2)(Kb)[Jl(Kb)x
ard the linearised theory can not be applied. I I

"4.Waves oenerated by the porous wall HJl( - l)(Kb)]
If we let now°t-he porous wall oscillate radia-

lly about r~b with velocity U(y) exp(-iwt) whi- The coeficient of reflection R is defined as

le the impermeable wall r=a be kept fixedthen the ratio of the amplitude of the reflected

the new problem is the same as stated in secti- wave to the amplitude of the incident wave

on 2 except that (2.3),(2.5) are replaced by R= -2KM2G+8 2K<M2' 1 (5.9)

onA a T)~K)I 'a4+2KM2G+a02 m
0 , on r = a where

__ -U(y) = iG( (4.2) a2=h Kb(J 2(Ka)+Y (Ka),r j 1 U1): i ( l 2 4 2

In this case we get 8 1Kb[J-(Kb)Y-(Kb))
i=  bk2a cos k h K.(k b) M =- Kb(J(Kb)Yl(Ka) - 31 (Ka)Yl(Kb))8 1"n n 6(k n)Zn[okrK~n)

I 6nikn 0 nFor an impermeable wall,the incident wave is

2 T2 K2ba cash Kh totally reflected by it.We get the same situat-
(k 1 (k 0- ion when the wall is completly permeable but

K0  n 1kna)]cos kn(h-y)A 6oA(k) x now the wave is totally reflected at the imper-
0i ()meable wa-li at r=a. We note also that when M=O

(K] -r)HI')( a)-H l)(Kr)J (Ka))H(l)(,b)x i.e.when a and b satisfy the eqation

cash K(h-y), (4.3) J1 (Kb)Y1 (Ka) - J1 (Ka)Y1 (Kb) 
= 0

k 2ba cos k h( (k r) the incident wave is totally reflected irrespe-
2:8 1 =i 6 5ikn - K [I(knb)I (kna)- ctive of the vale of G .By simple differentiat-

S n n 1ion of (5.9), we note that the value of R for

2T)K 2bao cosh Kh any fixed a and b reduces to a minimum
IlQknb)K (kna) cos kn(h-y)+ - x Rm2' - j

(i Kb) (a)- (a)Y (IY 0meRmi n = --a--+ M]

[J 1 ( b)Y 1 (Ka)-3 1 (Ka)Y(Kb)]H 0)(Kr)cosh K(h-y) when :-, this mnimim value vanishes when

(4.4) cc8:M" or when a and b satisfy the equation
When Jl(Kb)Y1 (Ka)-Jl(Ka)Yl(Kb):O,waves are tr- 3(3a)Jl(Kb) + Y (6a)Yl(b) =0 (5.10)
5pped 1h the bounded region between the two cy- n Is I I

linders e < r < b and no waves radiate away fr- in this case
om t-he wal;liquid simly piles up around the porous wall acts as an efficient wave absorber
wall. or eleminator for the incident waves, i,e. for

5.Wave trapping the values of G/K=B 2and where a and b satisfy
2 equation (5.10), there is a wave trapping phen-

Let C cash K(h-y)H 0  (Kr-) incident normally, omenon that is,wave will be trapped inside the
proceediing from infinity, the porous wall at region a < r < b.
r=b and tne impermeable wall at r=a are both References
fixed.The functions 4. are harmonic that satis- [1] Havelock, T.H. Phil.Hag.8(1929),569-576
fy (-2.2),(2.6) and J (23 Biesel,F.& Suquet,F. Houille Blanche

on r (5.12) 6(1951),147-165,475-496,723-737.
= 22 an b, (5.1,2) (3) Ursell,F.,Dean,R,G.& Yu,Y.S. J.Fluid Mech.

_7(1960),33-52

Ti=0, on rca, (5.3-) [4) Chwang,A.T.J.Fluid Mech.132(1983),395-406(2) [5) Chwang,A.T.& Li.W. J.Eng.Hath.17(1983),
,2. C cash K(h-y) H (Kr) 301-313

2 0 (6) Chwang,A.T.& Dong,Z. F 3c.15th.Symposium
+A cash K(h-y) H(l)(Kr) (5.4) on Naval hydrodynamicL.pp407-417.Washingt,

0 on:National Academy press 1985
Consider the functions (7) Gorgui,M.A.& Faltas,M.S.Acta Hechanica

4j (r,y) - 2CJo (Kr) cash K(h-y) 79(1989),259-275

These new functions are harmonic satisfying [83 Talyor,G.l.Proc.R.Soc.Lond.A234(1956),456-
the free surface conditions and 475

SiG(4l- ) + 2C 31(Kb) cash r(h-y),(5.6)

r-1 -2C JI(Ka) cosh K(h-y), (5.7)
r -1 1
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STEADY PLANE ORTHOGONAL MHD FLOWS

(3) M.H. Martin: Arch. Ration. Mech. & Anal. 41
(1971) 266.

O.P,. Chandna and P.V. Nguyen [4] Wan-Lee-Yin: Q. Appl. Math. 42 (1984) 31.
Department of Mathematics and Statistics [5] Ratip Berker: Comptes Rendus de L'Academie des

University of Windsor, Windsor, Ontario Sciences de Paris, 242 (1956) 342.

Canada N9B 3P4 [61 M.P. Stallybrass: Lett. Appl. Engng. Sci. 21
(1983) 179.

Abstract - Steady plane magnetohydrodynamic flow of

a viscous incompressible fluid of infinite electrical
conductivity is governed by

div V 
= 0

p(V.grad)V + grad p = p V: V + p(curl 11) x It
curl(Y x H) = 0

div I = 0
where V = (u, V) denotes the velocity vector,
H = (Hf, IIt) the magnetic field vector, p the pres-
sure, p te constant fluid density. 1 the constant
coefficient of viscosity and p the constant magnetic
permeability. The magnetic field vector H is given

by the solution of

V2,H = A K

when the magnetic field is orthogonal to the velocity
field. Writing the governing equations in x, y co-

ordinates and recasting these in new independent
variables z = x * iy and F = x - iy, we find that:

'If lp(z, z) is the streamfunction of the flow,

thcen i_(z, z) must satisfy
1 p*A2 1.!" Im{ 1zz- 3- A' [Re{ [Ia{ ( V-- ) i J

Ziza U zEa-a 32)1 z a z a

+ ReQ(~-~ L) 0

z

We have studied exact integrals for four

different flow geometries and Hamel's problem [I] in
this work. The novelty of this work is in its
approach since the Hamel's problem that has been

investigated here was also investigated by Chandna
and Toews [2]. The approaches used in the previously
published works required the transformation of the

flow equations to curvilinear coordinates when the

streamlines and their orthogonal trajectories formed

the coordinate net. No such transformation is
required in the present complex variable approach.

The streamlines and their orthogonal traject-

ores form an isometric net for incompressible and

irrotational steady plane flows. G. Hamel invest-

igated those steady plane rotational fluid motions
for which the streamlines and their orthogonal

trajectories form an isometric net. This problem

is called Hamel's problem. Martin [31 gave new
formulation of the Navier-Stokes equations and
studied Hamel's problem as an application of his

approach. His method also required the transform-
ation of the flow equations to the streamline
curvilinear coordinates.

Complex variable technique employed in this
paper is well known for the analysis of fluid

dynamic problem. Wan-Lee Yin (41, Ratip Berker [51
and Stallybrass [61 have employed this technique in
their recent researches.
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ON THE-ANALYSIS OF SUPERHARMONIC OSCILLATIONS

J. J. Wu
US Army Research Office

Research Triangle Park, NC 27709 USA

ABSTRACT - This paper presents an analysis -the small perturbation parameter; f and 2
for the superharmonics of a forced nonlinear pertain to the magnitude and frequency of the
vibration problem involving small parame- forcing function.-For superharmonics of order
ters, using a generalized harmonic balance 2, one has
method. A nonlinear ordinary differential
equation with several nonlinear terms and a 22 = c = wo + Ca = I + e a (2)
periodic forcing function is considered. For
the case of superharmonic oscillations of where w is the "fundamental" frequency of the
order 2, the key equtions for the obtaining nonlinear vibration, which is a perturbation
the information on the superharmonics will be from that of the linearalized system-w0 ,
derived, including a riew, nonlinear ordinary taking to be unity in (2) without a loss of
differential equation of a slow varying func- generality.
tion compared with the original dependent
variable. Using these equations, the steady We shall derive a two-term approximate
state solution and its stability behavior can solution u=u0 +cu for equation (1). Using a
be calculated. Results for a special set of procedure described previously in (4,5], it
parameters are obtained, including a stable can be shown easily that that the final formnode for the steady state solution and the of the solution u, Which is good tc the order
associated van del Pol plane. of s must have the following form:

1. INTRODUCTION u=cuo+[(U±A+U2A2)+C(U 3A
3+U4A4)+cc (3)

It is well known that nonlinearities can where cc stands for the complex conjugate.
cause sub- and super-harmonic excisations in The following symbals has been introduced:
vibratory systems. The analytical understand-
ing of such phenomena is often difficult to A=exp(it/2), S=exp(icat/2) (4)
obtain. It has been shown that the method of
multiple scales can be used to solve such
problems as demonstrated in several papers by -Eq. (1) can then be written as
Nayheh [1,21 . However, the procedures invol-
ved are quite complicated and--requires recur- d2 u/dt2+u+2p(du/dt)+cu2+e2a 3u3
sive solution of differential equations, the +CC4(du/dt) 2+r2c, u(du/dt) =fSA2+cc (1')
elimination of secular terms and reconstitu-
Lion, all of which are nontrivial procedures. Here we note that S is a slow varying -func-
More recently, in a paper by Noble and Hu- tion compared with -A in the sense that while
ssain (3], an expansion method was introduced dA/dt is of O(1), dS/dt is of O(c). We shall
together with suggestions of several other also use the fact that
approaches which may be used as alternatives
to obtain pertinent information. One of these A = e-it/ 2 , and A A = 1 (5)
is the genralized harmonic balance method
(GHB) (4,5,6]. This variant of the harmonic where an overbar denotes the complex conju-
balance method consists of two parts: first, gate. The procedure here is to substitute (3)
to derive the form of solution using only the in (1') and set to zero the coefficients of
basic steps of multiple scales, and then, Ak, k=0,l and 2, since any higher harmonics
solve for the coefficients of various har- will be of O(s2 ) or higher according (4). We
monics. In this approach, the elimination of first obtain the following approximate ex-
the secular terms is accomplished implicitly, pressions (in other words, the right hand
thus avoiding the trouble of solving recur- side should have added "+ terms of 0(C3) and
sive differential equations. This paper higher" in each of these equations):
begins with a general nonlinear ordinary
differential equation with several nonlinear du/dt=(dU,/dt+iU,)A
terms and a periodic forcing function, a +c[dUo/dt+(dU2/dt+2iU,)A

2 ] + cc (6)
specific case of superharmonic oscillations
of order 2 will be investigated. Next, the d2u/dt 2=cd 2U /dt2 +(d2U,/dt2 +2idU,/dt-u,)A
key equations are derived, from them the +r(d2U 2/dt?+4idU2 /dt-4U2 )A2 + cc (7)
essential information on the superharmonics
can be obtained. Finally Numerical results U2=2UU,+U,2A2+2c(U,U2+UoU,)A +cc (8)
are presented on the steady solution and the
stability behavior for a special sets of Since u3 appears with a coefficient of C2 in
parameters. (1), one only needs to keep terms of O(1) in

the expansion:
2. DERIVATION OF THE KEY EQUATIONS

We shall consider the following rather + cc (9)

general differential equation: Similarly, one keeps 0(e) teLms in (du/dt)2 ,
but only O(1) terms in u(du/dt)2 :

d~u/dt2+u+2co(du/dt)+cocju2+e2 (3U3
+CCs4 (du/dt)2+C2cu (du/dt)}= 2 fcos(Qt) (1) (du/dt)2= 2U1U1-(U,2A2+cc) (10)

where u(t) is the unknown function p and a, u(du/dt)2 =U,2U,A + cc (11)

k=2,3,4,5 and 6, are given constants, e is
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We now substitute (4) and (6)-(ll) in (1')-, C1 4= 42a /
collect terms of like power of Ak, k=0-,1 and 22/2,_ and then set the coefficients to ze-ro. The C2  (9ce,+3c 5 -l00a 2 

2 OC2-N -4CC4 )/
resulting .equatioiis, for the coefficients of
AO, A' and A2 respectively, are: 03 4 = C3 +ic4

r(02t~+~)1 1+12)4i+c 4 U2 2 Owith (-24)
-CU,2(a2C4-Ul,-+1/) 4o2+x )2U 10(12) C3 = 

2 a(20cc2 -17004 /27

3U1-/4-fSiidU,_/dt+icuU+(2t2+CC4 -)U1U2=0 and-C= 2(22134)7
(13-) C5 - (l 4 40OC3 +120cc45-1472CC2'

2i(dU2/dt+8PU2 )+c(4a 2-CC4 ) U 2 /4+d 2 U2 /dt
2  

- 3 6 8oC2 ca4 -1
280C4 

2 )/1-35

+c(;pdU2/dt+iCe 4 U~dU1 /dt The key-equations (4-), (16), (17), (18), (19)
and (22) can be further simplified by the

+02 (2M2 UOU 2 +(2a2 +3CC4 /2)U U3 +2(-a2+20'4 )U2 U4  following change of variables. Let

.3a 3 +OCI)U2 2U2+(.6oC 3+ca/2)UUU 2-)] 0 (1)Uk -VkSkI Vk = Uk S-k, k=0,1,..4 (-25)

_5CU/4+(2C(_0C )U-U2 0 15) where S has been defined in--(6). one also has

=34+ C aU 0 (16) dUk/dt = dVk/dt + ikeoVk/ 2  (-26)-

In terms of Vk, equations (4), (16),- (17),
From (12)-, (15) and (16)-, U0, U3 and U4 can (18), (-19) and (22) become respectively
be solved-directly in-terms of U, and U2 :

U0 = -2(a 2 +a4 -)U1 -U1 -(1/2)(4a 2 +a4 )U2 U2  (17) U = cV0+[V1B+V2B
2+C(V3B

3 +V4B
4)+c (27)-

U3 =(A/5)(20C2 0C~4 )U1U2 (18) wt

U4#=(C~2 "-)U 2 
2/3 (19) V0  -(32/9)(a2+ 4)f2 -2 ( a2 + 4 )V2V2  (28)

In equation (13) and (14)-, -however, -it is V1 =4f/3+(1/9)c(8(0r-2ip)f-16(2o 2 + 4 )fV 2 = 0
observed that some terms are of one order of(2-
e greater than the others. The terms of V3=(4/)(2C 2 .a 4)VV 2  (30)
higher order in e can- thus be less accurate2
than- others and still yield the sane order of V4( 2 -CC4 ) V2 2/3 (31)
approximation in -these equations. One then
can solve these equation -first using only the and,
dominant terms. Then, substitute the results 2idv2/dt+c(-2a+2i/p+c 1 f2)V 2back into the terms of higher order in e, 2 f 5f psolve the-full1 equations and-obtain improved- + 2C' 1V2 V2 +C3 4f2( f.. 2 0 (32)-
results. The immediate purpose here is to
reduce (16-) into a- first order differential where, in (29),
equation in U2 and express all the other Uk B=S xS+C/ J eft (3
in terms of U2. A=ep(~a2t it (3

Using the dominant terms in (-13) and Hence the original differential equation (1)-
(14), one has has been reduced to (32), where V2 is theunknown-function. Once V2 is solved, other

U, = 4fS/3 (20-) Vks can-be obtained from (28) through (31).Then u(t) is given by (27).

2i~d2/dtspU)+r(u2-~4)U
2/4= 0 21)To illustrate what kind of information

Equation (20) is used-in the terms of order c one can -extract from the equations derived so
in (13)-to yield the improved U1 : far, we shall obtain the magnitude for a

superharmonic in the steady state solution
Uj-=4fS/3+(l1/9)c[(8(a-2ip)fS and determine the stability of such a solu-

tion. First, we shall write the needed equa-
-16(2: 2 ICC4 )fSU2 = 0 (22-) tions in-terms of real variables. To thisend, let

Nothe terms in (16), which are of higher adVV~i 2 = 2 epi 2
order in c, contain such quantities as ad(34)
d2U2 /dt 2 , dU2 /dt, dU1 /dt,, U1,I U0,I Ul, U4. V2-(x-iy)/2

These expressions can be obtained by using
(21), (22), their differentiations (for where now P2 1 Y'2 V2 ,t-x/2 and v21 -/ r l
d2 U/dt2 and dU,/dt)-, (17), (18 n 1) real functions of t. One also has
The final form of (16) can be written as th,
following: dV2/dt=(dx/dt-.idy/dt)/2 (35)

2idU2-/dt+c(2iPU2 +Cl f
2
S
2 U2 ) Note that we have introduced two mew vari-

+C21 C U22 U-+C34 2 2 +( C~f2-11 )U 0ables x and y such that

wee(23) x=2v2 ., y--2v2 , (36)
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to save some writing. Substitute (34) and Results for more general cases will be
(35) in (-32) and separate -the real and reported in the future.
imaginary-part, one has tw6equations for two
real variables x and y:

dx/dt+e[px+Uy]+C2[c4 V 0 -.5

_C c(X 2 +y2-)y/8+( CSf 2 _#2 ) y/2-J - 0
(37a)

dy/dt+c[,y-ax+c1 f 2 ]+r 2-[ -_f 2

+C2 (X
2 +y 2 )x/8+(c.f- 2 x2 0.

(37b) 0. -2V2

For steady state solutions, we require
that the amplitudes and phase angles of va-
rious -harmonic components to be constant with
respect to time t, -0.04 8

-0.5 ,
dpk/dt . 0, dyk/dt - 0, k=0,1..,4 (38)

In particular, FIGURE 1. The van del Pol plane for thesuperharmonics of order 2 for the set of
dp2/dt 0, dY2 /dt = 0 (39a) parameters given in Eqn. (41). Point "A"shown is a stable node.

and, what is equivalent:
REFERENCES

dx/dt=O, dy/dt=O (39b)
[1) A. H. Nayfeh, The response of single

It should be noted that =(39a) actually degree of freedom systems with quadratic and
also quarantee the validity of (38) for k cubic non-linearities to a subharmonic
other than 2. This fact can be easily excitation, Journal of Sound and Vibration
observed -from the relations of (28)-(31), (1983), Vol. -89(4), pp.457-470.
which relate Vk, k=0,1,3 and 4, to V2.

(2) A. H. Nayfeh, Perturbation Methods in
Now, substitute (39b)-in- (37), one has Nonlinear Dynamics, Lecture Notes in Physics:

Nonlinear Dynamics Aspects of Particle
px+ay+c[c 4f

2-c2(x
2+y2)y/8 Accelerators - Proceedings of the Joint

US-CERN School on Particle Accelerators,
+(c5 f

2-p2 )y/2] = 0- (40a) Editors: J. M. Jowett, M. Month and S.
Turner, Spring-Verlag, 1985, pp.238-314.py- x+c, f2 +s(c 3 f 2 +ic2 (x2 +y2 )x/8

[3) B. Noble and M. A. Hussain, Multiple
+(C5 f

2-p2 )x/2] = 0 (40b) Scaling and a Related Expansion-Method, with
Applications, Lasers, Molecules and Methods

Some numerical results will be presented in (J. 0. Hirschfelder, R. E. Wyatt and R. D.
determining the presence of superharmonic Coalson, Eds.), John Wiley & Sons,1989,
oscil!ations for the following given set of pp.83-136.
parameters:

14) M. A. Hussain, B. Noble and J. J. Wu,
a2=0.3, a3=0.1, as=0., =0., Using Macsyma in a Generalized Harmonic

(41) Balance Method for a Problem od Forced
p=2.0, a=3.0, f-2.0 Nonlinear Oscillation, Proc. Sixth Army

Conference on Applied Mathematics and
This is a very simple case due to the fact Computing (held 31 May - 3 June 1988, Univ.
that c2 vanishes as can be seen from (24). of Colarado, Boulder, Colarado)-, 1989,
Thus (40)- become linear and -the solution can pp.713-732.be easily obtained as

[5) B. Noble, M. A. Hussain and J. J. Wu, A
x=0.1824, y=-0.0418 (42) Generalized Harmonic Balance Method for a

Forced Nonlinear Oscillation - Numerical
Hence, from (33), the magnitude of the super- Solution Formulation and Results, Proc.
harmonic oscillation of order 2, p. is seventh Army Conference on Applied

Mathematics and Computing (held 6-9 June
P2 0.5(x

2+y2 )=0.3754 (43) 1989, U.S. Military Academy, West Point, New
York), 1990, pp.837-861.

Next, equations (37) are integrated numeri-

cally. The result is the so called van del (6) J. J. Wu, On the Analysis of Subharmonic
Pol plane (7) as show in Figure I. As indi- Oscillations, Submitted for publication.
cated in this plot, solutions converge to the
steady state solution obtained above as the [71 D. W. Jordan and P. Smith, Nonlinear
time increases. IIlnce the steady state Differential Equations, Second Edition,
solution is stable and the point "A" of (42) Oxfcrd University Press, 1986, p.183.
is known as a stable node.
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DIFFRACTION ON A PERIODIC SURFACE

Andrew G.Mikheev and Aleksey S.Shamaev
Institute for Problems in Mechanics Institute for Problems in Mechanics
USSR Academy of Sciences USSR Academy of Sciences
Pr. Vernadskogo 101, Moscow 117526, USSR Pr. Vernadskogo 101, Moscow 117526, USSR

Abstract In this paper the two-dimensional 2n

problem of diffraction of a plane u(f(YM),YM) - __-K yMYpAI-(yp)-
electromagnetic wave on a smooth 21C-periodic
surface is considered. The numerical method i(f(y).cosa+ym.sinc)
solving- the problem of diffraction is "u(f(yp),yp)dyp = e m (7)
developed.
1. Mathematical formulation of the problem.

The unknown function u satisfies the 2
Helmholtz equation Here I(y) I + if(y))

A u + 2 "u - 0 (1) K(YMyp] = h-G(f(yM)yf(yP).YP)

in the region n = ( (x,y) -c < x < f(y),
0 - y S 2X }. aG
Here k is wavenumber, 1?=0 , f(y) is smooth - (Y yYM, f(yp),Yp)

crd fucin
27I~periodic function.

The boundary condition for the .function The integral equation (7) was solved
u is : -with the help of method-of-moments :

Following [1], let us divide the segment
au (0,21] into N equal length segments, using
on- h-u(f(y),y) - 0 (2) points y. ( yo-0, yN ). Consider

In the region x < x 0 = inf f(y) the functions

radiation condition 0O (Y) - -y

u - eik(x 
'cosa+y sin ) + 

y [ ,yi

Let us seek an approximate solution of
equation (7) in the following form

+0 -ir X ix y N

+ E Tn e e (3)(Y) = = D N'(Y) (8)

is imposed on u . Here a is the angle between where coefficients DN are to be determined.
the wave vector of incident wave and x - L

2 ' Function e1(y) is assumed to satisfy
axis, Xn - k-sinct + n, rn= n - n , Re r n 0 ennnn nZ equation (7) in points y -" '(Y :+ y.).

Im Yn 0. Tn are unknown amplitudes of L-

scattered plane waves. This gives algebraic equations for DN
The function u is also assumed to coefficients determination.

satisfy the Flocke conditions: The expressions (9)-(14) give the well

convergent series, which gives us the method
u(x, 21t) - ux. 0).elt (4 for calculating the kernel of the integral

u au iequation (7).

-(x, 2) = o(x, 0)-e it (5) ix 6y iyo6x1
G ( M,P ) - e +

where t - 2a1.sina. 2y o

2. Numerical algorithm solving the + xr'e b -ch& j6x)-(n6x6y) -

diffraction problem. 
n'1 [ b

With the help of Green's function of t
Flocke canal - i-sb(.I6Xt) (n,6x,6y) +

+00 ixm 6y irIj6xI
+i e me (6) R(n,6x,6y) (G(M,P) - . • .e "e  (6) 19

m-- 0 Here M - (x ,y) P x,y ,

here 6x - XMxP , 6y = yM-yp ) b-2%,

the problem is reduced to the one-dimensional cos(n6y)e-n6x (10)
integral equation for the u(f(y),y) : ,(n,6x,6y) - n
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(n,6x,65y) sin(n6 Y),'e-nlx (ii) 2n

2 n

Expressions (1i0), (11) can be summed:

1(n.6x,6y) - -n2 + 2 -l

n=1

- " s2( ) + sin2 ( - ) (12)

0
0 0SF

%_(n,6x,6y) = Fig. 1. Phase of surface current.

n-1 lu

[ sin(6y)
arctg IxT _os cS(6y) (13)

iX.6y iro16xi
G ie .eBl np O n p2 °  O a

TnP +7- ~

Fig. 2. Absolute value of surface current.
e 6 b t. ± ) m) Figures 3, 4 show a typical example of
L e [ ch(I61).-n distribution of electromagnetic surface

m-i current. 3o
Here 3 - , a - 600, h - (I+)-0.075,

i-(in) _ 1 '_ I f(y) - -fsin y.i'sh&(.16xt). -n -2 ,(
b no 2 Parameter N - 30. Energy error equals 2.10 "'.

Share of reflecting energy - 0.28

(sign(6x)'ch(¢6jxl)'n ++ i'sh( l6xP-ny +

+ +(m)'(-ch(116xi.n + i-sh(!16x-).sign(6x).

-n + ~.,) (14 0 &4 4;1:nx  +Q(m.M,P) }4 Fig. 3. Phase of surface current.

R, 0 satisfy the expressions (15)

I R(n,6x,6y) I < C; I Q(mM,P) I < 2 (15)
n in 2,0

The kernel of the integral equation
contains logarithmic singularity, which is
expressed in explicit form in (12). 16

3. Numerical examples.

Figures 1, 2 show a peculiar example of
distribution of electromagnetic surface f2
current ( function u(f(y),y) ).

Here 7a 5 - 75 Fig. 4. Absolute value of surface current.

f(y) - y. REFERENCES
2

Parameter N - 30 ( see (8)) 1. GALISHNICOVA T. N., IL'INSKIY A. S.
Energy error equals 4.10 -'. Numerical methods in diffraction problems.Mosk. Univ. 1987 ( In Russian ).
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SIMULATION OF DISTRIBUTED- FEEDBACK DYE LASER BY COMPUTER

by J.Seres

Department of Physics, Juhf.sz Gyula College

Boldogasszony sgt. 6.-PO-Box 396 Szeged, 11-6701 Hungary

Abstract- A numerical method has been developed for help of publised equations In [1.3,5.8,91 describe
computing coupled partial differential equations the processes -in DFDLs.
describing distributed feedback dye lasers. This ONCX. t) = I C - N- .. ) H X. 0
method Is founded on the Euler method, -but is

faster about 3D times. The necessary compatit-ion on- a c.NCXt) - + CX.t) + IC(X.t7] Cl)
the time and space axes has been determined for the al-x, .) + n OI+Cx,t) - f.NCx.L) + -0_ -

required accuracy computations. Calculations have c a " at -

been made by the novel- method- and -the obtained .NCx.t- C-x.t) * -j x"t) - I-Cxt]X (c2
results haye been compared with earlier publised
measurements. The computed results have shown good The meaning-of the symbols are as follows:
agreements with measured values. 

0  :the density-of dye molesules (2.1-1024m 31,

W(x,t) :the density of molecules In the S1 excited
I. INTRODUCTION state (moleculesm'3 1,

I-(x,t):the density of the DFDL photon currentThe arrangements and behavlours of DFDLs have been propagetlng Into the +x and -x direction,
extensively studied since 1971. A typical respectively [photons.m's'
arrangement of the DFDL and several tuning I (t) :the density of the pump photon current

p Ahtnm-2 S-Ipossibilities are shown by (3). The processes [photons.m-s-l]happening in DFDLs may be described by coupled a, :the absorptilon cross section from S, at Ltedifferential equations (rate equations) (1.3,6-91. p .24 Z
pumping wavelength (2.4.10"2m ],

For the most part these equations contain physical p i taedeiso cros s n
C :the stimulated emission cross section from

quantities depending .on only -the time variable. e
S to S state at the lasing wavelengthMany calculations were made and their results were 1o

were(1 
.4-10 acompared with measured values In last years. The

a :the excited state absorption cross sectionexperiences show if the pulse duration of the a from S to S at the lasing wavelength
exciting .laser and DFDL is longer many times than [0.710-2 m 2
the time calculated by the laser length and the S :the fluorescence lifetime of the S1 staterefractive Index then computed values approximate 4 nsJ,

the values of measurements (-1,2,31. -If these n :the refractive index of the dye solution
conditions don't exist the measured values are 11.441,
fully different from calculated ones. In this case c :the speed of light in vacuum,
he calculations give exact values If the physical V :the visibility of the amlLtude-phase

quantities describing DFDL depend on space variable grating in the excited volume (l,
too (91. For two variables the running time Is many Q :the factor determining that fraction of te
tines longer than it for one variable. A novel spontaneous emission which propagates Into
algorithm has been developed to reduce the running te angular and spectral range of te DFDL
time. This algorithm based on the Euler method, but beam.faster than it many times, 

b-a
The value of n Is calculated as V? = 'g I

,.L2.S

I1. HODEL OF DFDL L is the length of DFDL, a = (1 Oap )" Is the

penetration depth of the pumping beam into the dyeCoupled partial differential equations are shown solution, b Is te height or te excited volume,
below (1,2). These equations noted down with the

and S Is 2te spectral factor dterminlng that
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fraction of the spontaneus emission, which falls
+ +

into the DFDL bandwidth (1,31. This parameters Lr-,t = 1.... ,kn.
described the dye laser what contained the m

The go Is quickly calculated if the m =2 J. hr

Rhodamine 6G dissolved in methanol and what was where
is n integer number.

excited by N2 laser. The wavelength of N2 laser was

337.1 nm, and the pulse duration was 3.5 ns. 140.

130l - computed
III. LIMIT OF Ax AND At :1-0 measured

Calculations have been made to determine the 110:

0
limits of the distributing intervals on both Lime .- 100

and space axes. The rate equations depending only 90*

time variable have been used for determining the-

maximum of time intervals (At). The energy and the

duration of the first DFDL pulse have been computed

at the -threshold pump intensity what is necessary Oj 60

to come out the second pulse. Computations have 50'

been made at several At, and the divergences from 40 ........ .......................

exact value (where At -t 0) have been determined. 1.5 2.5 3.5 '1.5 5.5 6.5LengLh of Laser (min)
The results calculated with both explicit and

implicit Euler method show it is pay to use the

implicit method, and If At : 3 ps then both energy Fig. Measured and calculated pulse duration of the

and duration of the output pulse approximate the single pulses from a Rhodamine 6G DFDL. The pump

exact value under 1%. For determining the maximum -intensity was adjusted to the threshold of the

of the space intervals (Ax) a pulse was propagated second DFDL pulde.

along the excited volume. The rate of output and

Input pulse Intensity was calculated with both V. RESULTS OF CALCULATIONS

numerical and analitical method. The results

calculated with numerical.method have been under 1% The k 10 and m = 64 has been chosen for the

if Ax : L/550. According to the limit of the time computations. The maesured and the calculated

intervals It's'necessary to distribute the length values are shown on the figure. According to the

of laser (L =5.5 mm) into 9, and according to the figure the calculated values are in good agreement

limit of the space intervals Into 550. -with the measurements [I.

IV. NOVEL ALGORITHM References:
1. Zs.Bor, A.Mil ler, B.llAcz, F.P.Schafer: Appl.

Let the length of laser is distributed Into k Phys. B 27, 9-14 (1982)

Intervals and every Intervals are distributed Into 2. Zs.Bor, A. Holler, B.nAcz. f.P.Schafer. Appl.

m. The k Is determined by limit of time Intervals Phys. 8 27, 77-81 (1982)

and the mnk by limit of space Intervals. The 3. Zs.Bor,. A.MUller: IEEE J. Quantum Electron.

algorithm .has been written down after longer QE-22. I24-1533 (1986)

calculations: 4. J.llebling: Optics Comm. 64, 539-543 (1987)

-'+-- _ 5. J.Klebnlczki, Zs.Dor, G.Szab6: Appl. Phys. B 46,

. 'L .t 151-155 (1988)

r 6. J.llcbling: Appl. Phys. B 47. 267-272 (1988)

_. " + - "~I~~ r~'- 1 7. J.llebling, J.Sere., Zs.Dor, Bj.licz- Optical and

Quantum Electrons 22. 375-384 (1990)
1co'-a')L6X - V -28. Ii.YKogclnlk. C.V.Shank. J. Appl. Ploys. 43 (1972)whoe 0 1 - Ci-O'I , 7

w r +9. Irl tN. Duling Il, M.G.Raymer: IEEE J. Quantum

l= +N. 1 +Ijm ,L Electron. QE-20, 1202-1207 (1984)
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ADAPTED VERSIONS OF THE EM-ALGORITHMIFOR
PENALIZED LIKELIHOOD IN EMISSION TOMOGRAPHY

Alvaro R. De Pierro
Institute of-Mathematics, Statistics and Computer Science

State University of Camplnas
CP 6065, 13081,. Campinas, SP, Brazil

Abstract. We present in this paper two different Two examples are of special interest, the penalized
methods for solving the -penalized likelihood ivg-likellhood (2) and-the least squares case. For the
maximization- problem arising in emission computed first we define the complete data space as the set of
tomography (ECT). Both methods are modifications of independent Poisson distributed variables x j,
the Expectation Maximization (EM) algorithm
proposed to overcome the inability of this algorithm in interpreted in ECT as the number of emissions in pixel

its usual form to cope with penalizatlon terms in a non j detected by tube 1 (2]. So, (3) becomes equivalent

expensive way. to maximize -k

1INTRODUCTION q/k = E E y 11 x3 na () (4)
I. HD I.q(x/xk) = l n a x3 -asx,3 - pcx.

J~1- 1=1 <a ,x5> 13 1

In ECT we aim to reconstruct a function 
that is the

distribution of radioactivity in a body cross-section a xk
and the measurements are used to estimate the total taking into account that E(x /Y, k I

activity along lines of known location. Higher levels <a ,x >
of noise induce the use of mathematical models
incorporating the statistical nature of the process If 11 t

instead of inverting the Radon -transform as in x-ray L(x) - (b - I  > x-H Hx - H b + 2
computed tomography (1]. In [2), Shepp and Vardi, 2 2

suggested -the use of maximum log-likelihoods estimates we c db b normally distributed
derived from the Poisson nature of the emission we consider bb
process, i.e., N=1 n a bN(h jx , n) and bljE(bl/ b,x x)=h jx + 5(b1-<h1,x >)

X-0 L(x) y1 ln<a1,x> - <a1 ,x>, (1) (see[61). So

where y = {y1} (i = 1.... m) are the photon counts, q(x/xk) = - b x) (6)

a are the columns of A = {a t) the matrix modelling i=, j=i

emission features, and x = (x } (j = 1,..., n) the and differentiating for J = 1, .... n the equations are
-3

image vector (emission density) to be reconstructed 0 m

(<,> denotes the standard- inner product and Ea =1).- nx J( Eh i E h1i(bI - <h I  X>) +

To solve (1), Shepp and Vardi proposed to use the EM nxrfh2 = 0 (7)
algorithm obtaining very good results for earlier I
steps. Unfortunately, iterations have to be stopped
before a deteriorating effect (irregular high amplitude
patterns) appears. To cope with this inconvenient, III THE EPM ALGORITHM
quadratic penalization terms have been suggested [31,
so problem (1) turns now to be Let now

xo L(x) - p(x), (2) p(x)= xtSx - x q, (8)

where p(x) is a convex quadratic function and z a where S{s ij) is a positive semidefinite n x n matrix,

positive parameter. For the new problem, the standard q an n-vector. If we apply (3-4) to (2) using (8) the
EM algorithm is no longer applicable in practice except system to be solved is for J = 1...., n.
If the matrix associated with p(x) is diagonal. In the k y
following sections we describe the EM algorithm for (2) -I . L -sx - - = 0 (9)
and for the pure quadratic problem, as well as the new x" 1=<
alternatives proposed for (2).

Unless off-diagonal elements of S are zero, (9) is a
II. THE EM ALGORITHM huge system of nonlinear equations. Several

alternatives have been suggested to cope with this
Let Y be a random vector (observed data in Lqme drawback ([61 and [71), but they are not convergent for

experiment) with density function g(Y,x), where x is every y. Our first alternative is to substitute in (3)
some vector of parameters to be estimated. If g is fl by a partial maximization and the new algorithm
difficult to maximize with respect to x, a possible becomes solving (9) for j e JIk where Ji is a subset
solution is to embedd Y in a richer sample space X of indices chosen In such a way that j e Ji o s a 0
where the optimization problem is easier to solve.
Then, the EM algorithm is defined as. given x0  r l .-he for I e J, Ik Is a control for the sequence and the
parameter space) blocks contain all the variables for each cycle. If S

xk' = arg max q(x/xk), for k=O,l.2.... (3) Is sparse the subsets JI are a few number (typically q

x e n for a smoothing matrix). In (81 (Theorem 4.1) we

where q(x/x ) is the expectation of the extended proved that the general EPM algorithm converges.

log-density given (Y, xk). Convergence properties and Inplementation and experiments can be found in 171.
more details for (3) can be found in (41 and (5].

925



IV THE EXTENDED EM ALGORiTHM 8. A.R. De Plerro, "A generalization 'f the EM
algorithm for maximum likelihood estimates from

In spite of the advantage of being convergent for incomplete data", Technical Report MIPC 119, U. of

every 7 the EPH algorithm is quite expensive because of Pennsylvania, 1987.

the up-dating of the scalar products (see [7]). So we
propose an alternative based on introducing a set of
artifical data as described next.

S = tH for some He RGxn; on the other hand if p
has a minimum (standard assumption). Sx = q has a
solution and q e R (Ht), i.e., q = Htb for some b.
Formally we can think that b is a ncrnally distributed
random vector and the sane procedure as for (5) is
applicable. Applying the expectation, first with
respect to y, afterwards with respect to b, gives
(combining (4) and (6))

q(x/X n - _Z lna x-a x-= 11 < 1  I> J IJ

)= (=-h2,x)2  (10)
S2,J
7ZCl

Differentiating, x will be the unique positive

solution of (for j = , ..., n)

kx I a! _ k - (q -<s Xk> ) +

J =s <a ,X >

n s x =. (11)
Ji J

2 k
taking-into account that s i h J and q J

=E hJ 1  - <hsIx >)"
1=1
Now variables are separated and (11) is a single

unknown quadratic equation for each j. Convergence of
the algorithm is guaranteed because it is a special
case of the EM algorithm

Further work has to be done in order to test
practical performance of this algorithm as well as
extensions to other nonquadratic penalizations.
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BOUNDARY ELE.MENT METHOD FOR NONLINEAR ELLIPTIC PROBLEMS
WITH-NONLINEAR MATERIAL CONDITIONS

K. RUOTSALAINEN 0 <m < t( ) 5,1< oc (2)

University of Oulu, Now, for the Kirchhoff transform defined-by setting
-Faculty-of Technology, Section of mathematics,
SF-90570, Oulu, Finland K( ,5) /as)d

Abstract. We shall 1 consider the numerical analysis of the
boundary clement-for nonlinear elliptc problems with nonlin- it holds [41:
car -material- conditions. The conivergence-of the Galerkin and Leinnia 1. Let the functiun spacc X be 12(a) or 12(r), re,-
collocation schemes-is proved. spctivey. Then the AKirchhoff transform KI: X -. X is

Lipsdzitz-continuous and strongly monotone, i.e. for every

1. INTRODUCION u, -E X

In this paper wec study the possibility to apply the bound- (K(u)- If(-),u v)x ' 7nmIu - v112.
aryclement methods to nonilinear elliptic-boundary value prob-
lems-with nonlinear differential equation. To this end -in the Ftartherrnure. The-maping11 K .l It (fl) --. 11" 2(Q) is bijc
analvsis of the nonlinear boundary element method one has time
frequently restricted to the cases- where -the differential -equa- By the theory of monotone opretors we easily conclude
tionsare linear. Thenonlinearity appears only in the boundary ththeiererasomK : .()- 1()ial .
conditions.tatteivretasomK1:Lr)- 

7r)sasa

By means of the Kirchhoff transform we are able to Un- strongly monotone and Lipschitz-continuous mapping. With

earize the differential equation. The introduced new unknown the previous lemma it is-easy to verifyv that 0. = IC(,;) satisfies

function-satisfies a linear differential -equation. The boundary th oloigpotentialpobe

conditions are, however, nonlinear. This can be done whelin =A 0. in fl.
the the-diffecrentialI operator is in the divergence form and the (3)
nonlinearity depends only on the function itself; not on its 81 G(K'(~)f on r'.
derivatives.

By the indirect approach of the boundar% integral equa plot ided c, s-ukin . problemit,If. fhc converse also holds if
Linmthd he'ieaie~ rbemcnbe transformed L-, iz , dt olution 0of our or'ginal problem j1'. This is to say

nonlinear boundary integral equation fur Che unknown bound Lii.L probitizib kii-anrd %3) arm equi ~alcia lit the-weak furl".
ary distribution whichi is to be suli ed numierical!). We. aialc T7he pilexitk3 t canbe foxnulatcds ainiliea bound
both- the-Galerkin and collocation methods-fur finding an, ap' .1 a ztegtal cquationa :31 Tl,. cwn lo acconplished b% intru
proximate solution. Hlere-we present the convergence results ducnn; a boundary distribution a such that
and some preliminary error estimates. The complete analysis1
is-presented in the forthcoming paper [4]_ VIJX) u ty) log Ix - ydsy x C- f.

2. TugE FORMUJLATION OF THlE PIIOIILM 2::

We shall consider a- n',nlinear boundary value problem Then by the trace properties of time normal derivative of the

that is to be encountered in a stationary heat conduction prob- Aingle layer potential wederive the nonlinear boundary integral

lem with a temperature dependent heat conductivitv. The eq~(uation
problem consists in-finding a potentiald function 6 E fvja(a)1
such that A(uL) = (;I - D*)u + GgK (5Sti)) 1 (4)

V - (4070V) =0. in at where the operator D" is the spatial adjoint of the double laer

= G(Ir) f. n r. (1) operator D. 'nhicli is defined by setting01117.

Throughout the paper wve assume that _q is a bounded plane _"Z tycI o x-ydv,
dmain with a regular boundary r. In other words the bound- 2

ary Ir has a- regular parameter representation x : R -+ r with aind S dti tesnl lyroeaordfnda
a nonvanishing Jacobian- ' ?S 0. The symbol -" stands for -oe h~tgelyrocto eie

the outer normal derivative as uisual. 1i
Before proceeding with the reformnulation of the problem st~xl I~ .(II log Ix - d.

we recall that lV"'-P((M) I < p <_ x, is the usual Sobolev
space with ustua norm fjujj,.,,. Beside., the-,e ,pann, wev nered F..; clie .1mique -o,i otihv.t of the buidari ititegral r-ua

in the sequcl the Sobolev-Siobodetekii spaci-. VW'r 7 j1j thr L1..1i d-in ofthVhillidait! alo Axolem. , wen makec the fol
tintundr. OtherT related function spaices are- iritrodniexd in the l.Inzasi~ro
orider of oereuren. l h olna ~~arC:LfF- ~ )

Let us now consider the reformnulhiorn of the Atben . n, n-il~cinr G: nirz.,u on -tieI v ia r). <

1). Fnr that %w shall make the frillruwing basie w-4,umpti-it: 1

We~ siippose- that aic) ix a sufficiently smooth finction and f ~j7~r- hs ' -q~ceta o h.o l rF
that thi-re espoiv ronstants rit and .11 such that for -Al .

FR
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Then the boundary integral equation is uniquely solvable. foi every -1 < t < 0 < s < d + 1.
More precisely wehave [31,[4]: The-collocation method. For the collocation method we

Theorem 2. For every f E Lq(r) there exists -a unique .,u- define-the collocation points as follows.
tion u E LI(r)-to (4). = x, d is-odd,

3. TIE-BOUNDARY ELEMENT DISCRETIZATION X, =), d-is2 ~ diseven.

As th, approximation schemes we shall-use the Galerkin Here-the-points -, on the real-line-corresponds the gridipoiltb
and collocaticn-methods. For the approximation we use the of the partion 0 via the parametrizatin of r. If we let I to
boundary element-spaces Sl (0) with respect to the partition denote the interpolation operator, which interpolates between
9 = ix, = x~rIi =-0,.... N - 1} on P, where i are grid the function values on tie -location-points g,, from the space
points on-the u-intarval that is carried to r by the param of continuous functions td approriate spline space
eter representation. We assume that the family of the par we can-write the collocati,.. equations-in the form
titions is quasiuniform. We remind the reader that Sk(0)

corresponds via the parameter representation -the smoothest
1-periodic splines-of degree d on the unit interval il]. As a The -interpolation equation (7)-is not always reasonable.
mesh parameter we-choose h= Therefore-we must have some additional properties besides the

The problem, in general, is to find the coefficients c, tz asssumptions Al and A2. We require that
R, i = 0,..., N - 1-such that uh = E,=0 ctp, is-as good ap- A3. The mapping 2: W +e.P(F) -- W +t~q(F) is bounded
proximation ofithextrue solution as possible. The functions ¢, with some e that is sufficiently small-( 0 <e <
forms a suitable basis of the spline space. We shall present here
the convergence.analysis of the two most popular methodb. After this additional property the collocation equations

The Galerkin-method. As it is well-known-in the Galerkin (7) make sense. The more severe difficulty in the convergence

method the coefficients are fixed by means of the orthogonality analysis -is due the fact that {Ih, Sl,(0)} is not a projection-

condition ally complete scheme in L9(r). However, since the collocation
equations can be written as

(A(uh), p)t2(r) = (A(u), W)L"(r), w e S(O) (5)

This is the same as:to treat the family of the operator equations (2I - ID*)uh + IhG(K-l(S(uh))) = Ihf

(1I + PD*)uh + PhG(g-l(S(Uh)))= Phf, (6) wx don't neitd the interpolation operator to be bounded in
LI(P). This is due- the fact that -the double layer and single

where Ph 2 L(F) - S () is the orthogonal projection layer operators are smooth operators. This allows us to extend
In the convergence analysis we apply the theory of a- the proof of the convergence of the-Galerkin method to the

proper-mappings [2]. Since the nonlinear mapping A(-) is an collocation method. Thus we have [4]:
operator of GArding type we have [4]:

Theorem 7. There exists a mesh parameter ho such that for
Theorem 3. The nonlinear operator A() :Lq(t') -. Lq(r) all 0 < h < 1h0 the collocation equations admit a-unique solu-
is a-proper with-respect to the projectionally complete scheme and < h the col0oas e t 0.{p ,,Sd r} tion and Jilt - uhl,(r) - 0 as h -4 0.

For the solvability of the Galerkin equations we shall need REFERENCES
the following assumption, which usually valid in true applica- 1. D.N. Arnold and W.L. Wendland, The convergence of spline colloee-
tions. lion for strongly elliptic equations-on curves, Num. Math. 47 (1985),

A2. G : LP(P) - L7(r) is continuously Frachet-differentiable, 317-343.
2, W.V. Petryshyn, On the approzimation-solvabifhty of equations in-

and that the Frdchet-derivative DG(u) is strictly monotone votving a-proper and pseudo-a-proper-mappings, Bull. A.M.S. 81
(i.e. positive). 1975), 223-312.

With this assumption the nonlinear operator has the fol- 3. H. -Ruotsalainen, Remarks on the boundary element method for
strongly nonlinear problems, Applied Mathematics Preprint AM9O/11

lowing properties: (1990), The university of New South Wales, Australia.

Theorem 4. The Ftchet-derivative DA(u) : Lq(P) - L9(r) I. (. Ruotsalainen, The convergence of the boundary element i,ethods
for noninear elliptic problems (to appear).

is a FRedholm operator with vanishing index. ind(DA(u)) -- 0 .K. Ruotsalainen and Vk.L. Vendland, On the boundary element
-in addition to this the derivative is one-to-one. nethod for some nonlinear boundary value problems, Nuin. Math. 53

As a corollary we conclude 14]: (1988), 299-31,.

Theorem-5. Therc-exis' s ho > 0 such that for every 0 < h <
h0 the Galerkin method yields a unique solution to (5) ( or
(6)), and -lu - uhll -- 0 as-h -* 0.

Finally, utilizing the Fredholmness of nonlinear operator
A(.) and the approximation properties of spline spaces on r
we are able to derive the asymptotic error estimates:

Theorem 6. Let uh be as in the previous theorem, Then for
sufficiently small h there holds

1Iu - uhllw,(r) -< c(lluIILI(r))h lIlullw-(r)
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Abstract
A conceptual architecture for modelhng abstract physical systems is significant phenomena-for further analysis, carry out reduction of
described. The architecture aims-to provide a system framework geumetric and phenomena feaures to eolc an optimised geometry
which is based on the engineering modelling process. This paper w.hi.h ib buitable for efficient mathematical and numerical modelling
concentrates on-the use ofqualitative causal networks as a tool for Although all-modelling -stages are initially discussed in the paper,
-predicting-and estimating the physical- phenomena-acting within a speial emphasis is placed on the beliaioural prediction of the
physical system. Thrce qualtative simulation techniques are assessed physical phenomena. In particular, the integration of the two
and a constraint-based qualitauve simulation approach i's adopied. important artificial-intelligence-tecliniques of qualitative reasoning and
The incorporation of this approach within the -overall system causal- network analysis are focused on to establish a high-level,
architecture is discussed. knowledgeintensive network representation

The paper is divided as follows; Section 2 gives an overview of-the
1. Introduction modelling process. Section 3 discusses -other~research which has

addressed these higher-level stages of engineering modelling. The
relevance of the proposed modelling-methodology- is-illtistrated and

1.1- Backgfoind- tile incorporation of certain current research intothe preposed

Modelling of engineering problems can-be divided-into a number of architecture-is discussed. Section 4 deals with qualitative reasoning
stages; geometric modelling, physical modelling, mathematical as a key inference technique and discusses three principal qualitative
modelling,-numerical modelling ard graphics modelling Cometric reasoning methodologies. Section 5 discusses the tundamnental
modelling involves representing the geometric features of real world approach taken in this work, i.e., quatative causal networks.
problems and if possible making geometric simplifications to reduce Section 6 concludes the Paper.
the complexity of tlh problem. Physical modelling involves
identif-ying any physical phenomena which are occurring such as heat 2. System Outline
transfer, fluid flow or stress and if possible, making certain
assumptions to -simplify phenomena complexities. Mathematical
,iodelling requires building suitable equations to represent the In this Section an overview of the important stages of the modelling
problem mathematically and selecting correct boundary conditions
Numerical modelling involves -constructing suitable numerical process n ttoe proposed ancttecture is presented. Furthermore, thealgorithmsintermediate stages of the modelng process are outlined. Havingsandsolving these algorithms computationally Finally established a global perspective on the system architecture, system
graphical modelling reqt~ires the use graphical techniques to present entities are introduced which form a framework for the modelling
the-numerical solution. Many existing numericalproblem solving
environments such as DEQSOL [Umetani et al. 1985, Kon'no et al. process.

1986], ELLPACK [Rice 1985] and FIDISOL [Schonauer and 2.1 System Architecture
-hnepf 1987], NEXUS [Gafney et al. 1986] help users with the
mn, iematical and numerical modelling stages of the overall modellingp, cess. Few systems, however, have focussed on the initial Figure gves an overview of the system architecture. Each stagedepicts an evolution of the physical problem, beginning with tht

.delling stages, namely, geometric and-chysical modelling In iomplex model at-the highest level of abstraction and ,,ulminating in
itiese modelling stages, the user is generally required to conceptually an optanied model wich corresponds tile lowest representation
represent a real world problem, identify tie nature and relative level before mathematical modelling. Transition processes determine
importance of-the physical phenomena-occurring and determine any each evolution.
geometric simplifications or phenomena assumptions which may be
made to facilitate efficient numerical analysis. (i) Stage 1: 3-D Representation

1.2 Modelling of Physical Systems The complex model is created by the user and is a representation of a
real world problem or physical system as shown in Figure 2. The

This paper aims to address these shortcomings by presenting complex model consists of a number of components. Each
onceptual architecture which addresse s-he process of engineering component is represented as an object with initial attributes of

modellg forcthtecprem w i descrbed b partiafentirig geometry, function, location and material. At this stage the user ismodelling for the problemdomain described by partial-differential requested to specify any known phenomena features for each
equations. The discussion assumes as a starting point, a high-level, .omponent. In the example illustrated in Figure 2, the user may be
abstract, three dimensional-representation of a real world problem or asked it an electric c~rrent, volage difference or electri field are
physical system (referred to as the complex model). This psen
representation then evolves through a series of transition processes, present.

each stage-representing a simpler model. The final model (called tile
optimised model) is suitable for mathematical and numerical analy, Av' shalo rl base tInferenceItlie architecture includes techniques for representing real wor',' A Shallow rule based inference mechanism is used to exhaublively

I r ' predict all possible phenomena in the system based on tie hgh-l,,
problems, identifying all physical phenomena and qtalitatively knowledge available from the 3-D representation.
simulating their behaviour. Additionally, the user may select
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(iv) Transition B: Constraint-based Oualitative Reasoning
Qualitative reasoning and causal networks are used to derive a

Stage 1 behavioural description. Any simplifications such as geometric
Technique Causat.. k Physical Systemi dealisations are carried out to derive a simplified primary model for

Reasoning each phenomenon, these simplifications are known as primaryApplied R gi simplifications. Each phenomena is then estimated using constraint-
I RepresetI based qualitative reasoning to give a behavioukal description. This

Transition Prediction description can then be assessed by the user to estimate the7ransio Predictipent i importance of each phenomenon. This approad is discussed in detail
-A jb~kepreentaionin Section 4.

- Coin Iex Model
Cause-Effect , Phenomena (v) Stage 3: Ouantified Phenomena
Infec 1- Prediction At this stage there is a stable description of the behaviour of allInference n components of the simplified complex model.

2 (vi) Transition C: Phenomena Reduction
Predicted Phenonenia

_Primary Model Shallow rule-based inference mechanisms are used in this transition
I to examine the values of key parameters for each phenomena

Constraint based Phenomena throughout the system. Using knowledge bases, the relative
Qualitative Simhulation. Quantification importance of each phenomenon ,an be assessed, e.g., stress levels

B Y in electronic components and the user may make an informed
3 selection of phenomena to include in subseqtent analysis.

Qanitified Phenomena
(vii) Stage 4: Reduced Phenomenar

-High-levelrule Phenomena Stage 4 consists of a number of reduced phenomena for further
-based inference Reductioi analysis and optimisation.

C t (viii) Transition D" Phenomenon and Control Volume Reduction
e -Depending on the phenomena selected by the user for analyses, an

R!educed-Phn n optimised model is derived. Optimisation may consist of further
A cn geometric simplifications, selection of a subsection of the model
Applicaion Phenoena based on symmetry or selection of a reduced analysis volume.- lob Analsis-Volume

Reduction (ix) Stace 5: Optimised Model
D This final stage is a model of the primary model optimised for

5 subsequent analysis. It reflects a trade-off between simplicity and
Optimised Model accuracy in analysis. For example, if the optimised model was to be

used for numerical simulation, an important concern would be the
Numerical Mathematical scope of the analysis volume. If a large analysis volume is assumed,
Methods N then the complexity of calculations is increased, whereas if the

Manalysis volume-is limited, important detail may be lost.

2.2 Introducing System Entities

The physical system is comprised of a number of components. EachFigure 1 Overview of-proposed modelling architectAtc W.mponent has a funttional perspective and a geometrn, perspective.
The functional perspective determines what use the component has,
For example, a metallic pipe may be viewed as a flow channel for a(iii) Stage 2- Predicted Phenomena fluid, an electrical conductor or a bearing for a rod that can rotate

At-this stage, all known phenomena- hae been predicted by the inside it. The geometric perspective defines the shape and dimensions
system However, it may not be realistic to analyse all phenomena, of a component. Initially a three dimensional shape may be selected
therefore by quantifying each-phenomenon, certain phenomena may by the user from a limited library of shapes and instantiated with the
be found to be insignificant and therefore removed from further appropriate dimensions e.g. a BLOCK of length A, width B and
consideration. depth C. The geometric perspective evolves from the complex model

through tile primary simplification to the optimised model.

2 Each component has a behaviour. The behaviour of that component
is essentially the physical phenomena occurring in that component
and is context dependent. The context of a component determines the

1 component's behaviour and it is determined by the component's
geometric perspective, functional perspective and boundary links as3 well as its current local behaviour.

AIR [Boundary links are the medium through which effects are propagated
between two connected components. A valid boundary exists
between any two physically connected components and also between
a component and the outside world, where they are directly in
contact. A boundary link is an abstract entity which models the
transfer of effects of physical phenomena between neighbouring
components. Transfer parameters are defined for effects of physical

Co~C e/phenomena, e.g., for heat transfer define 'Heat Flux' or for a stress
Element ELECTRIC Ceramic field define 'Force'. This abstraction enforces the localised context

CURRENT Sleeve for each component. For a component producing a heat field, it need
only output a 'Heat Efflux' parameter value to its boundaries. It is tip
to each boundary to present this effect to the context of the
nelghboturing component in a suitable form. Thus the context of a

Figure 2 Physical System or Real World Piobl, in icghbour will i orporate Ileat Flx whid will be presented as a
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'Heat Influx' parameter with a set value. From tile receiving the context of the proposed architecture is discussed (Figure 1
components perspective, the origin of the heaj is immaterial as are the Transition B).
destinations-for subsequent-side-effects. A boundary link will be
represented as an -object with initial attributes of shape and
participating- components. 4.1 Components of a qualitative-reasoning system.

A qualitative reasoning method-begins-with a model of the domain,
3. Related -Work called a structural description, in which precise numerical values and

precise-functional relationships are absent. All parameters can take on
one of a-finite set of non-numeric values which generally delimit

While there-has been considerable investigation of different types of regions of quahtatively distin-tbehav iour (e.g., fluid flow rate could
abstract models for physical systems, the problem of modelling be expressed as being laminar, between lmiar and turbulent,
physical phenomena it such systems has received little attention. turbulent). An- ordered-set of such qualitative values is cale2 .
However, work has been-done which is related to parts of the quantity spate. The minimal quantity spaLe has the-values (, 0, +)
proposed modelling process. which only supports a system to reason about signs.

Several artificial inteligenceresearchers have investigated the use of The influence of one parameter on another is expressed b) qaaliiatit
qualitative reasoning to predict the-behaviour of physical systems. constraint equations. The qualitative state of the system is an
Section 4 explores the contribution of this work in greater detail. The assignment of a qualitative value and hIcrLi ntl Qialitati v alue or
proposed system is a modelling process directed to modelling IQ value (i.e., direction of-change Ahich may be specified as
physical phenomena whereas the applications of existing qualitative dec-reasing, steady, or increasing) to ea.h parameter together wvith the
reasoning systems have focussed on predicting device behaviuur, time-point or interval at, or over, which this value applies and the
e.g., [Forbus-et al '87]. direction in which the parameter value is changing (if at all). Time is

represented as an ordered sequence of time-points generated
Geometric -idealisation plays an important role in engincerinig dynamically whenever something interesting happens to a parameter
modelling. [Baehman et al '88], jBaehmann '88]-and [Collar '90] Transition rules govern any changes in-parameter value.
have done considerable work in the field of-geometric modelling but
the starting point for their idealization process is a lower level, fully Some systems based on qualitative reasoning use simulation as thei"
specified physical model. In contrast, the proposed system begins inferente procedure, while others use envisionment Simulation
with a high-level, incomplete, abstract specif ationki.e. the kumplex begins with an initial state description and propagates values
model) where the behaviour-of the system is not yet determined. forward,-exploring all legal possibilities, until no more transition
Nonetheless,-the geometric idealization techniques proposed in their rules apply.-Envisiunment generates all legal qualitative states-andresearch is-valid- the lower levels of the proposed arctecture then-all possible transitions between these states Both approaches
specifically at phenomena and analysis volume reduction stages. result in a graph of possible states with arcs signifying permissible

transitions between states. A qualitative behavioural description is
Context dependent behaviours [Nayak et al '90] represent a then any path through such a graph.
conceptually -appealing method for organising multiple models of
primitive components. Unfortunately, like component based and So any qualitative reasoning system can be characterised by its
process based qualitative reasoning systems, this-ontology is geared strutural description, quantity space, notin of qualitative state,
towards prediction of device behaviour and has limited apphcauon-im representation of time, transition rules, bchatioural description and
modelling physical phenomena, inference procedure. The major difference between the various

approaches to qualitative reasoning concerns the precise statement of
[Gelsey '90] describes a program for automated physical modelling, the constraint laws and how they are derived from the physical
He proposes a quantitative modelling approach whereby the structure [de-Kleer and Brown '831 A central organising principle
behaviour of the system (a mechanical device) is derived using for de Kleer and Brown [de Kleer and Brown '84] is the notion of
numerical simulation. Again,-the application for this work is in tile component, for Forbus the notion of process [Forbu. '84] and for
area of kinematic analysis rather than physical phenomena. Kuipers the notion of constraint-[Kaipers '86). The preceding views
Furthermore, the use of quantitative techniques requies a more of parameters, constraints, qualitative state and representation of time
complete model specification than is provided for-at the user interface are essentially shared among the qualitative physics of component
of the proposed system. based, process based and constraint based systems.

4.2 Envisionini
4. Ounalitative Reasoningi

De Kleer and Brown take the view that a device consists of
physically distinct parts connected together. The goal is to draw

Most of today's expert systems have invariably modelled their inferences about the behaviour of the composite device solely from
domain with a "black box" approach, i.e., compiling rules from laws governing tile behaviours of parts. Their .entral modelling
observable inputs and outputs, with no consideration for underlying primitive is the qualitative differential equation, c.tlled a confluence,
physical mechanisms. A commonly recognised failing of such which acts as a .onstraint on the variables and derivatives associated
shallow models" is that they are highly domain specific iKuipers with components. For example, onsider the qualitativ e behaviour of

'86J. The black box approach to knowledge representation is a a pressure regulator (Figure 3) expressed by dPidA-dQ=0, where P
shallow way of contriving summary rules to suit tile needs of the is the pressure across the valve, Q is the flow through the valve and
application which must use them. A is the area available for flow. dP, dQ and dA represent the charges

in P, Q and A respectively. The confluence represents multiple
Qualitative reasoning provides for 'deeper" knowledge which models c-ompeting influenrces, the .hange in area pusitivel) influence, flow
the underlying systems of the black box and allows the derivation of rate and negatively influen.es pres.urc The J.iange in prt ssure
the high level rules of input-output by applying an input to the model positively influenc.es flow rate, etc. A .onfluence is generally %ali.t
and allowing simulation to predict the output. In contrast to shallower for a certain operating rine of somc compunent In this e\an'ple
cofiventional-heuristic models, a qualitative reasoning system will ver' different behaviiours otcuir when the alvc is fully open or fully
embed its knowledge in real physical mechanisms rather than in n les cloed.
ofth 'nb based on intuition and experience.

4.3.).aliiu e Proce,; Theory
In this section three approaches to qualitative reasoning are
discussed. In particular abstra.t qualit live reasoning systemns are Forbus describes, a physical situation in teris of the interaction of
defined amid how principal compon.iits are instantiated wthlin ompeting pro.esses [furbus 84. llie ceraral idea Is that all
component based, process based and .onstraint based systems ,hanges in physical sy.stens are cau.,%d directly or iiidircctl. by
respectively. Furthermore, the relevance of these methodologie. ill liro.esses. Prucesses .an beLome active or ina.tive as paran-ctr
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4.5 Onaltative-Reamoning for Modelling Physical-Phenomena

De Kleer and Brown's component based reasoning system
determines a composite device behaviour from its tomponent
stricture. Domains consist of specific components-which have their
structural description mapped out explicitly in the form of
confluences (qualitative differential equations). The focus for
behaviour prediction rests on the behaviour of the device itself rather

Pi - _P2 than on underlying internal effects.

A similar observation applies to Forbus' qualitativeprocess theory.
The central idea-of-a process as the essential agent for change in a

A physical system-fits well with the notion of physical phenomena
introducing side-effects in other components. However, this
approach is also applied to predicting device behaviour [Forbus et al
'87].

Figure 3 Pressure Valve Example 4.6 Proposed Modelling Approach

The modelling approach proposed in this work deals with behaviour
values change bythe action of other processes. The rules governing a at a lower level than component and process based systems. Instead
process indicate: of predicting-a-composite device behaviour, this work is more
1. Under what conditions a process holds, e.g., the temperature of concerned with the behaviour within a component, i.e., physical

the source must exceed the temperature of the destination for heat phenomena. Rather than a component having a behaviour itself, in
flow to occur. the approach taken here, it serves more as a site for behaviours to

2. The relations it imposes among parameters. occur. The composite behaviour in the modeling-approach of the
3. The influences it imposes on the parameters (e.g., the amount of proposed system-looks at how physical phenomena, local to one site

heat at the source is negatively influenced by the flow rate of heat (component) initially, might propagate to other sites-(components) in
leaving it). the system.

The physical situation presented-in Figure 4 can be described by the Kuipers' constraint based approach conforms most readily to the
heat-flow. process. The quantity condition for the heat-flow process requirements of this-work. Constraint eqtations can be adapted to
is that the temperature of the source is greaterthan the temperature of qualitatively reflect fundamental laws of physis, e.g., power
the destination of the heat The heat-flow rate-negatively influences dissipation = M+(voltage). The calculus of qualitative simulation-will
the heat-of the source-and positively influences the-heat-of the allow side-effects-of physical phenomena to be derived. Parameters
destination. The complete-constraint onthe0amount of heat in the provide an ideal-method for propagating effects by parameter sharing
source is determined by the sum of all 'he influences which reference between neighbouring components.
it.

In contrast to all three qualitative reasoning systems outlined in this
4.4 Oualitative Simulation section, it's noitoof interest-to predict system -behaviour over time.

Instead, the proposed system incorporates the qualitative calculus and
In Kuiper's constraint -based approach, the constraints on how constraint conventions of Kuipers' simulation-system to perform
parameters are related to each other are two- or three-place relations dynamic simulation but present the resulting behaviotimral description
on physical parameters Some specify familiar mathematical as a static view of-the final time-point parameter values. The graph of
relationships: DERIV (velocity, acceleration), MULT (mass, transitions-may be used as a historical accotnt of the simulation to
acceleration, force), MINUS (forward, reverse). Others assert justify results-rn the user.
qualitatively that-there is a functional relationship between two
physical parameters, but only specify that the relationship is 5, Qualitative Catsal Neworks
monotomically increasing or decreasing. M+(age,expefience), M-
(mpg,mph). Inequality-and conditional constraints specify conditions Reason locally and propagate globally: this is the basic principle from
under which some constraint holds. which theqtalitative causal network structure-is derived as a tool for

modelling physical systems. In this section the use of qualitative
The "causal structure-description" indicates each of the constraints simulation is explained to determine local behaviour at each
and parameters of the model. Consider the simple physical system in component (site) in the network and how a causal network,
Figure 4 consisting of a-closed container of gas (at temperature 1) implemented through boundary links between neighbouring
that receives heat from-a source (Ts) and radiates heat-into the air components, is used to propagate side-effects to 'connected'
(Ta), The rate of-flow:of heat into the gas is a strictly increasing components.
findtion of the temperature difference between the gas and the
source. dT= 0 corresponds to no heat flow. into the gas. To solve The simulation-process described in Section 5.1 corresponds to A
this model, a qualitative simulation is carried out by-propagating and B of Figure 6 which outlines the algorithm used in-the proposed
+,0,- values (using Figure 5) and inequalities (using- constraint system to generate a behavioural description of the-physical system
propagation) in order to obtain values for all the variables. (Figure 1, Stage 3). Section 5.2 examines-how causal networks are

used to propagate side-effect phenomena to the contexts of
neiilibouring components (Figure 6, Par C).

Ta
H-eat Transfer-Model :r

S0 +

+ ?
/ : 0 - 0 +

+ ? + +

Figure 4 Heat Transfer Example Figure 5 Constraint Propogation Table
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The basis of the network structure is the boundary links between
PRIMARY SIMPLIFICATION "neighbouring physically connected components. The boundary is-PM .. A Ncharacterised by-its participant components, its geometry (which mayInitialised domain equation -. determine the type of distribution for a phenomenon), and two lists

of transfer parameters, (i.e., source A-<-> destination B and source
B <-> destination A).

-- Select first component After a local simulation has been completed, the boundary link's
outgoing transfer parameters are updated either by appending a new
parameter or by-changing a current transfer parameter's value and/or
-IQ value. The next component incorporates all incoming transfer

A Establish component's context parameter lists-into its context. Simulation then proceeds with the

B Inference using causal reasoning context as an initial state.

C Propagate side-effects
5.3 Stopping Criteria

Select next component From Figure 6 it is clear that the simulation process is an iterativeo -one. One complete iteration corresponds to a local simulation/global
One complete iteration propagation cycle. The behavioural description is considered to be

through the network complete when the system reaches an equilibrium. In practice, a
STABLE STATE? -physical equilibrium will be represented by a complete iteration

which produces no new states of parameters. Each component's
active parameter list should be empty at the start of such an iteration.

The final behavioural description (Figure 1: Stage 3) will beSTABLE determined by the values of key parameters in each component and in
BEHAVIOURAL each boundary's transfer lists.
DESCRIPTION

6. Conclusions

Figure 6 Generating aBehavioural-Desc.ription In this paper a Lonceptual architecture for modelling abstract-physical
systems has been outlined. In particular qualitative causal networks
have been introduced as a tool:for modelling physical phenomena.

5.1 L-ocalised Qualitative simulalion It has been demonstrated how this network structure facilitates the5 presentation of a localised perspective of the whole system to each
component. Boundary links are used to present summary effects to aThe s trategl used in this work is to represent essential equations of component allowing-qualitative simulation to be done withoutphysics qualitatively through constraint equations in the format -reference to the source or destination of side-effects. This is anproposed in-Kuipers' qualitative .,imulation methodology [Kuipers. .....e... Ben ulise uato ,u ies a q ainec T e important division of work from he design point of view Causal'861;e.g., Bemoujlhis equation, universal gas equation etc The network management and quahitanve simlation.an be developed as

knowledge base for the proposed system is divided into a number of sel-onae ent odule.
domains. Each domain corresponds to a physical phenomenon and self-contained, independent modules.
the knowledge for that domain will consist of constraint-equations A role for-qualtative simulation in-modellhng phyikJ-phenomena
derived from the appropriate laws of physics, e.g., Ohm's law could has been established. The importanLe of deep know ledge for
be -represented as. Voltage - MULT(current, resistance) = 0 intelligent reasoning systems has been emphasised in this
Qualitative calculus [Kuipers '86) is used to solve these equations architecture. The need for shallow rule-based inference systems is

also recognised and incorporated- into the proposed system toSimulation at a local-site begins with an initial state or structural initialise the domains fur qualitative zimulation and finally-in model
description (Figure 1: Stage 2). In the first iteration, high-level optimisation
phenomena prediction establishes the domain equations to-be
included for each component and initialises certain system parameters Having outlined the overall modelling procebb, the prototype
based on user input-(Figure 1. Transition A). Subsequent iterations implementation will begin with the primary simplif-ation and
derive their structural descriptions from their context, concentrate on the derivation of a behavioural description in the

All active parameters (i.e. those parameters with IQ value <> steady) manner-outlined in Section 5.
are placed on an active list. Prediction rules are applied to each
parameter on the active list to predict all possible transitions with-no Acknoivedgenlents
regard at this stage for the validity of the-new value. Transitions are
subsequently filtered by applying constraint equations which filter This work is sponsored by the Hiiathi Dublin Laboratory,.We would
out inconsistent transitions, e.g., if acceleration is constant then, like to thank Nobotushi Sagawa and Neil Hurley for arious
because acceleration and velocity are related by the derivative dscussins on the subjet and c.mment% n earher drafts of this
DERIV(velocity, acceleration), a velocity IQ value of'steady' would
be inconsistent and hence filtered out. Other parameters that had been paper.
steady may be perturbed by this process, i:e., a side-effect. When all
transitions have been verified or removed, the next state is
determined for the behaviour of that component. Side-effects are
incorporated into the components boundary link parameters and [Baehman et at 88] P. L. Baehmann, M. S. Shephard, R. A.propagated by the causal network,p g Ashley and A. Jay. 1988. "Automated metal forming modelling

5.2 Context bildine with Caisal networks utilizing adaptive re-meshing geometry". SCOREC Report #7 -
1988, Scientific Computation Research Centre, Rensselear

The structural description for qualitative simulation at each node is Polytechnic Institute.
derived for each component solely from its context. The role of the jBaehman 88J P. L. Bachmann. 1988. "Automated metal for"
causal network is to ensure that any side-effec.t phenomena due to modelling utilizing adaptive re mesing geomctry" SCORIr" Rpnr,
other component behaviours are included in this context.
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Abstact: A computer code has been developed for-the numerical III. RESULTS
prediction of steady, laminar, incompressible flows with strong heat
conduction,-magnetic field effects (Lorentz forces and-Joule heating), In a conventional case of a thermal buoyancy induced flow
latent heat of phase change, and thermal buoyancy using extended -inside-a closed rectangular container, the bottomiwall -is-uniformly
Boussinesq approximation. The same code-predicts the fluid flow hot and-the top-wall is uniformly cold, while the-vertical walls were
field -and the solid layer resulting from strong wall cooling, thermally insulated. The computed velocity vector field [2] for such a
Numerical- results for sohdification inside a closed container test case is depicted-in Figure Ia. If a uniform vertical- downward-
demonstrate the influence of strong magnetic fields on the melt flow -pointing magnetic field is added (but without allowing for
field and the solid/liquid interface geometry. solidification); the number of recirculating flow regions will change

-(Fig. lb) indicating strong influence of the magnetic field on the
I. INTRODUCTION flow pattern, that is, the reduction of vorticity.

To demonstrate the- capability of -the code to -predict the
Based on our earlier works [1-3] in computational formation of the solid region, the top of the container was uniformly

magnetohydrodynamics (MHD) for steady, laminar,-incompressible undercooled. The solid phase was predicted to grow -from the top
flows in two-and-three dimensions, we-have recently developed a- wall (Fig.2). Figure 2 shows the velocity vector fields for the cases
computer code that is capable of simultaneously predicting details of with. Ht = 0 (Fig. 2a), Ht = 0 with variable viscosity (Fig 2b), Ht =
the melt flow field and the formation of the solidified region [4]. 5 (Fig.-2c), and Ht = 10 (Fig. 2d). It can be seen that -with the

Boussinesq approximation was used to account- for the increase in the strength of the magnetic field, the vorticity diminishes
thermal buoyancy force, while allowing the coeficients of viscosity, and the recirculation- cell patterns change. Isotherms for-the same
heat -conduction, and specific heat to depend on temperature sequence of test runs are shown in Figure 4. The convergence
arbitrarily [5]. Nevertheless, in the present work, values of these histories for this test case are represented in terms of an
coefficients were-kept-constant within the liquid, allowed-to vary instantaneous count of the solidified cells (Fig. 3) The convergence
hnearly between liquidus and sohdus temperatures, and then again is oscillatory with a clear indication that the change in the character of
kept-constant within the solid. A special test run (b) was performed the cell from a liquid to a solid (or vice versa) will locally add (or
where-the coefficient of viscosity was varied according-to the consume) a large amount of energy in the form of latent heat, thus
arctangent-law over the entire range of temperatures. This computing -temporarily disturbing the iterative process of simultaneously
logic enables us to use a single flow field analysis code in-order to satisfying all equations in the system. It should be pointed out that
simultaneously predict both the fluid flow field-and the temperature the -computational grid is fixed and it is- clustered towards -the
field inside -the accruing solid, thus "capturing" the solid/liquid container walls. Consequently, the grid is coarse in the central region
interface shape without any special front tracking algorithm, of -the container where the actual solidification occurs. A simple

remedy could be a solution-adaptive grid, that is, a grid that is
continuously adjusted during the iteration process so that it conforms

H. ANALYTICAL MODEL in a highly-clustered pattern with the solid/liquid-interface. An even
simpler approach could be-to increase the number of grid cells

Navier-Stokes equations for- incompressible electn.ally -through the entire -omputational domain, thus-covering even the
conducting homo-compositional fluid flow are given by unknown interface region with a relatively fine grid. Figure 2 shows

clearly- the supression of the vorticity due to the increase in the
vi, = 0 (1) magnetic field strength. Isotherms for the same sequence of runs

(Fig. 4) indicate that the fluid/solid interface becomes much smoother
Ht2 H = 1 Gr with the increase of the magnetic field strength.

v2 t +t (v ivj -' HiHjj --pi .- ( lv1.1), - ir- e10 (2)
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2. Linearized stability analysis

Linearizing problem (1)-(2) around
Abstz;-c An asymptotic model for a detonation
in duct-is derived through activation energy g - 1, we get the dynamical system (3)-(4)
asymptotics. Using linearized stability analysis, (3) u1 = u = u + u
we study-the stability of the constant equilibrium

state ; -next we investigate- the quenching (4) Ux (0,t) = Ux(l ,t) = 0.

phenomenon. Finally -,e study-a bifurcation
phenomenon related to the length of the duct and
propose a simplified model.

I- Introduction The spectrum of 2. consists of the

,igenvalues- Xj = 1-- j4 2- with corresponding

The steady detonation structure consists 
21

of a shock wave, followed by an induction zone i. o = .eigenvctors o)j= cosj.T -, j = 0,1,.
in which-reaction is weak;followed by a zone in
-which vigorouS reaction and heat release occurs. There is at least-one unstable mode (the
Behind-the-reaction zone is uniform burnt gas. -planar mode) corresponding to- 0 =1. -We
In-the limit of Iarge activation energy (0-v-oo) do

-this structure reduces to-the well known square- define the critical length 1c =  iu" for which
°wave in which conditions are-uniform in the X = 0, leading to a center-manifold. For 1
induction zone (of length-L) and the reaction
zone is a discontinuity, the stable manifold is codimension -1.

Numerically, we vilidate-this behaviour on the
When-the stability of such-detonation nonlinear -problem (1)-(2)-by-taking -a small

wave is examined, for a certain class of- initial condition with null mean-value :-the

:disturbances based upon- L and- 0, [1], [2] evolution of such a perturbation vanishes (4].

perturbations to the- shock displacement are
governed by the fully -nonlinear parabolic 3. Quenching phenomenon
equadon (3.

S= ineXx - I This result is also related to the previous() x gxx stability analysis :-taking a non periodic initial
condition leads to an- -unstable behavior.associated withgthe naturalNeumann boundary Nevertheless, the solution remains bounded

asocditedn wt the nual Nemn:onaycniinlast n usal eair
conditions at the walls: whereas the time derivative gt blows-up in finite

2)g-At) = g (Y ,t) =0time t c : this is the so-called quenching
(2) 00 phenomenon.

in which c is a positive given constant and I is More precisely, ananalytical argument

the width of the duct. In this presentation, we (4] shows that: g _(t -t) log (t - tc)
are interested-in thestability of steady-state
solutions of problem (1)-(2). Of course g - I is penoIenon

the expected unperturbed solution but numerical phenomenon

investigation has shown the existence of As previously mentionned, there exists a
periodic non-constant solutions for a certain
range of parameter 1. Two kinds of results have critical length I , for Which X 1 crosses 0.
been obtained for the evolution of a perturbation Therefore as I increases, crossing I ,, the

of the constant solution g S 1 . dimension of the stable manifold decreases. On
the other hand, we exhibited nontrivial solutions
for ! > I c. Figure 1 gives a description of the
steady-state periodic solutions in the plane

(417 g(O)
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This is-the typical exchange of stability
occuring when -there exists a branch of
bifurcation. -In order-to give a mathematical
descripdon of this bifurcation phenomenon,-we
derive a-simpler model whose behavior can be
compared to the physical one. Assuming IgI and
Igxx 1 -io be small and taking a, first order
approximation of the logarithmic term we get:

(5) u -Uxx = - (Il-u)log(l-u)
(6) U., (O,t) = ux(O;1) = 0

where u is defined by-

(7) g = I -c log (1 -u)

On this model, we study the existence of non-
trivial stationary solutions and-their stability as
well as the quenching phenomenon.
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Homogenization for nonlinear adsorption-diffusion processes
in porous beds

tric- Canon solutions wie, and uFdepend on e. We have to homogenize the

Universitdde Saint-ttienne -following microscopic model-:

23 rue du docteur Paul-Michelon --> Convection-diffusion in PC:

F-42023Saint-ttienne Cklex 2. atw: = Di A w - uC.Vwe (1)

.-> Convection-in C2:
D)tWe 2 D2 Aw (2)

Abstract :-A-homogenized-model for nonlinear adsorption 2

diffusion processes in-porous beds, modelling chromatographic --> Jumps of discontinuity for the concentration
columns, is proposed. We consider an inhomogeneous periodic W - h (w', on Fe
medium with two-levels-of structure having strong-different (3)
scales. This suggests to homogenized it. The first structure is a --> Flux continuity on f1:
convection aria.The second-structure is an adsorption area, made ()-of small porous cristals. Our equations are convection-diffusion Dt VwJ.n = e 2 D2 VwS.n
equaions for concentration, and Stokes equations for the fluid
velocity. Along the cristal boundary, We have-three-kinds-of > Dinchlet conditions on the input part of the boundary.
discoitinuiy-: jumps of the fluid-velocity and of the diffusion we = vo on Fin (5)
coefficient, and a nonlinear jump-for the concentration: This last ,-> Neumann-condition on the impermeable %all and on the
heterogenity is the most-important in view of homogenization. output part of the boundary:
We-show-anmiaximum prficiple-ans some energy estimates for
our nonlinear problem.-From them, we prove, as main result, the -VwJ.n = 0 on ro U rou (6)
convergence-of our microscopic -model- to a homogeneous non --> Initial condition :
-linear macroscopic model. we8 (x, t = 0) = 0. (7)-

--> Stationary-Stokes equations for the fluid velocity-in f :1. INTRODUCTION-
A UC = V pC (8)

This paper-Iresents-ageneral homogenized macroscopic model
for--convection-diffusion equations into- a chromatographic div ue = 0 (9)
column. This modeltakes- into account the complete intemal with the following boundary conditions:
heterogeneous structure of the column, and nonlinear o( (10)
relationships between moving and adsorbed -phases. The main fl (1a)

point of our problem is this nonlinearity, this discontinuity is an u8 e U o  on Firn U rout -(1 1)
isothermal relationship derived from termodynamical
considerations. A chromatographic column is constituted, at a UC Fin (12)
microscopic scale,-of two structures having strong-different .n -0 on(
scales: a convection area and an adsorption area made- of small -1 f
porous cristals. These structures:are assumed-to be periodic. u .n = - (13)
Our equations are convection-diffusion equations coupled with Jr. f6
Stokes equations. The diffeirence of scales between the two levels
suggests usto use the-homogenization techniques to replace the
-heterogeneous medium by an equivalent-homogeneous medium. III. THE MACROSCOPIC MODEL
The structures are assumed to depend on some small parameter e.
This parameter-will tend to zero in the homogenization process.
We shall show that-under some reasonable assumptions on the In this section we give the macroscopic model which is defined
isotermal jump condition, the model converges to some nonlinear to be the limit model of the microscopic- model stated in the
integrodifferential equation. The 8-depending model will be previous section when, the parameter g goes to zero the
called the microscopic model. The homogeneous limit model convergencewill be examinated in the next section. Notice that
willbe the macroscopic model. this model is uniform for the whole domain Q2. The macroscopic

model is defined as follow (where T denote the concentration in
II. THE MICROSCOPIC MODEL fQ and u the fluid velocity) :

Our equations are convection-diffusion equations coupled with - a1 w+ f(t) *h (-w) - aD, DF + u .VW = 0 (14)
Stokes equations. The heterogeneities are: jumps of discontinuity ;jj=
for the-velocity and for the diffusion coefficient, and a nonlinear
jump of discontinuity for-the concentration The last one iR the The deformation of-the Laplace operator due to the geometry of

most important. Our-domain 91 is divided into two parts a2 and the heterogeneity is given by:

r, corresponding to the inhomogeneous parts of the column. e"  +i . V ( y1

denotes the boundary between 'i2, ff2. The unknown function is aI = + lV (y) dy (15)

the corresponding concentration denoted by wf, i=l, 2. The fluid JyI

velocity is-denoted by ui, and the coefficient of diffusion by Di, where : ak is a Y-periodic function in H 1 (Y1) (Y is a basic cell,
elo 2.Thedeoty- ofC4,t , andth coeffici entlusiny the Yl is the convection part of the cell Y) defined as:

i=l, 2. The geometry-of , , I', and consequently the A Gk = 0 in YI (16)
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Vak.n-= -nk on aYI (17) Theorem:
The convolution term f expressing the adsorbed phase is givenby: ... There exists auniquefuinctioiT of HI (0O,T ; g)=which is-the

limit of the family W- (solution of the weak microscopic
fp0)(t-,y) dy (1 8) problem) in HI (O,T;V). This limit function satisfies-the weak

Y 2 formulation ofthe nonlinear integrodifferential equation (14).

where p0 is a Y-periodic -function in HI (Y2 )=(Y2 is the Acknoledgments : thiswork was supported by the Societd

adsorption part of the cell-Y) defined as : Nationale Elf Aquitaine (SNEA).

at Po (y,t) - D2 A Po (y,t) = 0 in Y2  (19) References:

po(y,t) = on YI uaY 2  (20)

P0 (y,0) = 0 (21) Canon- ., Jlger W. : A homogeneized model-for nonlinear
diffusive chromatography. 1991, to appear.

The fact-that the adsorbed phase appears in (14) as-a memory Sanchez-Palencia E. : Non-homogeneous media and vibration
term-is strongly related to-the fact that equation.(2) in the theoryLecture Notes in Physics, No 127. Spinger-Verlag 1980
microscopic model is linear.-For a more general model, we get a
coupled system in place of equation (14) : a convective-diffusive Vogt C. : A homogenization theorem leading to a Volterra-

equation-for the %hole domain % ,ith a source-term for the integrodifferentialequatiunfurperneaton .hromawgraphy.
adsorption process, coupled with a diffusive cell equation in Y2  Universitt Heidelberg, 1982, NO 155.

involving h on the boundary Y2 .

IV. CONVERGENCE

It is wellknown (Tartar) that-the homogenization of the Stokes's
equations in porous media leads to the Darcy's law. We do not
rewrite it here.

We assume the following properties for some extension of the
boundary condition vo in (5):

vo a e-L2 (0,T; H1 (fn))nHli(0;T; L2( l))nL-([0,TI x fl) (22)

Dtvoe L2 (0,T; HI(fQ))rnHI(0,T; L2 (Q2))nL-([0,T] x n)(23)

The-convergence of the microscopic model to the macroscopic
model is obtained for the weak formulation of the models given
in the-two previous sections. It follows of the a priori estimates
stated in the two following lemmas:

Lemma 1 (maximum principle):

Under hypothesis (22) and (23) the following estimates hold for

the solution w of the microscopic problem:

0 - w6(x,) S Sup (vo (x,) ; (x,t) in FinX[0, TI) for alnost

every (x,0 in 12x !0, TJ.

0 - )tw8 (x,t) Sup (dt vo (xt) ; (xt in Finx[O, T])for almost

every (x,) in S2x [0, TJ.

The prove is based on Stampacchia's method.

Lemma 2 (energy estimates):

For the solution we of the microscopic problem the following

norms are bounded independently of e:

llwl!L (oT 2 (A), ll ,wIz(o:. (a), l1,w19L2.'2(.r t)) ,

iiaVW jlte (oT;t (A5)), llatVw 2lLe (o.T:t2 (p')).

Let us define 7 the h-harmonic extension of we:

A-h (W) = 0 in c., (24)

We have the following convergence result:
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A PHASE FIELD'MODEL FOR ISOTHERMAL SOLUTION GROWTH

A. A. WHEELER and W. J. BOETTINGER
National Institute of Standards and Technology National Institute of Standards and Technology
Gaithersburg, MD 20899 U.S.A. Gaithersburg, MD 20899-U.S.A.

ABSTRACT - We ues5cribe a nea phase field model fur the-phase Cagnap, 8 has u .n ariuus dstanguished Lmits, in A Ikh

transition of an isothermal binary alloy. This is the first, time, to the t - 0, that 'arxous forrs f the cas~aiStefan problem may be
authors -knowledge, that a phase field model has been-pruposed for recuered. in which the interface is taken to be -sharp" Le. n odeled
phase transitionin a impure material. This represents a significant by a sarface. In this limit there are Lhn layers %ithin f1 uf thdess
step in the derivation of a phase field model foi the solidification of O Ct in Ya6h the phase field rapidy changes. These are interpreted
a nonisothermal binary alloy. as representing interfaces, which are necessarily diffuse. From-this

analysis it transpires that in some limits, the interfacial dynamics
L. INTRODUCTION involve curvature effects- corresponding to the Gibbs-Thompson in-

Classical macroscopic- models of phlasetransitions-model the in- terfacial surface energy as well as kinetic effects. Further, it-is-also
terface between regions of different phase as a surface, and -hence possible to recover the classical Hlele- Shaw problem in other limits.
assume-it has zero thickness. The governing equations for thermo- It is clear that this approach can embody a considerable variety of
dynamic-variables, such-as temperature and solute, are formulated realistic-physical effects in a coherent way.
in each phase independently, based upon conservation principles and However, this superabundance of physical phenomena also pro-
-quantitively verified phenomenologicallaws. The boundary condi- vies a difficulty when applying the model to a defi-ite physical
tions at the interface are chosen to describe-the processes, such as situation. This is because it is not clear how to choose the values of
-liberation of latent heat and segregation that occur at the interface parameters in the phase field model so that it models the solidifica
on a microscopic scale. This approach gives rise to the formulation tion of a pure material with given materials and growth parameters,
of a free boundary problem which provides a difficult mathemati- (or equivalently the Stefan number and capillary number).
cal setting and only-the simplest models of phase change have been Another difficulty with this particular model, as pointed out by
rigorously mathematically analysed. Tihe advantage of these mod- Penrose and Fife F12,, is that-it is thermodynamically inconsistent.
els is that it is clear-from the-outset what physical mechanisms are This is because the free energy functional is only employed in-the
incorporated into them, and comparison with careful controlled ex- formulation of the kinetic equation for the phase field. The concernperiments is possible, here is that the solution of the above governing equations does not

An alternative technique for investigating transport processes in correspond to the-free energy decreasing monotonically with time,
systems involving a phase transition, involves -the construction of as-required by the Second Law of The-modynamics. An alterna.
a Landau.Ginzberg free energy functional. This approach has its tire approach suggested by these authors is-to construct an entropy
roots inostatistical physics, Landau and Khalatinikov, [lj. Further, functional, S, of the system and require it-to evolve as a gradient
a phase-field, which is a function, 4(x, t) is postulated which de- flow of the form:
scribes the phase of the system at any point in time and space. It is ii c gradoS(u), (3)
assumed that-the Hlelmholtz free energy g4, ), is a functional of Ihere grad msa sutabie constrained gradien, andzu represents the
ihe phase fiel. as a el as any other thermodynamic variablesi (such thermod~,naimi sarmabies. Th., formui,,tvn necessarily ensures that
at- temperature which are denoted here by ellipsis) in the following the total entropy -of the system increases with time.
way: The appeal of phase field models in describing plse transitions

( ... )= J 2(VO)2 - 9(0,...)dfl, (1) is twofold;

where ni is the region occupied by the system, and g(4,...) is the * It provides a simple, elegant description, that appears to em
free energy density. Its dependence on €5 usually has a "double well" body a rich variety of realistic physical phenomena.
form. The phase field is then assumed to evolve as: * From a computational point of view it is relatively -simple

" L ( (2) to compute solutions. This is because it is not necessary to
iL- -- "distinguish btween the different phases. Computations on

where L is some partial differential operator. Tnis equation-is then the classical sharp interface formulation require that the-free
supplemented by partial differential equations for the other therto- boundary is tracked numerically and that the region occupied
dynamic variables. Cahn, [2), has successfully used this approach to by each phase is therefore determined and dealt with indi.
model spinodal decomposition of a binary alloy, although here the vidually. This results in very difficult and untidy numerical
concentration naturally plays the role of the phase field. -Various algorithms.
models that employ this idea-are reviewed by Halperin, Ilolenburg In ths paper we.denve a new phase fied model for phase tr.n-
and-Ma, 4 , particularly in regard to the study of critical phenom sitions of an isothermal binary solutio. To our knowledge, thee
ena. The Model C given by these authors has been adapted by to da nophefm al with ipur e aerLaner, 5 F~, , ad mst rolfiellyby aglalp [7 toderve are to date no phase hield models that, deal with impure materials,

ane v i, m oThe model presented here is a first step to deveoping a phase field
the so-called "phase-field model" of solidification which models the model for the solidification of an alio.
phase change of a pure material. Caginalp has extensively studied
this, and variations of this model, 18, 191. It has emerged from study It. PHASE FIELD MODEL
of this model that qualititively it exhibits featum-con mxnon to sQ'-
lidifica on of a pure mateial. Numerical calculatiora based _n this %e cuns,det an sothr;ma: soiution of two different speus A-and
model, by Smith, i0, and a similar model, by Koba).sh, .h., B in hich aie preCaL two ph."ea, holid-and liquid, contained n a
breakdown of a planar and Qirculas interfaces t celsai strictures. fied segpn fl with bouoday Ofl. Ire denote the concenrmaion of
as well as the formation of dendrite like structues, liqui;d -app;ng B hs - ta and ae itroduce a phase fiteld 49-ar, %Iuh reptrzent
and coarsening behaviour. the phase in time and space in fl. For dTniter s we describe the
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sb,!id liquid- interfraeby O(x, t) -and denote solid regions where lIn order Lu derive a kinetic model wve make the-absunaps,.in that
otx, I)-> and liquid regions where (x, t) < 4.the system evolves in time so that its total free-einerg udecreases

Arecent Phase fieldino -I due to Iobayashi '11, mnodels the phase niunutunically. This may be umet by-absuming the raie of (hange of

transition of a pure material by employing the following gradient cand 0 vary according tu the LUnStf aincd-gradient of 1F(0,c, T).
weighted free-energy functional: it oc -grado.F(u), (10)

fC (0, ~ I +TxqaTdl 4 where u = 4 ,).Fife, [13] discusses how such constrained gra-
dients may defined in a more rigorous mathematical setting. The

where e is a constant, T(X, t) is the temperature and the free energy only constraint we require here is that both species -are conserved,
density fJ(#, T) is represented by: i.e. d fn cdfl =0. We chose the constrained gradient such that:

fx (s, T) =I 7(-- ~ -3T)d, ()- -, (11)

where P3(T) is a monotonic increasing function of T, such that &9 'F
6T)= 0, where !J'q is the freezing temperature of the mate- K12 V .(e(1 - C)V.-, _(12)

rial and 11(T)i The free energy-density fK('P,T7) is a double where , and r-2 are constants. The boundary conditions are
well potential. The-restriction J1(T)j < 1 ensures that it has local
m rinima at 0 = 0andq 1,and alocal maxima at0 ~+ P(T). -= = ,(13)
Because of the two minima the system may exist stablely in a state Fn F.

- which is all-liquid (O(x,t) -0) or all-solid (O(x,t) =1). There is where a is the outward normal to the boundary 80l. We may in-
an energy penalty fur-a Lhange of phase within the region fl, vohich terpret the right hand side of (12) as the divergence of a solute
corresponds to a( .arying oUetween zero and unity. This is because flux, i c(1 c)V 67, The coefficient c(1 c) has-been included to

- such a variation increases the tutal-energy Yx of the system, due to ensure that the diffusion equation for the solute that emerges has a
- an increased energy density associated with the double well nature diffusi-n coefficient that is constant.
- of th,. iergy density, and also due to the contribution to the total Evaluating the sariational der; atlves of the free energy functional
- energy due to the-gradient energy, which is no longer zero. gives that:

-If - 1 <4_0<0o, then the global minima of the energy density is a4 r af (4
at qS=1and-so the-all-solid state is the one with the lowest energy at ao
and is hence the prefered state. However, if 0-< 03 < 1 then the DcOf

__(_ (15)-f
- situation is reversed-and the liquid is the preferred state. We see at~v (c ~ c
- that at temperatures below the melting point the solid phase has the which may be also written as:
- minimumn energy-and is prefered, whereas for temperatures above -

0f
th mltngtepeare, thy, all.li;ud phase is preferred. -- = ,_[22 _ (Ch +(- - , (16Cff~

-We now employ this form for the free energy density to develop i/
- the appropriate i'ree energy dens~ty for an',sotiiermal Mdeal snlution. 49C V.(( )~A-I) V2 C, 17

- We assume-that the temperature, T, whiuch is given, is such that if T
the solution- consisted only of species-A (c M0) the all-,zolid phase, where 1)- 2AT is the diffusivity of thu solute.

- would be thse-prefered state i.e. T' < T,4, where TjA i; the melting
-temperature of-pure A. Ft.rthier, we-also assume that the tempera-

- ture T' is sufficiently-large 'hat if the system- cons;sted of species-B References
aloe-( 1vtheallliqid has wold e to pefeeristae ie. [1) L. D. Landau and Khalatnikov, I. M., in; Collected works of L.

T T> TB, where Tfl is-the melting temperature of pure B. We also D. Landau, ed. D. ter Haar (Pergamon, Oxford, 1965) pp 626
- assi..ne that-the molar Gibbs free energy ilensities of each species A
- m.dfB alone are of the-form' given- by -Kobayashi, and are denoted
- by fA(aI';T) and fD(O; 7') reejectively. Specifically we put. [2'; J. W. Calm and Hlilliard, J. E., I. Chem. Phys. 28 (1958) 258-

1 267.
JA(Ob;T) = WA JA( - 1)(p- 2 - A(T))dp, (6) (3] J. W. Caln, Acta Metallugica, 9 (1961) 795.801.

-B f(0;T) = J'B A( - 1)(P - - fOfi(T))dp, (7 [4] D. 1. Halperin, Hohenburg, P.C. and Ma, S.-K., Phys. Rev. B.
- 10 (1974) 139-153.

where here-TVA,IAIB are consbtants, and T the-temperature is a pa-
rameter in-4,his-isotherwmal situation. We note that e-icause k .a 3,N . S. Langer, pp 164 186, World Science PJ1"sb~rs (1986)

- T< T4, hen-~ 137)<0<3T)<1 h talerg [6] 0. Fix, ed. A. Fasano-and M. Primocerio, pp zmu-689, Pitman,
density f(o,c;T) of-the solution is: London (1983).

f(,c; T) e fu(0,T) t (1 c~fi(o T) f- I ciogc (1 - c)log(I- c);, 17] G. Caginalp, Arch. Rat. Mech. Anal. 02 (1986) 205-245.
VM

(8) f8] G. CagirRlp, Vhys. Rev. A. 39 (1989) 5887-5896.
- where jr-is Boltzmans constant and-Vm is the molar volume. The
- firse. two terms correspond to the contriout.on to tne energy density, aiapadFfP . hy.Rv .3 18)79-74

due to the individual moar Gibbs free Prergies of the two species '10]J3. Smith, J. Comp. Phys. 39 (1981) 112-127.
- and the )as' term is due to the decease iht energy associated with
- he-m~eagof the two constituents, undc our assumnption -that it is [111 Private communication (1990).

;! an idea cl solution,.[1)0PersanFieP.CPyc D4(90,44Q
In a sirilla- wa, to-Kobayaslil we dlefine the free energy functional 12 .PnoeadFfP . hsc 3(90,4 2

-by:1131 P. C. Fife, Proc. Taniguchi lInt. Symp. on Nonlinear flIEs and
C2qSc;' = IV012 + f(O, c; T)d(l. (9) Applications, Kinokuniya Pub. Co. (1990).

942



USE OF SPHERICAL HARMONICS IN THE SOLUTION
OF THE RADIATION TRANSFER PROBLEM IN AN ATMOSPHERE

WITH THE INHOMOGENEOUS SPREADING SURFACE

SULTANGAZIN U.M. AND MULDASHEV-T.Z.
Institute of Mathematica & dechanics Institute of Mathematics & Mechanics
Academy of Sciences of Kazakh SSR Academy of Sciences of Kazakh SSR
Pushkin str.125, Alma-Ata, USSR Pushkin str.125, Alma-Ata, USSR

Abstract-A method is -presented for solving Phase function allowg following expansion:
the multidimensional equation of radiative 0 2 2 z, )cosm(v-9 ),(5)
transfer in a scattering plane-parallel atmo- g(zp,)=?(z'i'W)+2 zM ' -

sphere with inhomogeneous spreading surface. m=1

The method, based on the spherical narmonics where ?m =  gk(z)Yk(/)Yn(P1), Y"(p) is the
expansion, can be used to compute models with k=m
an arbitrary large optical thickness and- any normalized associated Legendre polynomials.
scattering phase function. By substituting (4) and (5) in (3) we obtainm  m  f - '2 - + I -y ~ d u

The correction problem of the distortion M- P + oV -ip Y-p ( +, =
of the representation of the earth's surface -1
arises in connection with the investigations ]4m =0, /1>0; 1  1Z=I,= j = 0.=0, m:-1, J<O;
of natural resources of the Earth from the 1- 0

space. The main stage here is the numerical P(ztP,pX) is the complex function, i.e.
solving of the following -problem of radiati- + I4m. By analyzing (6) we can to show
ve transfer in three-dimensional plane slab: 0

Sgrad 1) + a(Z) I = .that pkiO M ek=O, -k=0,1-,...,(M/2).

11,== ffF 66- ),Z e n,+ By eliminating those components from (6) and
S0 defining the new real function 1m(z,P,p×)

I== IW' du' 0) a n_, according to the rule -l ' = e

G (z-)* we find
a (Z) I

where S I = g(z,p )-I(r,w )d' , . 1 M+ I i--a+M M-r' %i__
-~ -1- (7)I( , ) is the radiation intensity at the M- 0= 0 . >0; 1 ,,l =O, -i, P<O;

point -r = (x,y,z) along the unit vector t, -=H
f c l-Isin , i), 0 is the sur- Expanding §m(z,p,p ) in Legendre polynomials

face of the unit sphere, 0f={, :(Zi)>O )-, M(k p )M=(p) (8)

0 ={ :-(o,)<0 -, ,(Z),a (z) are the extinc- k =kk-2 k (
tion and scattering coefficients, respective- Substituting this expansion in (7) we obtain
ly, g(z,p, =W.') is the scattering phase the system of ordinary differential equations

function. A~z + CC(z)+p DS = 0, (9)
Boundary condition at the z=0 defines the A. C(z) are tha block diagonal matrices Of

illumination of the top of an atmosphere by a
unidirectional beam of monochromatic radia- the order N E (N,-m+l). Every block A is
tion of strength nF0 . Condition at the z=H m=o

s the Lambert's reflection law, where the symmetric and triadiagonal matrix of the

0 :q(x,y)5 1 is the reflection coefficient of order N.-m+l with zero main diagonal.

the spreading surface. C = diagfc(2m+1)-cg., c(2m+3)-a g,+,,..
By the method described I.V.Mishin and m,m

T.A.Sushkevich (1] the solution of the of,CNm+l)-a gN 1. D is the block-triadiagonal
problem (1) can be reduced to the solving of
the problems (2) and (3). matrix with zero blocks in the main diagonal

Iand blocks D + =-D 1  are the rectangular
matrices (N-m W(NOM . )T

=,= nF 6(w, 0 ) . e 0+..(2) Mi T

For approximation of the boundary conditions

Paz + [ai(pA -cos+pA 
7sin')Vi = Sp. in (7) we use Marshak's conditions

-G$'5(0)=0 GV(H)=1, d1'(H)=O, m>l, (10)
=0 C) IIIz 0where G!. Gm are defined in (2].

1 2

The numerical solution of the problem (2) For inhomogeneous in the vertical directi
considered in our work (2]. And now we on atmospheric models. the usual approximati-
discuss the use of the spherical harmonics on is to divide the atmosphere into several
method for solving (3) when p =O. homogeneous layers. In each layer [z ,3z

In this case. 'V(zi,,px ) can be expressed matrix C(z) is the constant and equal C.

in a r s (4) Integrating (9) over z in each layer, we getseries --, -S(z 1 ) + exp(B Az,) 5(z ) = 0, (ii)
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Integrating (14) without SW in right hand

where B=A-'R, R=(-C+pxD). side we obtain W,(z,P,v), which is the appro-

In order to define matrix exp(BAz it is ximation of W in the "single scattering'. In

necessary to solve eigenvalue problem for order to evaluate W1 when P<O it is necessary

matrix B, i.e. to compute the integrals
= XA . (12) Az

Matrix B has N different complex eigenvalues, exp(t/11)sinbt m (t)dt, bops/b7cosV/P,
which occur in ± pairs,i.e. ±%,, j=l....,N/2, obt

and-therefore the-order of the problem (12) which can be obtained by multiplying of the
can be -reduced to N/2. For this purpose we
define the unitary transformation Pc, which system (9) at exp(t/i) cosbt by integrating

sorts a vector into its odd and even parts, over z and performing respectively matrix
i.e. T transformations. Function W. is the exact

P0  ....' 3' N/2-1'1z '0'"--
3
N/2) value of the error of the spherical harmonics

)7 0 b approximation of the function P 1 . which is

With this sibstitution, our problem can be the component of the solution of the problem
written as (3) and described "single reflection" from

R 0 ] ] i 0 A , the spreading surface, i.e. 'P has following
PoRP=XPAPo, or 1, !JIJ lJ J. form: 'P =P + x, where

Eliminating it' we find ' =exp(faC)d I/][cosb(H-z)-isinb(H-z)], (15)

= where Z=A1 RA, R2. (13) x(z,,) characterizes diffuse field and isthe smooth function. As seems from (15) func-
The problem (13) is successfully computing by tion ' is the oscillating when pxpO and-the-
using the program DHQR2 from the, EISPACK col- I
lection (3]. Thus we have B=UAU-, where A is refore is bad approximated by spherical har-
the block-diagonal matrix with the blocks monics. Accounting of error W1 as ' = 'PHW-

XXZ , U is the matrix of the eigenvectors.
I- X R_ could described T. with high accuracy.

Then exp(B)=Uexp(A)U1, where exp(A) is the Thus, the describing smoothing procedure will
block-diagonal matrix with the blocks make possible to use the spherical harmonics

=x cosXsinx I for solution the problem (-3) with high
exRtsincos1. efficiency.

J. Results of the solving of the problem (3)
Thus, the coefficients of (11) are defined, for the Elterman-s atmospheric model [43 for

Adding the boundary conditions (10), we obta- X=0.75 mkm are presented in figure. Here
in the linear system of algebraic equations. plotted function x at the top of atmosphere,

Substituting the computed moments to (8) which usually presented in following form:
and-then to (4), -we obtain some function

(z,p,v), which oscillates over angle varia- xpx F ,

bles around exact solution. When M and Nmare 0.23 I-A u:o.:5,": 180 .
2-A 9=-.95. "180'. p,.

increasing, 'P is slowly converging to . The- 3-F-0.85, rp-180
refore, for obtaining of reasonable solution 1-0.95, o18 1.

without largely increasing of the order of "-
approximation there is necessary to make smo- 0.15

othing of the spherical harmonics solution.
For this purpose we use-the smoothing

procedure, obtained by us [2) for the problem
(2). The main idea of this method is -the
numerical evaluation of the error W =PN-tP. 0.07 .
Following this method we can construct

boundary problem for W(z,P,V)

O, + co-ip -pco8]W = S W + Q(z,P,V), -0.01 . ......1(14) P

WI..O='1PN(O,,P),P>O; Wi=="='P(H'P'9)-I'P<O; REFERENCES
where Q(z,p,,) = 1.I.V.Mishin,T.A.Sushkevich. Issledovanie

m d Zemli iz cosmosa N6,69,1980.
6 'Nm __ NT YM (P)cos 2.T.Z.Muldashev,U.M.Sultangazin.Gurnal
OMmMoM- z -m)l(N +1--- (c + vychislitelnoj matematiki i matematicheskoj

m(=o d fiziki v.26,882,1986.
- 3.B.T.Smith.J.M.Boyle,J.J.Dongarra,B.S.Garbow

+ - w-m)(Nm-+1) 1  r1 rn .IIkebe.V.C.Klema and C.B.Moler. Matrix
2 L- 4, N HY (m) +  Eigen-system Routines-EISPACK Guide.Springer

= -Verlag,Berlin (1976).
N..m.1 y m lo, 4.L.Elterman.UV.Visible and IR Attenuation

+ YL-m+l(N-m+2) N+1. . for Altitudes to 50 km. Environmental

truncating error of the system (9) Research Paper 285.AFCRL.Bedford,MA.1968.
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Numerical Solving of Boundary-Value Problems of Mathematical Physic
with Reproduction of Solution Group

A.:E.Shvedov y _ R 4 has the following form:
'VKIdysh Institute of Applied Mathematics, 1 2, 3, 4
-the USSR Academ of Sciences, x-x(x ,x x ,x 4),y-y(x i,x x ,x),
Miusskaja sq.4oscow,12504,USSR) z=z(x 1,x 2, x 3, x 4),t=t(x 4).

The synthesis of simplest algorithms for Here x,y,z are the cartesian coordinates in
numerical solution of boundary-value pro- the space R 3,t is the time. We shall write
-blems with- two or three space variables on t instead of t ( k ) ,t <t <...<t
the base of algorithms for corresponding k 0 1 K
single-dimensional problems is generally We consider the mapping Y to be linear over
connected only with overcoming technical di- x 4 for each line segment
fficulties.But the quality of such simplest I < 4
algotithms often proves to be low.For ins- k - 1 < x < k , k = 1 ,..., K.
tance, the solution symmetry disturbunce or
the approximation loss can occur when the We use - to designate the three-
vector field is turned.The synthesys of more dimensional cube
perfect algorithms for multidimensional pro- 1 2ube
lems is connected with overcoming serious ( x , x , x 3, x 4)

mathematical difficulties. I X 1 1 M X 2 : M
Let's consider the system-of equations for 1 1

unsteady inviscous compressible fluid flows n - 1 < x n , x = k ).
with three spatial variables. The approximate solution -is a function

defined on the set Y ( - ) and constant onap 4 8e 4 4 every set Y 1 m n k 1- L , 1+ div pu =0, + div eu + div pu =0,
a t m t <, I 1 1 n N , 0 5 k K .We define

(1) the value of the approximate solution- on
this set as fU UU 4 4 1 m n k

p-+ grad p + p grad + p rot uxn=0. Definition 1. The boundary-value problemat 2 is called two-dimensional (one-dimensional)
in the following case. First, there is -such

4 a a , P ,1 system of-rectangular cartesi-
p- density,p- pressure, u - velocity of an, or cylindrical , or spherical coordina-

- tes at the space R 3 that the problem solu-
gas, e =-p (e + 0,5 1 u I 2 e - internal tion can be defined as a function of the va-
energy.Equation of state for p,p and e must riables a and 3 (the variable a). Second,-be added to the system (1). if vector fields are used in analysis, -the

THEOREM.Difference scheme of Godunov's decomposition of these fields into unit vec-
type with strong symmetry conservation pro- tors ofthe coordinate system a , 3 , o the
perty is constructed for system (1). components that correspond to -the unit vec-

The algorithm Preserves the symmetry if it tor of the variable 2, (or unit vectors of
reproduces the property of the initial boun- the variables P and X) are to be zero.
dary-value problem solution to transform in Later we shall consider only two- or one-
the solution of the same problem under the dimensional problems, for which the variab-
effect of shift or rotation groups. At the les a and -3 (the variable a) are not
same time the same algorithm must be adapt- angular.It means that The-boi-dary-value
able to any group irrespective of whether problem withstands the elffect of the shift
the group is the shift or rotation group and- or rotation group, and not the extention
also irrespective of the shift direction and group.
location of rotation centres or axes. I.e. Definition 2.We shall say the grid const-
whatever shift or rotation group of the ini- ruction method has the symmetry coservation
tial value-boundary problem withstands the property, if any two- or one-dimensional
numerical solution will transform into problem in the coordinate system a ,
itself under the effect of the group appropiate for a given problem, satisfies the
discrete analogue. eualities

Here we give the strict mathematical defi- Y 1,m,n, t k)=(a1 I M n P k
nition of the symmetry conservation - for two-dimensional problems and
property,di-stifguishing between the strong Y(l,m,n,t k )=(a , 3 n t
and weak symmetry conservation. k I m n k

The algorithm of boundary-value problem - for one-dimensional problems.Here
numerical solution consists of the definiti- a a I < ."< a L '30 < 1 < ..
on of the set,serving as a basis for the ap-
proximate solution (for the counting region) < M T 0 N'
and for finding the solution. We shall ' H < ' <consider the counting region to be an image Definition 3.The numerical solution algo-
of a- four-dimensional parallelepiped rithm for a class of boundary-value problems

1 2 3with the three space variables has the weakSx X xsymmetry conservation property, if the grid
2 1 Xconstruction method has the symmetry conser-

0: x , 5 2 ,0 x -<N ,0) x K) vation property and the numerical solution
(L,N,N,K are positive integers).The piece- of any fwo-dimensional problem of the class
wise-smooth one-to-one intra E mapping considered, based on this algorithm satisfi-

945



es the condition apply the term "invariance" to the calcula-
1 m I k ;mNk 1imk' tion results independence on choice of the

1 5 1 : - , 1 :5 m :5, 0 k 5 K; x,y,z coordinate system in the space R 3 and
and the numerical solution of any one-dimen- parameterization (the mapping Y).Our diffe-
sional problem of the class considered sati- rence scheme has the invariance property.
sfies the condition The symmetry conservation and invariance

f 1 kproperties are important in the numerical
1f 11kIH 1 k solution of complex geometry problems,where

=f 1 1 2 k =1--M-2 k = 
-= f 1M N k the solution can have various kinds of

= el-k I :5 L , 0 : k : K symmetry in various parts of counting region
L -kand when it is not clear what king of

If f I m n k contains vectors, then we con- coordinate system shall we choose to carry
sider the vector equality as an equality of out the analysis.The strong symmetry conser-
their components obtained by their decompo- vation property is also necessary for sol-
sition into Unit vectors oithe coordinate ving perturbation problems close to two- or

system cc, j3, '. one-dimensional ones.-If the numerical also-
Definition 4-The numerical solution algo- rithm has the strong symmetry conservation

rithm for a class of boundary-value problems property, then we can solve two- and one-di-
with the three space variables has the mensional problems using the programs inten-
strong symmetry conservation property, if it ded for three dimensional calculations.
has the weak symmetry conservation pro erty Three problems are solved for constructi-
and of any two-dimensional problems of the on of the difference scheme. L.Construction
class considered:the numerical solution of curvilinear cells. 2:.Obtaining of invari-
f Im k does not depend on the number N and ant form of equations of motion close to di-

vergent. 3.Obtaining of formulaes for cellthe set X' ** ..... N and of any volumes and for cell-face areas.
single-dimensional problem of the class con- The new method for construction of curvi-
sidered the numerical solution f 1 k doesn't linear surfaces is proposed.The novelty of

the method suggested is that, the countable
depend on the numbers 1 and N and the sets set of points situated on the surface is ge-
o ,91 . '- 9 , and To' d .. nerated , to begin with . Then it is proved

T 1 that, there is the Lipshitz mapping of the
N 3An illustration will make the difference parametric plane rectangle into a space IR

between weak and strong symmetry conservati- where the binary-rational points of the rec-
ons clear.Let the decision of boundary-value tangle are in one-to-one correspondence with
problem depend on- the r coordinate only in the plane points constructed. By this way the
the (z,r,o) cylindrical coordinate system. surface is parametrically represented.
The different -grids for this problem soluti- The multi-dimensional analogue of the Fa-
on are presented- in Fig.1,2 in the z=const ber - Schauder basis for the space of func-
plane.These grids have the same cell number tions was created for the substantiation of
in the r direction and the different cell the surface construction.
number in 0 direction. If the algorithm has Three surface families covering the domain
the weak symmetry conservation property, then so that one and only one surface of each of
the solution will be identical both for the the families goes through the each point of
grid shown in Fig.1 and for the grid shown the domain generate three scalar equations
in Fig.2 for all -the cell layers satisfying of motion.Each of the equations is generated
the fixed 0. However; the solution F r by one of the surface families.These equati-

ons are including only the vwocity compo-obtained using the first grid, can be diffe- nents obtained by its decomposition into da-
rent from the solution F 2 ( r ) obtained tums that consist of the vectors going nor-
using the second grid. If the algorithm has mal to or in the main directions of syrfa-
the strong symmetry conservation property , ces.All the geometric entities involved in
F 1 (r) fits F 2 (r). equations do not depend on ways of specify-ing or parameterizing surfaces.They are de-

fined by invariants of the first and se-
c ond quadratic forms.The differentiation is
included into the obtained equations only as
a divergence of some vector fields.0@ Proof of the theorem is given in [1].

(1] Shvedov A.S. Difference scheme for gas
dynamics equations,conserving group proper-
ties of solutions.Matem.zametki,1990,v.45,

Fig.1 Fig.2 N 4,pp.140-151 (Russian).(Transl.in "Mathe-
matical Notes")

The important property of mathematical
physical problems is the independence from
he coordinate system, in which they are gi-
ven since the problem itself does not depend
on any coordinate system. In other words,the
equations of mathematical physics are writ-
ten in the invariant vector (or tensor)
form. It is the numerical algorithm that is
reproduction of this property in analysis.We
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